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Abstract

Embedding-based evaluation measures have shown
promising improvements on the correlation with
human judgments in natural language generation.
In these measures, various intrinsic metrics are
used in the computation, including generalized pre-
cision, recall, F-score and the earth mover’s dis-
tance. However, the relations between these met-
rics are unclear, making it difficult to determine
which measure to use in real applications. In this
paper, we provide an in-depth study on the rela-
tions between these metrics. Inspired by the op-
timal transportation theory, we prove that these
metrics correspond to the optimal transport prob-
lem with different hard marginal constraints. How-
ever, these hard marginal constraints may cause the
problem of incomplete and noisy matching in the
evaluation process. Therefore we propose a fam-
ily of new evaluation metrics, namely Lazy Earth
Mover’s Distances, based on the more general un-
balanced optimal transport problem. Experimental
results on WMT18 and WMT19 show that our pro-
posed metrics have the ability to produce more con-
sistent evaluation results with human judgements,
as compared with existing intrinsic metrics.

1 Introduction
Natural language generation (NLG) has become a hot topic
in the area of natural language processing, with a wide range
of applications in many tasks, such as image captioning [Xu
et al., 2015], machine translation [Bahdanau et al., 2014] and
dialogue generation [Li et al., 2016]. To evaluate the perfor-
mance of NLG methods, qualitative evaluation measures such
as BLEU [Papineni et al., 2002], ROUGE [Lin, 2004] and
METEOR [Banerjee and Lavie, 2005], are widely used to re-
place the costly human judgements. However, these measures
fail to correlate well with human judgements due to their lim-
itations in considering the semantic meanings of words or
phrases, as shown in [Novikova et al., 2017].
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Recently, embedding-based evaluation measures have been
proposed to tackle with this problem. Typical examples in-
clude BERTScore [Zhang et al., 2020], YiSi-1 [Lo, 2019],
WMD [Kusner et al., 2015], WMDo [Chow et al., 2019] and
MoverScore [Zhao et al., 2019]. They first compute the se-
mantic similarity between word representations, produced by
word embedding models such as word2vec [Mikolov et al.,
2013] or contextual embedding models such as BERT [Devlin
et al., 2018]. The final score is then given by different intrin-
sic metrics, such as generalized precision, recall and F-score
used in BERTScore, and the earth mover’s distance (EMD)
used in WMD, WMDo and MoverScore.

This paper focus on study the intrinsic metrics. The mo-
tivation comes from both empirical and theoretical perspec-
tives. Empirically, it is unclear which intrinsic metric is the
best. For example, previous studies have shown that the three
different BERTScore versions perform differently on differ-
ent data sets [Zhang et al., 2020]. Theoretically, existing
work on the relations of these intrinsic metrics are superfi-
cial. For example, Zhao et al. [2019] classifies existing mea-
sures to two categories, where EMD is classified as the op-
timal matching (soft alignment), and generalized precision
and recall are classified as the greedy matching (hard align-
ment). Generalized precision and recall are then transformed
to a quasi (non-optimized) EMD form. To the best of our
knowledge, an in-depth theoretical study on the relations of
these intrinsic metrics is missing.

Inspired by the fact that EMD is a special optimal trans-
port distance [Peyré et al., 2019], we conduct our study from
the perspective of optimal transport theory. We theoretically
prove that generalized precision and recall correspond to the
optimal transport problem with unilateral hard marginal con-
straint, respectively; while EMD corresponds to the optimal
transport problem with bilateral hard marginal constraints.
Further considering the fact that F-score is the combination
of precision and recall, the relation of different intrinsic met-
rics is clear. That is, they are the optimal transport problem
with different hard marginal constraints. However, these hard
constraints may cause serious problems in the NLG evalu-
ation. When the candidate and reference sentences contain
paraphrases of different length, only part of the paraphrasing
words may be matched under the hard constraints, named in-
complete matching problem. Besides, some words may be
matched to less related ones, instead of their semantically
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close neighbors, named noisy matching problem.
To tackle these problems, we propose a family of new

intrinsic metrics named Lazy Earth Mover’s Distances
(Lazy-EMDλc,λr

), induced by the more general unbalanced
optimal transport problem with parameters λc, λr. Exist-
ing intrinsic metrics can be viewed as special extreme cases
in our framework. Specifically, general precision, recall
and EMD corresponds to Lazy-EMD∞,0, Lazy-EMD0,∞ and
Lazy-EMD∞,∞, respectively. Furthermore, we prove that
Lazy-EMD has the ability to significantly alleviate the in-
complete and noisy matching problem, by replacing the
hard marginal constraints to the soft ones. We conduct
extensive experiments on the large scale metric evaluation
datasets provided by WMT18 and WMT19 [Ma et al., 2018;
Ma et al., 2019]. Experimental results show that our proposed
metrics produce more consistent results with human judge-
ments, as compared with existing embedding-based evalua-
tion measures.

