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Abstract
8-bit integer inference, as a promising direction in
reducing both the latency and storage of deep neu-
ral networks, has made great progress recently. On
the other hand, previous systems still rely on 32-
bit floating point for certain functions in complex
models (e.g., Softmax in Transformer), and make
heavy use of quantization and de-quantization. In
this work, we show that after a principled mod-
ification on the Transformer architecture, dubbed
Integer Transformer, an (almost) fully 8-bit inte-
ger inference algorithm Scale Propagation could
be derived. De-quantization is adopted when nec-
essary, which makes the network more efficient.
Our experiments on WMT16 En↔Ro, WMT14
En↔De and En→Fr translation tasks as well as the
WikiText-103 language modelling task show that
the fully 8-bit Transformer system achieves compa-
rable performance with the floating point baseline
but requires nearly 4× less memory footprint.

1 Introduction
In recent years, the self-attention-based Transformer model
[Vaswani et al., 2017] has shown promising improvements
in a wide variety of tasks, e.g., machine translation [Li et
al., 2020] and language modelling [Baevski and Auli, 2019].
The superior performance of these systems is mostly achieved
by using very large neural networks, which are accompa-
nied by the great demands on computation, storage and en-
ergy [Strubell et al., 2019]. As a side effect, deploying such
models on small devices is challenging as they have limited
storage space and computation power. For example, practical
systems often run on CPUs where the 32-bit floating point
computation capability is much lower than that of GPUs.

One appealing solution to these issues is to reduce the nu-
merical precision used in the model at hand [Hubara et al.,
2016; Micikevicius et al., 2018], where both the parameters
and the activations are represented with fewer bits. For in-
stance, employing 8-bit integer (INT8) potentially consumes
4× less storage space but is up to 6× faster [Quinn and
∗Authors contributed equally.
†Corresponding author.
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Figure 1: Ideal vs. Practical INT8 inference (OP: operation).

Ballesteros, 2018]. Beyond this, INT8 is 10× more energy
efficient [Johnson, 2018] and saves much less chip area than
the commonly used 32-bit floating point (FP32) in hardware
design [Sze et al., 2017]. Also, the low-precision approach
is orthogonal to other existing compression and acceleration
methods, e.g., efficient network design [Xiao et al., 2019].

In general, we need two additional components to adapt
FP32 algorithms to INT8 algorithms: quantization and de-
quantization [Gong et al., 2018]. Quantization can be seen as
a function that transforms a rational tensor r into an integer
tensor x with the scale s [Wu, 2020]:

Q(r, s) = bs · re (1)

where b·e represents rounding to the nearest integer. As a re-
verse process, de-quantization approximates the rational ten-
sor r with its quantized form x:

D(x, s) = x/s (2)

Ideally, the INT8-based inference process is as follow: the
rational input (FP32) tensor r is first quantized to an INT8
tensor x with the scale s. Then all succeeding operations are
performed on INT8 tensors and corresponding scales simul-
taneously. De-quantization is employed at the end of the pro-
cess or there appears an overflow1.

This method is efficient because quantization and de-
quantization functions are used only when necessary. Unfor-
tunately, previous INT8-based models are much more expen-
sive, as every operation in it is sandwiched between a pair of
quantization and de-quantization (see Fig. 1). The heavy use
of quantization and de-quantization blocks the efficient flow

1For intermediate tensors produced by these operations, we per-
form de-quantization and quantization with s = 2p−1

max(|r|) immedi-
ately if the overflow happens. The bit-precision p is 7 for INT8.
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of INT8 throughout the network, and somehow prevents fully
8-bit integer models. The problem lies in two facts:
• Scale Incompatibility: INT8 tensors with different

scales are incomparable because we cannot use the same
FP32-to-INT8 mapping to process them in a single op-
eration. For example, let x1 and x2 be INT8 tensors that
are quantized from FP32 tensors r1 and r2 with differ-
ence scales s1 and s2. Adding x1 and x2 is obviously
problematic because x1 + x2 is not the INT8 form of
r1 + r2, i.e., r1 + r2 6= (x1 + x2)/s1 6= (x1 + x2)/s2.
• INT8 Incompatibility: some functions in complex net-

works are not INT8 friendly and we have to resort to
FP32 computation in this case. The most representative
examples are the exponential function in the attention
mechanism and the square root function in layer nor-
malization [Vaswani et al., 2017].

