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Abstract

We study the problem of infobox-to-text gener-
ation that aims to generate a textual description
from a key-value table. Representing the input in-
fobox as a sequence, previous neural methods using
end-to-end models without order planning suffer
from the problems of incoherence and inadaptabil-
ity to disordered input. Although recent planning-
based models can make some effects, these meth-
ods depend on static order-plan to guide generation,
which may cause error propagation between plan-
ning and generation. To address these issues, we
propose a Tree-like PLanning based Attention Net-
work (Tree-PLAN) that leverages both order plan-
ning and dynamic tuning to facilitate infobox-to-
text generation. We first apply a pointer network
to obtain a preliminary order-plan of the input. A
novel tree-like tuning encoder is then designed to
dynamically tune the order-plan by merging the
most relevant attributes together layer by layer. Sets
of experiments conducted on two datasets show that
our model not only outperforms previous methods
on both automatic and human evaluation, but also
has better adaptability to disordered input.

1 Introduction

Generating textual descriptions from structured data is a sig-
nificant and challenging task, which can help people under-
stand the key information from the complex non-linguistic
data better. In this paper, we focus on generating fluent, faith-
ful and logically coherent description from an infobox with a
set of attributes, each of which can be regarded as a key-value
pair. Figure 1 shows an example of writing a description from
a given infobox which is in the form of a key-value table.
Previous works using neural models based on encoder-
decoder architecture treat the task as an end-to-end learning
problem [Lebret er al., 2016; Mei er al., 2016; Wiseman et
al., 2017; Liu et al., 2019b]. Some works also exploit the
structure information for better input representation [Jain et
al., 2018; Liu er al., 2018; Gong et al., 2019], or model
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Figure 1: An example of Infobox-to-text generation with tree-like
planning.

content selection for generation [Konstas and Lapata, 2012;
Kim and Mooney, 2010; Mei et al., 2016; Shao er al., 2019].
Since all these neural methods represent the input data as a
sequence, the order of the input data has a great effect on
guiding the generation of descriptions. However, these meth-
ods pay little attention to the order-planning and thus have
difficulty capturing the order information of the input. In our
preliminary experiments, we find that models without explicit
order-planning have an unstable performance on disordered
input.

In a real-world scenario, disordered input data are common
and more in line with the practical application. Therefore, ex-
plicitly modeling the order-planning to guide the generation
is of great necessity. There have been some methods tak-
ing the order-planning into account. Specifically, Sha et al.
[2018] use a link matrix to determine the local order between
different attributes while Puduppully ef al. [2019] employ a
pointer network to order the records of the input table. Based
on Puduppully’s work, Trisedya et al. [2020] further design
a plan-based bag of tokens attention to handle disordered in-
put. However, these planning methods still face the following
problems. (1) Due to the complexity of the input data, the
planning results cannot be guaranteed to be perfect, which
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may cause error propagation between planning and genera-
tion such as wrong order and missing information. (2) Worse
still, the planning stage only makes a static order-plan which
is unchangeable once determined. Consequently, the prob-
lems of error propagation may get severer because their gen-
eration is directly guided by the static order-plan.

Intuitively, if we take the obtained order-plan as an initial
plan and utilize the dependency relation among different at-
tributes to dynamically tune it, we can obtain a more reli-
able and coherent plan to guide the generation. An example
is shown in Figure 1 which aims to generate a description
of a person from a set of attributes {i.e. Origin, Instrument,
Genre, Occupation, etc.}. We first order the attributes to an
approximately proper order as the initial order-plan. Then
considering the relation between different attributes, we re-
organize them and merge different attributes layer by layer
like a tree, to tune the initial order-plan. At each layer, the
most relevant attributes are merged together. Finally, a well-
organized plan is obtained and can be used to guide the gener-
ation of a more logically coherent description (... an English
folk guitarist and singer).