Our contributions are summarised as follows:

• We theoretically prove the relations of different intrinsic
metrics, i.e., the optimal transport problem with different
hard marginal constraints.

• We propose a family of new intrinsic metrics based on
the more general unbalanced optimal transport problem,
which significantly alleviate the incomplete and noisy
matching problems of the existing measures.

• Extensive experiments on WMT18 and WMT19 show
that our metric outperforms previous ones by producing
more consistent results with human judgements.

2 Background
In this section, we introduce some details of the existing
embedding-based evaluation measures for natural language
generation. Since both BERTScore and YiSi-1 use gener-
alized precision, recall and F-score as the intrinsic metrics,
while WMD, WMDo and MoverScore all use earth mover’s
distance as the intrinsic metric, this section is separated into
two subsections according to different intrinsic metrics.

First we give some notations. Suppose a sentence is rep-
resented as a triple (X,X,w), where X = (x1, · · · , xk) is a
sequence of tokens, X = (x1, · · · , xk) is a sequence of token
vectors, w = (w1, · · · , wk) is a normalized vector with wi
represents the weight assigned to xi.

2.1 Generalized Precision and Recall
Generalized precision and recall between a candidate sen-
tence (X̂, X̂, ŵ) and a reference sentence (X,X,w) are de-
fined as follows. They measure the similarity of the two sen-
tences.

Definition 1 (Generalized Precision and Recall).

P =
∑
x̂i∈X̂

ŵi max
xj∈X

S(x̂i,xj), (1)

R =
∑
xj∈X

wj max
x̂i∈X̂

S(x̂i,xj), (2)

where S(x̂i,xj) measures the similarity of x̂i and xj .
In BERTScore [Zhang et al., 2020], the vector representa-

tion X is generated by the pre-trained model BERT [Devlin
et al., 2018]. S is defined as the cosine similarity. The weight
vector wi for each token is either uniform or defined by its
inverse document frequency (IDF) computed using the ref-
erence sentences. Using generalized precision and recall as
the internal metrics, we get two versions of BERTScore, de-
noted as PBERT andRBERT. FBERT is defined as their harmonic
mean.

YiSi-1 is one typical configuration of YiSi [Lo, 2019]. The
up-to-date version of YiSi-1 also uses BERT to generate X
for X . The weight wi is defined by IDF computed using the
reference sentences, with a plus-one smoothing in the loga-
rithm. S is defined as the cosine similarity. The final score
is defined as a weighted harmonic mean of generalized preci-
sion and recall. That is,

YiSi-1 =
P ·R

αP + (1− α)R
, (3)

where α is usually set to 0.7 in machine translation evalua-
tion.

2.2 Earth Mover’s Distance
The earth mover’s distance between the candidate
sentence(X̂, X̂, ŵ) and the reference sentence (X,X,w) is
defined as follows, which measures the dissimilarity of the
two sentences.

Definition 2 (Earth Mover’s Distance).

EMD = min
P∈R|X̂|×|X|+

〈C,P〉 (4)

s.t. P1|X| = ŵ,PT1|X̂| = w, (5)

where C ∈ R|X̂|×|X|, with Ci,j stands for the dissimilarity
of x̂i and xj . This definition is deduced from the general
form of EMD in [Rubner et al., 1998] under the condition∑
i ŵi =

∑
j wj = 1.

Word Mover’s Distance (WMD) [Kusner et al., 2015] is a
typical EMD on two documents, where X is the sequence of
content words in the document and X is the sequence of their
word2vec embeddings. w is a normalized bag-of-words vec-
tor. The dissimilarity between two word vectors is measured
by the Euclidean distance.

WMDo [Chow et al., 2019] is an extension of WMD that
further incorporates word order. Different from WMD,X is a
sequence of both content and stopping words in the sentence,
and the dissimilarity is defined based on the cosine similarity.
The final score combines WMD with an additional penalty of
word order.