In this work, we take a further step towards fully INT8-
based transformer models. We choose Transformer for study
because it is one of the most popular models in natural lan-
guage processing. We present Scale Propagation, which
bounds INT8 tensors with associated scales, and propagates
them throughout the network during inference. It addresses
the scale incompatibility issue by matching the input scales
if necessary, allowing each operation to manipulate the INT8
tensor and its scale simultaneously. Moreover, we propose
Integer Transformer in responding to the INT8 incompati-
bility issue. To make full use of INT8 in Transformer, we
replace the exponential function in the standard attention by
the polynomial function, and replace the square root func-
tion in the layer normalization with the absolute value func-
tion. Our extensive experiments on several machine transla-
tion and language modelling tasks show that integer Trans-
former achieves competitive INT8 performance with approx-
imately 4× less storage and 3.47× speed-up on average.

2 Background: Transformer
We start with the description of Transformer. Transformer
[Vaswani et al., 2017] is mainly composed of a stack of lay-
ers. Each layer consists of a self-attention and a feed-forward
network. The self-attention takes three tensors, Q, K and V ,
as inputs and produces a tensor with the same size as the out-
put. It is formulated as:

Attention(Q,K, V ) = SoftMax(
QKT

√
dm

)V (3)

where dm is the dimension of the hidden representation.
SoftMax is a function that casts its input to a distribution:

SoftMax(xi) =
exi∑
j e

xj
(4)

The feed-forward network is built on top of two linear pro-
jections with the ReLU activation in between:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (5)
ReLU(x) = max(0, x) (6)

These modules are coupled with the residual connection
[He et al., 2016], i.e., y = f(x) + x where f is either the
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Figure 2: Examples of initializing scale and multiplying scale in
MatMul.

self-attention or the feed-forward network. The Layer Nor-
malization is after the residual connection:

LN(x) = g � (
x− µ√
σ2 + ε

) + b (7)

where µ and σ are the mean and variance of x along the hid-
den dimension, and ε is a fixed small number to prevent di-
viding 0. g and b are two learnable parameters. For more
details, we refer the reader to [Vaswani et al., 2017].

3 Scale Propagation
3.1 Bounding Tensors & Scales
As discussed in Section 1, the necessity of de-quantization
comes from the fact that input INT8 tensors might not be pro-
duced by the same mapping that converts FP32 to INT8, e.g.,
not multiplied by the same scale in our case, and therefore
forces us to compute the correct result by rolling back to the
FP32 mode.

Inspired by this fact, the ideal INT8-based inference should
propagate not only the tensor but also the mapping. If mul-
tiple INT8 tensors are inputted, unifying their mappings is
necessary so that we can perform the succeeding operation
on INT8 tensors directly. In our case, the mapping is defined
as the scale that indicates to what extent the current INT8 ten-
sor deviates from its FP32 counterpart. This scale can be ob-
tained through s = 2p−1

max(|r|) initially, where r is the network
input. In practice, max(|r|) is performed along the hidden
dimension, producing a scale with the same shape as r ex-
cept the dimension that the maximization operates is 1. Fig.
2(a) shows how to initialize the scale from an FP32 tensor.
Although we introduce extra operations to manipulate FP32
scales, it is cheap to maintain them and the cost is negligible.

3.2 Manipulating Tensors & Scales
Extending the common FP32 operations to INT8 tensors and
associated scales is non-trivial. Two questions naturally arise:
1) how can we calibrate mappings? 2) how to operate both the
INT8 tensors and scales for a given FP32 operation?

For the first question, we note that the mapping here is a
scale that gets multiplied in the quantization. Thus having an
identical mapping across tensors is as to find a unique multi-
plier for every input tensor in our case. For each input tensor
xi with the scale si, we do Scale Matching:

M(xi, si) = {xi/ dsi/s̄e , s̄} (8)
where s̄ = min(s1, · · · , sn). Choosing the minimum of
scales s̄ as the unique multiplier guarantees that the result of
Eq. 8 does not overflow.
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FP32 OP INT8 Equivalent