To this end, we propose a Tree-like PLanning based
Attention Network (Tree-PLAN) which leverages both
order-planning and dynamic tuning to facilitate infobox-to-
text generation. After representing the attributes in the in-
put infobox with an attention based encoder, we first apply
a pointer network to preliminarily order the input attributes
and obtain an initial order-plan. As mentioned above, the
initial order-plan is not enough to directly guide the genera-
tion, a tree-like tuning encoder is thus utilized to dynamically
tune the initial order-plan for better planning. Specifically,
we implement a merging attention mechanism to capture the
dependency relations among different attributes to merge the
most relevant attributes together layer by layer. At each layer,
we design a hierarchical tuning mechanism that tunes the ini-
tial order-plan on both word-level and attribute-level. Finally
a dual attention based decoder is employed to leverage both
attribute-level attention and word-level attention to generate
textual descriptions guided by the determined plan.

We conduct sets of experiments on two real-world datasets,
which aim to generate a textual description of a person (or
restaurant) from a given infobox. The experimental results
show that our model outperforms state-of-the-art methods on
automatic evaluation metrics and has better adaptability to
disordered input. We also implement qualitative human eval-
uation to further estimate the quality of our model. The re-
sults indicate that our model can generate fluent, faithful and
logically coherent descriptions.

2 Related Work

Traditional methods for data-to-text generation follow a
pipeline of modules including content selection, sentence
planning and surface realization [Barzilay and Lapata, 2005;
Barzilay and Lapata, 2006; Liang et al., 2009]. Most recent
works use end-to-end neural networks to generate textual de-
scriptions directly from the input data or focus on exploit-
ing the structure of data for better representation [Mahapa-
tra et al., 2016; Wiseman et al., 2017; Kaffee et al., 2018,
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Nie et al., 2018; Liu et al., 2018]. Some works also im-
plement hierarchical attention mechanism to model the struc-
ture of tables on multiple levels [Jain ef al., 2018; Liu et al.,
2019a] or different dimensions [Gong et al., 2019]. To solve
the problem of information loss, Liu et al. [2019b] propose
a force attention method to force the generator to focus on
more attributes of the input infobox.

Various studies have been conducted to model content
planning explicitly to guide generation including rule-based
planning [Konstas and Lapata, 2013] or content selection
[Konstas and Lapata, 2012; Kim and Mooney, 2010; Mei
et al., 2016; Shao et al., 2019]. Despite generating fluent
and grammatically correct descriptions on an ordered input,
these models have an unstable performance on disordered in-
put without explicit order-planning. To model the order plan-
ning, Sha ef al. [2018] design a link-based attention to cap-
ture the order information of input items while Puduppully
et al. [2019] implement a pointer network to order the input
data to guide the generation. Further, Trisedya et al. [2020]
design a plan-based bag of tokens attention to handle the dis-
ordered input. Differing from these approaches, we propose a
tree-like planning method to model both order-planning and
dynamic tuning for better order representation.

For dynamic tuning, we employ a tree-like attention en-
coder that integrates tree structure to multi-head attention.
Similar strategy is applied to grammar induction with Tree
Transformer [Wang et al., 2019]. However, the Tree Trans-
former only calculates constituent attention between two
neighboring words while our model computes a constrained
attention over all the input attributes.

3 Methodology

The input of our model is a set of attributes =z =
{a1,as, ...a,}, each of which can be regarded as a key-value
pair. The output of our model is the textual description of the
input data with a sequence of words y={y1, y2, ..., y1 }.

As shown in Figure 2, the architecture of Tree-PLAN is
composed of the follow three parts: (1) Representation,
where a set of multi-head attention encoders are utilized to
represent the values of attributes in the input infobox, then
each attribute is represented as a weighted sum of the associ-
ated values. (2) Planning, where a pointer network is applied
for preliminary order-planning and further a tree-like tuning
encoder is designed to dynamically tune the initial order-plan.
(3) Generation, which implements a dual attention to decode
and generate textual descriptions from the determined plans.

3.1 Representation

The input infobox is a set of attributes represented as key-
value pairs a; = (k;, v;). For each attribute a;, its value v; is
flatten as a phrase v; ={w; 1, w; 2, ..., w; m } Where w; ; is the
j-th word and m is the length of v;. We further represent each
single word as a key-value pair v; ; = (k; ;, w; ;) according
to the position of the word in the phrase where k; ; = [k;; p; ;]
and Pij= j .