MoverScore [Zhao et al., 2019] employs contextual em-
beddings to replace the word2vec embeddings. Specifically,
X and X are generated by the pre-trained model BERT, and
w is a normalized vector of the IDF weights. Furthermore,
the EMD used in MoverScore is an extension of the original
one from single words to n-grams.
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2.3 Comparisons of Different Metrics
By incorporating embeddings into consideration, these mea-
sures have shown promising improvement with human corre-
lation as compared with traditional measures such as BLEU,
ROUGE, and METEOR, shown in [Kilickaya et al., 2016;
Zhang et al., 2020; Ma et al., 2019]. However, it is not
clear which intrinsic metric is the best. For example, pre-
vious empirical studies have shown that the three different
BERTScore versions perform differently, and alternate as the
best on different evaluation datasets [Zhang et al., 2020]. Be-
sides, existing empirical studies on generalized F-score and
EMD conducted by BERTScore and MoverScore generate
different conclusions on WMT17.

In this case, a thorough theoretical analysis is crucial.
However, most existing theoretical results are superficial. In
[Zhao et al., 2019], different metrics are related by transform-
ing generalized precision and recall to a quasi non-optimized
form of EMD, without further understanding. Some work at-
tempts to separate these metrics to different categories. In
[Zhang et al., 2020], the generalized precision and recall,
EMD are classified to the greedy and optimal matching, re-
spectively. While in [Zhao et al., 2019], generalized precision
and recall, and EMD are viewed as hard and soft alignments,
respectively. Though different categories indeed show some
connections and differences [Rus and Lintean, 2012], there
lacks an in-depth theoretical study on the relations of these
metrics. That is exactly the motivation of this paper.

3 Theoretical Analysis on the Relations
Now we show our main theoretical results of the relations
between these intrinsic metrics, i.e., they are proven to be
the optimal transport problem with different hard marginal
constraints. The idea of relating different metrics via optimal
transport theory comes from the fact that EMD is an instance
of the standard optimal transport distance [Peyré et al., 2019].

3.1 Optimal Transport Problem
Generally, optimal transport problem is to find a transport
plan that meets the transport requirements with a minimum
cost. Suppose we have two discrete distributions PX and PY
supported on X = (x1, · · · , xn) and Y = (y1, · · · , ym), re-
spectively. The amount of mass on these points is given by
µ ∈ Rn and ν ∈ Rm. Suppose the cost matrix is C, where
Ci,j denotes the cost of transporting a unit of mass from point
xi to yj . We define a coupling matrix P ∈ Rn×m+ , where Pi,j
stands for the amount of mass flowing from the mass at xi
toward yj . Then the optimal coupling P∗ is the solution of
the following standard optimal transport problem.

Definition 3 (Standard Optimal Transport).

min
P∈Rn×m

+

〈C,P〉 (6)

s.t. P1m = µ,PT1n = ν. (7)

From the definition, we can see that a feasible coupling
matrix satisfies two hard constraints on the boundaries. Intu-
itively, if we view µ as the source and ν as the target, then
P1m = µ means that all the mass µi on the point xi must be

fully transported to Y , and PT1n = ν means the total mass
transported to yj must meet its capacity νj .

3.2 Relations as Different Constraints
By varying the constraints of Eq. (7), the optimal transport
problem bridges generalized precision, recall and EMD.

Firstly, it is straightforward that EMD in Definition 2 cor-
responds to the optimal transport problem with constraints
Eq. (7), by setting µ = ŵ, ν = w, and C to be the dis-
similarity matrix as in Def. 2. That is to say, EMD could be
represented as:

EMD = 〈C,P∗〉.
In fact, generalized precision and recall correspond to the

optimal transport problems with each hard marginal con-
straint in Eq. (7), respectively. Theorem 1 demonstrates how
to relate generalized precision to the corresponding optimal
transport problem, defined as follows.

min
P∈Rn×m

+

〈C,P〉 (8)

s.t. P1m = µ.