[r1, r2] {[x1, x2] , [s1, s2]}
rT1 {xT1 , sT1 }

r1 · r2 {x1 · x2, s1 · s2}
r1 + r2 {xi, s̄} = M(xi, si), i ∈ {1, 2}

{x1 + x2, s̄}, s̄ ∈ Rm×n

MatMul(r1, rT2 ) {xi, s̄i} = M(xi, si, d2), i ∈ {1, 2}
{x1 × xT2 , s̄1 × s̄T2 }, s̄i ∈ Rm×1

rn1 {xn1 , sn1}
|r1| {|x1|, s1}

ReLU(r1) {ReLU(x1), s1}

Table 1: FP32 operations in INT8. ri = D(xi, si), i ∈ {1, 2},
ri ∈ Rm×n, xi ∈ Zm×n, si ∈ Rm×n. [] denotes the concatenation.
· denotes the element-wise multiplication.

Algorithm 1 SCALE PROPAGATION PROTOCOL

Input: Operation OP; INT8 Tensors x1...n; Scales s1...n
Output: INT8 Tensor x; Scale s

1: {x, s} = OP({x1...n, s1...n}) {Store x in INT32}
2: if x > 2p − 1 then
3: {x, s} = R(x, s) {Re-scaling}
4: end if
5: Convert (INT32) x to INT8
6: return x, s

Having the scale matching, it is handy to induce the INT8
form for any FP32 tensor operation, as shown in Table 1.
For tensor shape transformations, such as concatenation and
transpose, the same transformation is applied to the INT8 ten-
sor and its scale simultaneously, since they do not change the
values. For element-wise multiplication, we multiply tensors
and scales independently, as the quantization is just another
element-wise multiplication. For addition, we first match the
input scales via Eq. 8, then add tensors as usual.

Handling matrix multiplication (MatMul) is more sophis-
ticated. MatMul is an element-wise multiplication with an
addition along the last dimension. We therefore first match
the input scales along that dimension, then perform MatMul
to the tensors and scales independently. To match the input
scale along a specific dimension, we employ the same idea
of scale matching by treating it as matching scales of multi-
ple sub-tensors splitted from that dimension. It is denoted as
M(x, s, d), where x is the INT8 tensor, s is its scale and d is
the dimension that we would like to match scales. Fig. 2(b)
shows an example of how MatMul works on scales, which
matches the scales on the dimension d2 and multiplies them.

For element-wise non-linear functions, we assume that
they satisfy the distribution law, i.e., OP(r) = OP(x/s) =
OP(x)/OP(s). Then, we have:

OP({x, s}) = {OP(x),OP(s)} (9)

where x is the INT8 tensor and s is its scale. This assump-
tion holds for the polynomial function rn where n is a fixed
integer, since rn = (x/s)n = xn/sn. It also holds for the ab-
solute value function, because |r| = |x/s| = |x|/s as s > 0.
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Figure 3: The comparison of INT8 inferences in the FFN layer.

The same is for ReLU({x, s}) when entries of x have the
maximum value(s) exceeded 0, which is always true other-
wise it will face the ‘dying ReLU’ problem [He et al., 2015].

3.3 The General Protocol
Note that addition and multiplication operations may pro-
duce results that are out of the INT8 range. These results
are thereby stored in data types with more bits in practical
implementations, e.g., INT32. We need to project the result
back to INT8 before the succeeding operations. We call it
Re-scaling:

R(x, s) = {x/ŝ, s/ŝ} (10)

where ŝ =
⌈
max(|x|)
2p−1

⌉
. The protocol of extending an FP32

operation to INT8 tensors and their scales is summarized in
Alg. 1: we directly apply the INT8 form of this operation
to update {x, s}, and then use re-scaling to project x back to
INT8 if necessary. Once this protocol for INT8 operations
is defined, the routine for the INT8 forward propagation is
as straightforward as the FP32 one, except that FP32 opera-
tions are replaced by their INT8 equivalents. This gives us
the Scale Propagation. As shown in Fig. 3, scale propagation
gets rid of de-quantization and only INT8 tensors are propa-
gated in the whole forward propagation.

4 Integer Transformer
4.1 Polynomial Attention
Applying scale propagation to the Transformer model is not
immediately available. As discussed in the previous section,
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Figure 4: A running example of Polynomial Attention, where Q ∈ R1×dm , K,V ∈ R4×dm . Different colors indicate different shapes.

scale propagation assumes the element-wise functions sat-
isfy the distribution law, which is not held for the exponen-
tial function ex in the SoftMax of the attention functions, as
ex/s 6= ex/es. Besides, the exponential function does not
produce an integer output given an integer input.