We first embed all the keys, positions and words into vec-
tors (denoted as k€, p® and w*®) then utilize a set of multi-
head self-attention [Vaswani et al., 2017] encoders to encode
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Figure 2: The architecture of Tree-PLAN.

the value of each attribute:
v =Multihead(wy, wy, wy), (1)
where w¢ € R™* 4w are the words of the i-th attribute and d,,

is the dimension of word vectors. Multihead takes queries
Q, keys K and values V as input and calculate as follows:

Multihead(Q, K, V)=[z';...; 2w, )

2h = Attention(Qth7 KW;?7 VWuh)7 3

. QKT
Attention(Q, K, V') =Softmax (\/(T ) VvV, @
k
where W, € Rbw*dw ' Wh Wl W] e R% >4 are param-
eters, d = d,,/H, H is the number of attention heads, [;]
represents the concatenation operation.

Considering that different word in the same attribute may
not contribute the same, an attention mechanism is imple-
mented to estimate the contribution of each word in the same
attribute. The contribution weight is calculated as follows:

u; j=tanh(v;; W, +b,), (5)

o= exp(uzjuv)

i > exp(uzjuv)’
where u, € R% is the word context vector which is ran-
domly initialized and learned during the training process.
W, € R¥w*dv and b, € R are parameters, «; ; repre-
sents the contribution of v; ;. Then we represent the attribute
a; as the sum of v weighted by «;:

af:ZaiJUﬁj. @)
J

Finally we get the representation of the words {v{}" ; and
attributes a®.

(©)
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3.2 Planning

After representing the input infobox, we implement a
planning-based encoder to model order planning of the in-
put. The planning process can be divided into two stages:
attribute-aware order-planning and tree-like tuning.

Attribute-aware Order-planning

An attribute-aware order-planning is designed to organize the
attributes in the input infobox into a reasonable order. A
plan z={z1, 29, ..., 22| } is a sequence of the input attributes
which are in a new order. Since the output of the order-
planning stage corresponds to positions in the input sequence,
we apply an attention based pointer network similar to [Wang
and Wan, 2019] which is also an encoder-decoder architec-
ture to point to the input attributes.

First a multi-head attention encoder is used to encode the
input attributes then a multi-head attention decoder is applied
to decode. At each decoding step ¢, we get the hidden state
h, then the probability P(z;|z<¢, z) is computed as an atten-
tion over the input attributes:

exp(h, Wya$)
DDF exp(h;r Wpas) 7
where W, € R%w*dw are parameters

According to the calculated probability distribution, we get
the pointer index over the input attributes:

Plzi=ajlz<, 7)=

®)

ft:argmaxP(zt:aj\z<t,x). 9
J

where ] represents the index of the ordered attributes. There-
fore we can then reorder all attributes (including all keys and
values) to a proper order following I.

We assume that the order in which the attributes appear in
the description is the golden order of input attributes. Fol-
lowing this rule, we automatically annotate the order of each
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attribute in the input data to get the gold plan and train this
stage with supervision, which aims to minimize the negative
log-likelihood of the gold plan:

||
Ly=— > Y logP(z|ze, ), (10)

(z,2)eD t=1

where D represents all the training examples including input
data, golden plans and target sentences.

The ordering stage ends when a special symbol eos is
pointed. Noticing that the ordering stage could end before
all items are pointed, which may cause information missing,
we append the missing attributes in the back of the ordered
attributes and obtain an initial order-plan z = {a, (k,p,v)}
including the ordered attributes with the corresponding keys,
positions and values.

Tree-like Tuning Encoder
Since the initial order-plans could not be perfect, a dynamic
tuning encoder is further designed to dynamically tune the
order-plan for better planning, which aims to capture the de-
pendency relations among different attributes and merge the
most relevant attributes layer by layer. As shown in Figure 2,
at each layer we employ a hierarchical tuning mechanism that
tunes the order-plan on both attribute-level and word-level.
To this end, an extra constraint is added to attention heads
and encourages the heads to follow the tree structure. Here
we refer to the constraint as merging attention. To make each
attribute attend to its most relevant one, the attention proba-
bility matrix A is modified with the merging attention:

-
A=C % Softmax <Q\/I§T€ > , (11)

where Q = Wya, K = Wik, W, and W, € R%=*dw are
parameters, k are the keys of attributes. C' is the merging
attention and C; ; = C}; represent the dependency relation
between a; and a;. Higher value of C; ; means a; and a;
are encouraged to merged at this layer.