Theorem 1. Let µ = ŵ, C = 1−S, where Si,j = S(x̂i,xj)
as defined in Def. 1. Suppose that the solution of the cor-
responding optimal transport problem (8) is denoted as P∗p,
then generalized precision defined in Eq. (1) can be repre-
sented as

P = 〈S,P∗p〉. (9)

Proof. As we discussed in 3.1, the constraint P1m = µ
means all the mass µi on the point xi must be fully trans-
ported to Y , while with the constraint PT1n = ν removed,
there is no requirement on Y . As a result, the optimal plan
is transporting all the mass µi on the point xi to the point yj
with the lowest cost Ci,j . Therefore, the optimal coupling
matrix of problem (8) can be written as:

(P ∗p )i,j =

{
µi, if j = argminjCi,j .
0, otherwise.

To prove it, suppose that there exists k, l such that (P ∗p )k,l >
0, and l 6= k∗ := argminjCk,j . Let P′ = P∗p, except that
P ′k,l = 0, P ′k,k∗ = (P ∗p )k,l + (P ∗p )k,k∗ . Then P′ satisfies
the constraint, but we have 〈C,P′〉 < 〈C,P∗p〉, which is a
contradiction.

As argminjCi,j = argmaxjSi,j , µ = ŵ, we have

(P ∗p )i,j =

{
ŵi, if j = argmaxjSi,j .
0, otherwise. (10)

The inner product of S and P∗p becomes

〈S,P∗p〉 =
∑
i,j

Si,j(P
∗
p )i,j =

∑
i

ŵimax
j
Si,j .

With Si,j = S(x̂i,xj), the above formula exactly equals to
that of Eq. (1), i.e., generalized precision.

Similarly, we can prove that generalized recall corresponds
to the optimal transport problem with another unilateral hard
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Translations P R F Lazy-EMD

reference The young man in a slicker. 1 1 1 0
Example 1 candidate 1 The boy in a coat. 0.9560 0.9419 0.9489 0.0533

candidate 2 The man in a coat. 0.9609 0.9408 0.9507 0.0553

reference The boy in a coat. 1 1 1 0
Example 2 candidate 1 The young man in a slicker. 0.9419 0.9560 0.9489 0.0511

candidate 2 The old man in a slicker. 0.9324 0.9574 0.9447 0.0525

Table 1: Evaluation scores under different metrics. Candidate 1 in both examples is better in human judgement. Bold indicates inconsistency.

constraint, i.e., PT1n = ν, where ν = w. Let the corre-
sponding optimal coupling matrix denoted as P∗r , generalized
recall can be written as R = 〈S,P∗r〉.

To conclude, we have proven that generalized precision,
recall and EMD correspond to the optimal transport problem
with different hard marginal constraints.

3.3 Problems of Hard Constraints
However, these hard constraints may cause some problems
in the evaluation process. Consider the coupling value Pij :
it can be viewed as an assignment of weights on x̂i and xj ,
which are lexical tokens in the candidate and reference sen-
tences, respectively. When the value is non-zero, we say the
corresponding tokens are matched. In this paper, our theo-
retical analysis shows that the hard constraints may cause in-
complete and noisy matching problems.

The incomplete matching problem means that only part of
the paraphrasing words are matched, which usually happens
when the candidate and reference sentences contain para-
phrases of different length. Now we show why the hard con-
straints result in this phenomenon.

First consider generalized precision, suppose that word x̂1
in the candidate sentence is a paraphrase of words x1 and
x2 in the reference sentence. By the explicit form of P∗p in
Eq. (10), x̂1 will only be matched with one of x1 and x2, un-
less S(x̂1, x1) equals exactly as S(x̂1, x2), which is very rare
even though x1 and x2 are similar. Similarly, when candidate
sentences contain longer paraphrase, the incomplete match-
ing problem will happen for generalized recall.

Table 1 shows two examples of the incomplete matching
problem, corresponding to the generalized precision and re-
call, respectively. In both examples, ‘boy’ is matched with
‘man’, instead of ‘young man’. Evaluation results given by
generalized precision and recall are both contradicted by hu-
man judgements. As the harmonic mean of them, F-score
sometimes fixes their bias as in Example 2. However in Ex-
ample 1, F-score still shows inconsistency. We also show the
results of our proposed new metric Lazy-EMD, of which the
dissimilarity evaluations agree with human judgements.

For EMD, the bilateral hard constraints further limit the ca-
pacity of semantic units. As a result, the matching is depen-
dent on the value of ŵ1, ŵ2 and w1. If w1 > min(ŵ1, ŵ2),
both x̂1 and x̂2 will be matched with x1. However if w1 ≤
min(ŵ1, ŵ2), since the optimal P∗ must satisfies

∑
i P
∗
i,1 =

w1, x1 will be only matched with the nearest one between x̂1
and x̂2. That is the incomplete matching problem.