To enable scale propagation, we choose ReLU as an al-
ternative of the exponential function here, since it not only
produces positive results as the exponential function but also
is compatible with INT8. A bias term is added in advance to
rule out entries that are below a learnt threshold.

One downside of ReLU is its linear nature. The exponen-
tial function has the property that larger input values become
more significant after the transformation, as its gradient ex is
larger than 1 in the positive number field. To achieve a sim-
ilar effect, we introduce the polynomial function xn, whose
gradient n · xn−1 is exponential while it always produces in-
teger outputs given integer inputs. Note that we only apply
this polynomial function after ReLU, since an even degree n
will mess up with the order of scores: a large negative number
will be ranked in front instead of behind.

Putting all these pieces together, we have:
Poly(x) = [ReLU(x+ b)]

n
+ |δ| (11)

where b is the bias term, n is the degree of the polynomial
function and δ is another learnable parameter. |δ| ensures that
the worst case of the attention, i.e., producing all 0 results, is
a simple average instead of nothing.

Lastly, we multiply Poly(x) with V and then divide the re-
sult by

∑
j Poly(xj), otherwise the integer division will incur

all 0 results because Poly(xi) ≤
∑

j Poly(xj):

PolyAttn(Q,K, V ) =
Poly(QKT

√
dm

)V∑
j Poly(

QKT
j√

dm
)

(12)

This way sidesteps the previous issue as the multiplication
results are usually not smaller than the sum. We call Eq. 12
Polynomial Attention. Fig. 4 shows a running example of it.

4.2 L1 Layer Normalization
Another component that hinders Transformer INT8 inference
is the square root function for computing the standard devia-
tion inside the layer normalization, which does not guaran-
tee the integer outputs given the integer inputs. Hoffer et
al. [2018] proposes L1 Batch Normalization, which approxi-
mates the standard deviation with its L1-norm equivalent:

L1LN(x) = g � (
x− µ

C· ‖ x− µ ‖1 /n
) + b (13)

where g and b are two parameters, µ is the mean of x along
the batch dimension, C =

√
π/2 and n is the batch size. This

way replaces the square root function in the L2-norm by the
absolute value function in the L1-norm.

We extend a similar idea of L1 batch normalization to our
case, that we compute the mean µ along the hidden dimen-
sion instead of the dimension along the batch. We call this L1
Layer Normalization. The replacement of layer normaliza-
tion as well as the attention gives us the Integer Transformer
that supports fully INT8 inference.

5 Experiments
5.1 Setup
We evaluate our methods on three machine translation (MT)
tasks and a language modelling (LM) task, including the
WMT16 English-Roman (En↔Ro), the WMT14 English-
German (En↔De), the WMT14 English-French (En→Fr)
and the WikiText-103 LM tasks. For En↔Ro (610K pairs),
we use newsdev-2016 and newstest-2016 as the validation and
test sets respectively. For En↔De (4.5M pairs), newstest-
2013 is the validation set and newstest-2014 is the test set.
For En→Fr (36M pairs), we validate the system on the com-
bination of newstest-2012 and newstest-2013, and test it on
newstest-2014. We tokenize every sentence using a script
from Moses and segment every word into subword units us-
ing byte-pair encoding. The number of the BPE merge op-
erations is set to 32K. We report case-sensitive tokenized
BLEU scores. In addition, the results are the average of three
identical runs with different random seeds for En↔Ro and
En↔De. The WikiText-103 dataset contains a training set of
103 million words. Both the validation and test sets contain
0.2 million words. For the LM task, we report the perplexity.

For the machine translation tasks, we experiment with the
Transformer-base (base) setting [Wang et al., 2019]. We ad-
ditionally run the Transformer-big (big) setting on En↔De
and En→Fr. Both settings consist of a 6-layer encoder and
a 6-layer decoder. The embedding size is set to 512 for
Transformer-base and 1,024 for Transformer-big. The num-
ber of heads is 8/16 for Transformer-base/big. The hidden
size equals to 4× embedding size in both settings. For train-
ing, we use Adam optimizer with β1 = 0.9 and β2 = 0.997.
We adopt the inverse square root learning rate schedule with
8K warmup steps and the learning rate = 0.001/0.0007 for
Transformer-base/big.