The merging attention is calculated with attributes a and
keys k and is updated layer by layer:

exp(a; W k;) oy
Cl, = 3 expla] Weky) ’ (12)
0 1= j)
Cl,=1/Cl, «C!,, (13)

! -1 -1y, A
Ciy=0Ci; +(1=Ci;)*Ci, (14)
where W, € R4w*dw are parameters, [ represents the current

layer, Eq.(13) is to make sure nyj and C]ll are the same.

The tuning encoder is an N-layer tree structure where C
is initialized to 0 and Eq.(14) guarantees that C" is larger than
C'~'. Furthermore, considering the special key-value struc-
ture of the attributes, each layer is designed as a hierarchical
architecture for better planning, where two attention blocks
are employed to update the representation of the order-plans
on both word-level and attribute-level.
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For attribute-level, we utilize the computed attention ma-
trix A to encode the represented attribute @ = Aa. Then a is
used to update the representation of each word to ¥ via a gate
mechanism.

For word-level, the updated word © is encoded by a multi-
head attention layer. Then a content selection mechanism
same as Eq.(5-7) is applied to update the representation of
the corresponding attribute.

Similar as the transformer encoder, each layer also contains
a feedforward sub-layer and a layer normalization. After an
N-layer merging and update, the input infobox is encoded on
both attribute-level G and word-level o.

3.3 Generation

As the input infobox has been encoded on both attribute-level
and word-level, a dual attention based decoder is then applied
to decode and generate textual descriptions with the guidance
of the determined plans.

The structure of the decoder is similar to the Transformer
decoder. At each decoding step ¢, a multi-head self-attention
is first utilized to capture the dependency from the generated
words y; and obtain the hidden state h;. Then, to leverage
the information of both attribute-level and word-level of the
input data, we employ the dual attention [Gong et al., 2019] to
first choose the most relevant attribute based on the key of the
attribute then attend to the words in the attribute and obtain
the modified attention weights . Then we employ another
multi-head attention layer to update the hidden states:

h; =Multihead, (h, k, 9), (15)

where Multihead,, is calculated based on the modified at-
tention as mentioned above, kv are the keys of the words,
k; ;=k;+p; ;. After alinear layer with a softmax activation,
the probability of generated results y; is obtained as:

P(yt|y<t7zvx):SOftmaX(ﬁtWy)v (16)

where W, € RV is the word embedding matrix and V is
the vocabulary size.

The goal of the generation stage is to minimize the negative
log-likelihood of the sentences in the training set:

T
Ly=— Y > logP(ylz ), (17)

(z,2,y)eDt=1

where T is the length of the target sentence.

3.4 Training

We train our model end-to-end with a joint learning of both
planning and sentence generation by aggregating the losses
over the two stages:

L =M1+ (1= AL, (18)

where £, and £, are calculated by Eq. (10) and Eq. (17), A
is hyper parameter.
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4 Experiment

4.1 Experimental Setups

Dataset and Metrics

We conduct experiments on two datasets: (1) WIKIBIO
aims to generate the first sentence of a biography from a
given Wikipedia infobox. (2) E2E [Novikova et al., 2017]
aims to generate descriptions of restaurants from dialogue
act-based meaning representations. We follow the previous
works [Lebret et al., 2016; Liu et al., 2018; Liu et al., 2019a;
Liu et al., 2019b] that use BLEU and ROUGE as the auto-
matic evaluation metrics.

Training Configuration

During experiments we set the dimension of word vectors and
hidden state d,, = 300 and the number of heads H = 6. We
choose the most frequent 30, 000 words in the training set as
the vocabulary of WIKIBIO. A copy mechanism is applied to
replace the unknown words UNK with the most likely word
in the input data according to the attention distribution. We
train the two stages separately for 10 epochs then jointly for
40 epochs. During joint training we set A = 0.4.

4.2 Baselines

We compare Tree-PLAN with some strong baseline models
as follows, where the former three do not perform planning
and the latter three are planning based:

TableNLM [Lebret er al., 2016] is a neural language
model which integrates field and position embedding into the
data representation.

Struct-aware [Liu er al., 2018] is a seq2seq architecture
with a gate mechanism to introduce field information and a
dual attention to incorporate the attribute information.