Noisy matching problem means that words are matched

with some less relevant tokens, instead of their semantic
neighbors. We still consider the above example, with further
assumption that the rest of the words in the reference sen-
tence are less relevant with either x̂1 or x̂2 semantically. For
EMD, when w1 = ŵ1, C1,1 < C2,1, coupling P ∗1,1 = ŵ1.
By the constraint on PT1n,

∑
i P
∗
i,1 = ŵ1, then we have

P ∗2,1 = 0. Since the constraint requires
∑
j P
∗
2,j = ŵ2, there

exists some k s.t. P ∗2,k > 0. In other words, instead of x1, x̂2
will be matched to some unrelated words. That is exactly the
noisy matching problem.

4 Lazy Earth Mover’s Distances
To tackle the above problems, we propose a family of new
intrinsic metrics, namely Lazy Earth Mover’s Distances, in-
duced from the more general unbalanced optimal transport
problem. Unbalanced optimal transport problem [Peyré et
al., 2019] relaxes the hard marginal constraints in standard
optimal transport, by incorporating them into the optimiza-
tion objective as penalties.
Definition 4 (Unbalanced Optimal Transport).

min
P∈Rn×m

+

〈C,P〉+ λcKL(P1m|µ) + λrKL(PT1n|ν).

In the definition, parameters λc and λr control how much
the corresponding marginal deviation are penalized, mea-
sured by K-L divergence [Kullback and Leibler, 1951].

Let µ = ŵ, ν = w, and C be the dissimilarity matrix as in
Thm. 1. Denote P∗λc,λr as the corresponding optimal cou-
pling matrix of the unbalanced optimal problem with penalty
parameters λc, λr. The Lazy Earth Mover’s Distance between
sentences is then defined as follows.

Lazy-EMDλc,λr
= 〈C,P∗λc,λr

〉 (11)

The word ‘lazy’ is to emphasize the fact that the final trans-
port plan may not meet its original requirement. The transport
behavior will be further explained in Section 4.1.

From the above definitions, we can see that standard opti-
mal transport problem is a special case of unbalanced optimal
transport problem, with λc = ∞, λr = ∞. Furthermore, P∗p
and P∗r are the solutions of the unbalanced transport problem
with λc = ∞, λr = 0, and λc = 0, λr = ∞, respectively.
Therefore, the intrinsic metrics generalized precision, recall,
and EMD can be viewed as special Lazy-EMDs:

EMD = Lazy-EMD∞,∞,

P = 1− Lazy-EMD∞,0, R = 1− Lazy-EMD0,∞.
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cs-en de-en et-en fi-en ru-en tr-en zh-en
n 5k/5k 78k/20k 57k/32k 16k/10k 10k/22k 9k/1k 33k/29k

SENTBLEU .233/.389 .415/.620 .285/.414 .154/.355 .228/.330 .145/.261 .178/.311
PBERT .387/.539* .541/.713* .389/.547* .283/.482* .345/.418* .280/.339* .248/.337
RBERT .388/.571* .546/.727* .391/.591* .304/.561* .343/.421* .290/.395* .255/.368*
FBERT .404/.559* .550/.726* .397/.584* .296/.538* .353/.424* .292/.389* .264/.364
YiSi-1 .406/.562 .551/.731 .396/.589 .305/.551 .350/.424 .294/.401 .262/.370
Fα .404/.570 .550/.728 .398/.591 .296/.563 .354/.422 .289/.398 .265/.370
EMD .393/.548 .540/.718 .389/.585 .291/.528 .336/.416 .276/.364 .263/.371
Lazy-EMD .403/.555 .544/.730 .395/.591 .301/.562 .350/.424 .281/.404 .264/.372

Table 2: Kendall’s correlations of different metrics with segment-level human judgements on WMT18. For each language pair, the left
number is the correlation of to-English, and the right is that of from-English. Highest correlation scores for each language pair are highlighted
in bold. Numbers with ∗ are slightly different from those in [Zhang et al., 2020].

4.1 Optimal Transport Plan of Lazy-EMD
Intuitively, by replacing hard marginal constraints with soft
ones, Lazy-EMDs have the ability to alleviate the incomplete
and noisy matching problems. Now we theoretically prove
the above claim, by investigating the optimal transport plan
of the unbalanced optimal transport problem.