For the language modelling task, we follow the lm-base
and lm-big architectural choices and training details de-
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Entry System BLEU
Storage Estimated

Speed-upFP32 INT8
ba

se

En→Ro Baseline 32.55 - 318M 1×
Ours 32.60 32.54 80M 3.53×

Ro→En Baseline 32.85 - 306M 1×
Ours 33.04 32.95 77M 3.59×

En→De Baseline 26.95 - 302M 1×
Ours 27.08 26.91 76M 3.24×

De→En Baseline 32.19 - 302M 1×
Ours 32.43 32.26 76M 3.31×

En→Fr Baseline 40.88 - 425M 1×
Ours 40.64 40.00 107M 3.03×

bi
g

En→De Baseline 28.72 - 939M 1×
Ours 28.93 28.71 236M 3.60×

De→En Baseline 33.07 - 939M 1×
Ours 33.53 33.46 236M 3.68×

En→Fr Baseline 42.37 - 1243M 1×
Ours 42.46 41.59 311M 3.51×

Table 2: BLEU scores [%], storage (megabytes) and speed-up.

Entry valid test
Storage Estimated

Speed-upFP32 INT8 FP32 INT8

ba
se Baseline 29.61 - 31.18 - 596M 1×

Ours 29.49 30.28 30.79 31.61 150M 3.43×

bi
g Baseline 18.22 - 18.86 - 944M 1×

Ours 17.49 17.55 18.16 18.23 280M 3.78×

Table 3: WikiText-103 PPL, storage (megabytes) and speed-up.

scribed in [Baevski and Auli, 2019]. The embedding size
is 512 for lm-base and 1024 for lm-big. The hidden size
equals to 4× embedding size. The number of heads is 8 for
both lm-base and lm-big. The number of layers is set to 6/16
for lm-base/big. For the lm-base model, we train it with the
same setting as in the machine translation tasks. As for the
lm-big training, we use the Nesterov’s accelerated gradient.
We adopt the cosine learning rate schedule with 16K warmup
steps and the maximum learning rate 1. All experiments are
run on 8 NVIDIA TITAN V GPUs.

5.2 Results
Table 2 summarizes the results on various translation tasks.
Compared to the vanilla Transformer, integer Transformer
obtains competitive or even superior FP32 performance by
0.1∼0.4 BLEU points in either the base or big setup. When
integer Transformer is decoded with INT8, it shows only
about a decrease of 0.3 BLEU points on average except in
En→Fr, where it underperforms the baseline by more than 1
BLEU point. In Section 5.3, we will show that it is mainly
due to the last residual connection and layer normalization,
which suffer from greater loss with lower bits representations.
Experiments on the WikiText-103 language modelling task in
Table 3 show a similar trend as those in machine translation
tasks, where integer Transformer beats the baseline with the
same setup as in MT.

Both Table 2 and Table 3 show that using INT8 indeed
saves nearly 4× storage space. Since we need to store both

System BLEU PPL
En→Ro En→De En→Fr valid test

Baseline 32.55 26.95 40.99 29.58 31.28
+Poly 32.56 27.13 40.90 29.54 31.20
+L1LN 32.55 26.94 40.67 29.61 31.18

Table 4: The ablation study of Integer Transformer.

System BLEU PPL
En→Ro En→De En→Fr valid test

Ours (FP32) 32.60 27.08 40.99 29.49 30.79
+B Scale 32.54 21.84 39.45 30.88 32.25
+B × T Scale 32.54 26.91 40.00 30.28 31.61

Table 5: INT8 performance vs. different sized scales.

the parameters and their scales, we are unable to reach exactly
4× less storage. Employing INT8 also runs about 3.5× faster
on average. Note that we estimate this speed-up by collecting
the time consumption of each operation and their correspond-
ing speed-up (6×) in INT8, as modern CPUs have limited
supports of INT8 arithmetics, e.g., MatMul only. We find that
this speed-up is more obvious if the output sequence is longer,
e.g., translations in Ro→En is longer than those in En→Fr
and thus higher speed-up in Ro→En is observed. This phe-
nomenon arises from the fact that operations that benefit from
INT8 such as MatMul occupy a higher portion when generat-
ing long sequences, while other fixed time operations such as
data preparation become marginal.