FA+RL [Liu et al., 2019b] is a neural model with force
attention and reinforcement learning to force the generator to
attend to more attributes of the input infobox.

Order-plan [Sha et al., 2018] is a seq2seq model where a
link matrix is designed to model the order of the attributes for
infobox-to-text generation.

PHVM [Shao et al., 2019] is a planning-based hierarchical
variational model with a high-level planning and a low-level
realization for long and diverse text generation.

NCP+BTA [Trisedya er al., 2020] is a neural content-
planning based model with bag of tokens attention which uses
a joint learning of order-planning and sentence generation.

4.3 Overall Results

Table 1 shows the results of automatic evaluation. Tree-
PLAN outperforms all the baselines on both BLEU and
ROUGE scores (about 1.62/1.28 increase on BLEU/ROUGE
compared to the state-of-the-art method), indicating that our
proposed model can truly facilitate the infobox-to-text gen-
eration. The improvements (about 2.42/2.32 increase on
BLEU/ROUGE) compared to the model without planning
demonstrate that the proposed order-planning method ia able
guide the model to generate higher quality descriptions.
Without attribute-level ordering, our model gets a
1.14/1.24 decrease on BLEU/ROUGE, which proves that
explicit order-planning is able to improve the performance
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Model WIKIBIO E2E
BLEU ROUGE | BLEU ROUGE

TableNLM 34.70 25.80 — —
Struct-aware | 44.89 41.21 65.77 66.70
FA+RL 45.47 41.54 66.10 67.69
Order-plan 4391 37.15 — —
PHVM 44.13 40.37 66.34 68.10
NCP+BTA 45.46 40.31 — —
Tree-PLAN | 47.09 42.82 67.45 70.08
— tree 46.43 42.37 67.01 68.75
— order 45.95 41.58 66.79 68.47
— plan 44.67 40.50 66.17 67.72

Table 1: Automatic evaluation results of our models and baselines
on WIKIBIO and E2E datasets.

Model Grammar T Faithful f Coherent T
PHVM 3.83 3.36 3.44
Struct-aware 3.92 343 3.54
FA+RL 3.88 3.47 3.49
Tree-PLAN 3.94 3.59 3.69
Reference 4.13 3.71 3.86

Table 2: Human evaluation results of different models on WIKIBIO
where scores range from 0 to 5.

of our model. Moreover, the decline of performance with-
out tree-like dynamic tuning (about 0.66/0.45 decrease on
BLUE/ROUGE) illustrates that the tuning mechanism can
tune the initial order-plan for better planning, thus improv-
ing the performance of our model.

4.4 Human Evaluation

Since BLEU and ROUGE are calculated based on n-gram
matching, automatic evaluation is not enough to evaluate the
quality of our model. Therefore we implement human evalu-
ation to evaluate on three aspects: Grammar (whether a gen-
erated sentence is fluent without grammatical error), Faith-
ful (whether the output is faithful to input), and Coherent
(whether a sentence is logically coherent and the order of ex-
pression is in line with human writing habits). We randomly
select 300 samples with the descriptions generated by three
well-performing baselines and our proposed model. We in-
vite five annotators with sufficient background knowledge to
score the given generated descriptions.

The results are reported in Table 2, showing that Tree-
PLAN outperforms other models on the three metrics. We
find that all the reported models get high scores on Gram-
mar, which illustrates that neural encoder-decoder models are
able to generate fluent and grammatically correct descrip-
tions. Compared to other reported models, Tree-PLAN gets
a remarkable improvement on Faithful and Coherent (about
0.12 and 0.15 increase), indicating that the proposed planning
method can guide to generate more faithful and logically co-
herent descriptions. The results of human evaluation demon-
strate that Tree-PLAN is able to generate more fluent, faithful
and logically coherent descriptions.
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Input: Name: Bill Laskey Position: pitcher Birthdate: 20 December 1957

Debutteam: San Francisco Giants

Reference: William Alan Laskey (born December 20, 1957 in Toledo, Ohio) is a
from 1982 to 1986 and in 1988.