Suppose that the candidate sentence is mapped to X̂ =
(x̂1, · · · , x̂n), with a weight vector ŵ = (ŵ1, · · · , ŵn) rep-
resenting the mass on each token. For simplicity, we consider
the case where the reference sentence contains only one word
X = (xr), with a unit of mass on it. Let the transport cost
from xr to x̂i be ci > 0, ∀i, and the transport plan be a vector
P = (p1, · · · , pn)T . Then the optimal transport plan can be
obtained with closed form shown in the following theorem.
Theorem 2. The optimal transport plan P∗λc,λr

of the un-
balanced transport problem with penalty parameters 0 <
λc, λr <∞ satisfies

p∗i = exp(− ci
λc
− λr
λc
A) · ŵi, (12)

A = log
∑
i

p∗i . (13)

From the results, we can see that the optimal transport plan
is obtained by reweighting the mass vector ŵ. Specifically,
the coefficient exp(− ci

λc
−λr

λc
A) is a decreasing function of ci.

If the incomplete matching problem happens for x̂i, x̂i must
be semantically close with xr, i.e., Si,r is large. Therefore,
ci = 1 − Si,r is small, and the reweighting coefficient of p∗i
will be large. In this way, the incomplete matching problem
will be significantly alleviated. Similarly, the noisy matching
problem usually happens for less relevant tokens with large
costs. Therefore, the reweighting coefficients in the optimal
transport plan on these tokens will be small. In this way, the
noisy matching problem will be alleviated.

We further analyze the impact of penalty parameters λc and
λr on the optimal coupling P∗. It is clear that p∗i increases
with λc and λr. So the unilateral and bilateral upper bounds
are achieved by the optimal coupling correspondent to gener-
alized precision, recall and EMD. That is,

P∗∞,∞ = ŵ, P∗∞,0 = ŵ, (14)

(P∗0,∞)j = δi(j),with i = argminj ci. (15)

5 Experiments
This section demonstrates our experimental results on
WMT18 [Ma et al., 2018] and WMT19 [Ma et al., 2019]. We
evaluate six different intrinsic metrics, i.e. generalized preci-
sion, recall, F1, Fα, WMD and Lazy-EMD, by their segment-
level correlations with human judgments.

5.1 Datasets
Our experiments are conducted on WMT18 and WMT19, two
widely used machine translation datasets for evaluating NLG
measures. Specifically, WMT18 contains predictions of 149
translation systems across 14 language pairs, while WMT19
contains predictions of 193 translation systems across 15 lan-
guage pairs. We follow the WMT18 and WMT19 standard
practice and use Kendall rank correlation to evaluate met-
ric quality on the segment-level human judgements, where
WMT18 contains the relative ranking result of 327k sentence
pairs and WMT19 contains 531k sentence pairs.

5.2 Implementation Details
For a fair comparison, we fix the embeddings and focus on
comparing different intrinsic metrics. According to previous
studies [Peters et al., 2018; Devlin et al., 2018], the contex-
tual embeddings produced by BERT is usually better than
word2vec-based word embeddings for various downstream
NLP tasks. So we apply the default setting of BERTScore
to other measures in our comparison. The implementation is
based on BERTScore v0.2.2.

For EMD computation, the built-in function ot.emd in
python package POT is used [Flamary and Courty, 2017].
Lazy-EMD is computed with the generalized Sinkhorn scal-
ing algorithm.1 The regularization parameter in the Sinkhorn-
scaling algorithm is set as 0.009. The penalty parameters are
set to be different for three data categories, based on the tar-
get language of the translation, i.e., English, Chinese and oth-
ers. For English, the parameter is set to (0.23, 0.31), which
is tuned on et-en in WMT18. For Chinese, the parameter is
set as (0.018, 0.97), which is tuned on en-zh in WMT19. For
other languages, the parameter is set as (0.009, 0.95), which
is tuned on en-cs in WMT19.