5.3 Analysis
We show an ablation study of integer Transformer in Table 4.
We can see that replacing the standard attention by polyno-
mial attention generally improve the FP32 result and L1 layer
normalization has the close performance to standard layer
normalization. These observations imply that either the poly-
nomial attention or the L1 layer normalization is a good al-
ternative to its counterpart in the baseline transformer model.

Section 3.1 has described how to obtain the initial scale
by taking the maximum of the hidden dimension in the FP32
input. This method can be extended to the case of multiple
dimensions. In Table 5, we test it on maximizing on T × C
and C given the input of the size T × B × C, resulting a
sized B and B × T scale respectively. Here T is the input
sequence length, B is the batch size and C is the number of
the hidden units. The results reveal that using a scale with
more entries better preserves the performance, yet the one
with fewer entries lowers the computation budget.

Also, we plot how hyper-parameters relate to performance.
We can see from the left of Fig. 5 that n > 1 results in much
better performance than n = 1 in all tasks, indicating the ne-
cessity of non-linearity in the attention. But higher n does not
necessarily lead to better results, where n = 3 performs the
best in En→De and WikiText-103. The right of Fig. 5 shows
that adding a few bits can recover most of the performance,
especially for those suffer from great loss in INT8 inference,
e.g., En→Fr. Moreover, we observe that the performance of
En→Ro decreases slightly with 6 bit, which suggests that fur-
ther speed-up might be available.
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Figure 5: Sensitivity analysis (n: the degree of the polynomial func-
tion; #Bits: the number of bits used in the inference).

We next investigate which factor has a significant impact
on the performance by presenting details on which module is
responsible for the INT8 performance loss. As can be seen in
Fig. 6, if the performance drop is not significant, each mod-
ule contribute similarly, otherwise a few modules should be
blamed for. This fact suggests that poor INT8 performance is
mainly led by one or two crucial points, e.g., the layer nor-
malization and the residual connection in En→Fr.

As implied by Fig. 6, we make an in-depth analysis to see
whether the high precision loss connects to the poor perfor-
mance of applying INT8 to the layer normalization and the
residual connection in En→Fr. To evaluate the precision loss,
we choose the mean square error between the FP32 activa-
tions and the de-quantized INT8 ones as the proxy. Fig. 7
shows that there exists a positive relationship between preci-
sion loss and performance loss, i.e., 4BLEU. Interestingly,
most loss occurs in the last layer. Noting that the residual
connection is the sum of all outputs of the residual branches
in previous layers, the last residual connection will produce
the result with large values, which might suffer from greater
precision loss through the quantization.

6 Related Work
Employing the low precision data type for neural networks
to accelerate the network computation or save storage space
has a long history. Early work has shown that training and
inference with the ternary (2-bit) or even binary (1-bit) net-
work is possible [Hubara et al., 2016]. But these results have
restricted to simple architectures, such as the feed-forward
networks. Recent work mainly focuses on training a sophis-
ticated network with higher precision, such as 32-bit (FP32)
and 16-bit floating point (FP16) [Micikevicius et al., 2018]
but attempts to inference with fewer bits, such as 8-bit fixed
point (INT8) [Jacob et al., 2018]. However, most of them
have limited to computer vision and only a few of them dis-
cuss how to leverage low precision to infer the complicate
Transformer model in natural language processing.

Bhandare et al. [2019] first demonstrates that Transformer
can be inferred with INT8. But some operations are still per-
formed in FP32 and its INT8 performance is not evaluated
by common metrics, e.g., BLEU. Though more recent work
[Prato et al., 2019; Wu, 2020] share the same limitation of
partially relying on FP32, they report better INT8 results by
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layer normalization before the output projection).

tailoring the training as well as the quantization method to
the Transformer model. This work, on the other hand, takes a
step toward fully INT8 inference without any FP32 operation
for the Transformer model. The forward propagation flows
purely on INT8 and shows competitive performance without
modifying the training process.

7 Conclusion
In this work, we present an (almost) fully INT8 inference al-
gorithm Scale Propagation, which propagates the INT8 ten-
sor and its scale to resolve the scale incompatibility prob-
lem. Moreover, we propose Integer Transformer to address
the INT8 incompatibility issue in the Transformer model,
which replaces the exponential function and the square root
function by the polynomial function and the absolute value
function respectively. Our experiments show that our method
achieves competitive INT8 performance in machine transla-
tion and language modelling tasks.
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