Birthplace: Toledo , Ohio  Debutdate: April 23, 1982

Finaldate: August 13, 1988 Finalteam: Cleveland Indians ...

former professional baseball player who pitched in the major leagues

Struct-aware: William, Laskey (born December 20, 1957) is a former professional baseball player who played for Cleveland Indians.
FA+RL: William Michael Laskey (born December 20, 1957) is a former major league baseball pitcher who played for three different teams.

Ours: Bill Laskey (born December 20, 1957 in Toledo, Ohio), is a former professional baseball player who pitched in the major leagues from 1982 to 1988.

Planning: Namem)Birthdate m) Birthplace mp Positionm) Debutdate mp Debutteamms Finaldatesy Finalteam ...
Name Name Name
Birthdate Birthdate Birthdate
Birthplace Birthplace Birthplace
Position Position Position
Debutdate Debutdate Debutdate
Debutteam Debutteam Debutteam
Finaldate Finaldate Finaldate
Finalteam Finalteam Finalteam
b8 & % 0A %Y 8. 8.2 2944 L& 6 4 B
o, o, 4,5, Yy, o, % Y e e,y . %%,
% %, e G, % Y % % % %, %
Ist Layer 3rd Layer Last Layer

Figure 3: Descriptions generated by different models and the plan of our model (order-plan and the merging attention heat maps).

Model Max 1 MinfT Mean?T Dev]
Struct-aware | 45.24  43.67 44.19 0.6876
FA+RL 45.87 4438 4473  0.5205
NCP 43775 4290 4328  0.3687
PHVM 44.83 4334  43.64 04142
Tree-plan 47.18 46.61 46.83 0.2213
— tree 46.57 4587 4630 0.3361
— order 46.52 4534 4595  0.5009
— plan 4595 4345 4449  0.5947

Table 3: The results of disorder experiments on WIKIBIO (maxi-
mum, minimum, mean and deviation of BLEU scores).

4.5 Evaluation of Planning

To further demonstrate the effectiveness of the proposed
order-planning, we conduct disorder experiments to evalu-
ate the adaptability to disordered input of Tree-PLAN. We
disorder the input attributes and get ten different disordered
datasets (including a gold order). We test some baselines and
Tree-PLAN on the ten datasets and report the maximum, min-
imum, mean and deviation of the BLEU score in Table 3. The
results show that the order of the input attributes has a signif-
icant influence on the performance of neural models.

Tree-PLAN outperforms all other models with higher max-
imum, higher minimum, higher mean and lower deviation.
Higher maximum, minimum and mean indicate the high-
performance of Tree-PLAN while lower deviation demon-
strate the adaptability of Tree-PLAN to disordered data,
which further proves the effectiveness of the proposed plan-
ning methods. Furthermore, models with planning have bet-
ter adaptability to disordered data by having lower deviations,
which proves that planning can not only facilitate infobox-
to-text generation but also improve the adaptability of neural
models to disordered input.

4.6 Case Study

Figure 3 shows the descriptions generated by different mod-
els of the same input infobox from the test set of WIKIBIO.
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Struct-aware misses some important attributes (Birthplace,
Position, etc.) while FA+RL gets a better coverage thanks to
its force attention mechanism. However, FA+RL still misses
some attributes and suffers from the problems of groundless
information. Compared to these two models, Tree-PLAN can
generate a more faithful and coherent description.

To further show the effect of our tree-like planning, we vi-
sualize the results of planning stage in Figure 3 including the
initial order-plan and merging attention heat maps. The re-
sult of order-plan shows that the multi-head attention based
pointer network can generate a approximately proper order-
plan. The attention heat maps illustrate how the tuning stage
works. The relevant attributes are merged to larger ones layer
by layer (e.g. Birthdate and Birthplace are merged at the first
layer where the attention weight between the two attributes is
high). And finally the input attributes are all merged together
in the last layer and a logically coherent plan is obtained.

5 Conclusion

In this paper, we propose a tree-like planning-based atten-
tion network (Tree-PLAN) which leverages both static order-
planning and dynamic tuning to guide infobox-to-text gen-
eration, where a novel tree-like dynamic tuning mechanism
is proposed to dynamically tune the static order-plan for bet-
ter planning. Experiments on two datasets show that Tree-
PLAN achieves the state-of-the-art performance and can gen-
erate more fluent, faithful and logically coherent descriptions.
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