1Code is available at https://github.com/Beastlyprime/lazy emd
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cs-en de-en fi-en gu-en kk-en lt-en ru-en zh-en
n -/27k 85k/100k 38k/32k 31k/11k 27k/18k 22k/17k 46k/24k 31k/19k

SENTBLEU -/.367 .056/.248 .233/.396 .188/.465 .377/.392 .262/.334 .125/.469 .323/.270
PBERT -/.444 .156/.314 .326/.498 .307/.519 .419/.493 .375/.422 .212/.540 .410/.306
RBERT -/.494 .160/.351 .346/.521 .295/.562 .416/.541 .367/.449 .216/.577 .427/.352
FBERT -/.479 .166/.338 .344/.518 .313/.554 .434/.532 .375/.448 .223/.572 .430/.347
YiSi-1 -/.486 .165/.345 .346/.521 .317/.563 .433/.538 .373/.450 .225/.575 .433/.353
Fα -/.495 .165/.351 .344/.522 .314/.563 .434/.541 .375/.449 .223/.578 .429/.357
EMD -/.479 .159/.338 .342/.523 .318/.561 .432/.539 .377/.455 .215/.566 .430/.343
Lazy-EMD -/.498 .174/.356 .346/.526 .318/.569 .431/.541 .377/.466 .215/.582 .433/.352

Table 3: Kendall’s correlations of different metrics with segment-level human judgements on WMT19, with notations similar to that on
WMT18. The results on ’cs-en’ is missing because there is no such data on WMT19.

cs-en de-en fi-en gu-en kk-en lt-en ru-en zh-en
(λc, λr) -/27k 85k/100k 38k/32k 31k/11k 27k/18k 22k/17k 46k/24k 31k/19k

(0.23, 0.31) -/.487 .174/.351 .346/.523 .318/.562 .431/.531 .377/.471 .215/.579 .433/.337
(0.009, 0.95) -/.498 .172/.356 .343/.526 .292/.570 .413/.541 .369/.466 .213/.582 .427/.351
(0.018, 0.97) -/.497 .174/.355 .343/.526 .293/.569 .415/.541 .368/.467 .214/.581 .426/.352

Table 4: Influences of different parameters for Lazy-EMD on WMT19.

We compare Lazy-EMD with generalized precision, recall,
F1 and EMD. Further considering that Lazy-EMD is a soft
EMD which involves additional parameters, we also compare
with Fα, where the parameter α is used to balance the effect
of precision and recall. Fα can be viewed as an extension of
F1 used in YiSi-1 (α = 0.7). In our experiments, α is tuned
in the same way as we do for Lazy-EMD. Specifically, α is
set to 0.48, 0.9, and 0.96 for English, Chinese and other target
languages, respectively.

5.3 Experimental Results

Table 2 and Table 3 show our main experimental results.
From the results, we can see that all the embedding-based
measures outperform the n-gram based evaluation measure
sentBLEU [Ma et al., 2018]. However, since WMT18 is rel-
atively not large, all the embedding-based metrics perform
comparably. For the larger dataset WMT19, Lazy-EMD out-
performs all baselines in all translation scenarios, even better
than Fα. Specifically, Lazy-EMD achieves the best correla-
tion on 12 of 15 language pairs, which validates the advantage
of replacing hard marginal constraints with soft ones.

Since the results in Table 2 and Table 3 are under parame-
ters specifically tuned for different target languages, we show
the performances of Lazy-EMD under the three different pa-
rameters on WMT19, to further study the influence of dif-
ferent penalty parameters. The results are demonstrated in
Table 4. We can see that optimal parameter choices do differ
between languages. However, the bottom two lines show the
performance of Lazy-EMD is insensitive to slight variation
on the parameters, which is another benefit of the proposed
metric. The analysis of the origin of the difference in optimal
parameters will be an interesting topic for future research.

6 Conclusions

This paper focuses on studying different intrinsic metrics of
existing embedding-based evaluation measures, i.e., gener-
alized precision, recall, F-score and EMD. We theoretically
prove that these intrinsic metrics correspond to the optimal
transport problem with different hard marginal constraints.
To tackle the incomplete and noisy matching problems of
these intrinsic metrics, we propose a family of new met-
rics, namely Lazy-EMD, based on the more general unbal-
anced optimal transport problem. Extensive experiments on
WMT18 and WMT19 show that Lazy-EMD outperform tra-
ditional embedding-based measures in terms of consistency
with segment-level human judgements.

To the best of our knowledge, this is the first in-depth the-
oretical study on the relations of different embedding-based
NLG evaluation measures. The main novelty lies in the view-
point of optimal transport theory. In the future, we plan to
extend Lazy-EMD to evaluate distance between documents
by incorporating document structure into the unbalanced op-
timal transport problem.
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