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Abstract
Fine-grained entity typing (FET) is a fundamental
task for various entity-leveraging applications. Al-
though great success has been made, existing sys-
tems still have challenges in handling noisy sam-
ples in training data introduced by distant super-
vision method. To address these noises, previous
studies either focus on processing the clean samples
(i.e., have only one label) and noisy samples (i.e.,
have multiple labels) with different strategies or fil-
tering the noisy labels based on the assumption that
the distantly-supervised label set certainly contains
the correct type label. In this paper, we propose
a probabilistic automatic relabeling method which
treats all training samples uniformly. Our method
aims to estimate the pseudo-truth label distribution
of each sample, and the pseudo-truth distribution
will be treated as part of trainable parameters which
are jointly updated during the training process. The
proposed approach does not rely on any prerequi-
site or extra supervision, making it effective on real
applications. Experiments on several benchmarks
show that our method outperforms previous com-
petitive approaches and indeed alleviates the noisy
labeling problem.

1 Introduction
Fine-grained entity typing (FET) is a task which aims to find a
proper fine-grained semantic type given an entity mention and
its corresponding context text. Knowledge acquired through
FET is informative and can benefit a wide range of natural
language processing (NLP) applications, such as relation ex-
traction [Liu et al., 2014], knowledge expansion [Dong et al.,
2014], factoid question answering [Dong et al., 2015], and
entity linking [Onoe and Durrett, 2019a].

Due to the lack of manually annotated fine-grained labels,
distant supervision [Mintz et al., 2009] method is popularly
adopted by recent FET systems. This method links the en-
tity mention to an entity in the knowledge base and annotates

∗ Indicates equal contribution.
† Corresponding author.

Figure 1: Noisy samples produced by distant supervision.

all associated types as distantly-supervised labels. Although
distant supervision is adequate to label data automatically, it
suffers from the noisy labeling problem severely. As illus-
trated in Figure 1, the entity mention “Amazon” in two dif-
ferent sentences will be labeled with same entity type set, in
which some types are inappropriate given the context. Obvi-
ously, direct distant supervision produces noisy training data,
which will hurt the performance of the FET systems [Ren et
al., 2016a].

To address the issue of noisy labeling, most of previ-
ous studies try to model the samples with only one label
(treated as “clean” samples) and samples with multiple labels
(treated as “noisy” samples) separately to improve the predic-
tion performance [Ren et al., 2016a; Abhishek et al., 2017;
Xu and Barbosa, 2018; Chen et al., 2019]. In fact, we find
that samples with only one distant label are not absolutely
correct. [Wu et al., 2019] proposed to detect and weight out
noise based on the assumption that the distantly-supervised
label set must contain the correct type for each training sam-
ple, which is overly strong. [Onoe and Durrett, 2019b] pro-
posed to refine the distantly-labeled data with a learned model
trained on human-annotated data. Consequently, previous
studies suffer from two limitations: 1) Still rely on some pre-
requisites (e.g. human-curated clean dataset), making them
inefficient in real applications; 2) Incapable of eliminating
the impact of samples with only one type label but are false-
positive (Table 4 shows more details).

In this paper, to handle the above two limitations simul-
taneously, we propose a probabilistic automatic relabeling
method. As the ground-truth label distribution is not avail-
able, our method aims at estimating the pseudo-truth label
distribution during the training process. In detail, each sam-
ple is assigned a continuous label distribution p̃ over all candi-
date labels, and p̃ will be jointly updated as trainable param-
eters through the back-propagation algorithm. The learning
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purpose is minimizing the Kullback-Leibler (KL) divergence
between the predicted distribution and the pseudo-truth label
distribution. Finally, we take the label with the highest value
in p̃ as the only one pseudo-truth label. In order to ensure
the rationality of the final estimated pseudo-truth distribution,
we integrate the golden-noisy information during the training
process with two specific designed constraints. In this way,
our method can effectively relabel the noisy distant samples
during training, thus improving the predictive performance.

To show the effectiveness and robustness of our approach,
we conduct experiments on three benchmarks. Experimen-
tal results show that our approach achieves state-of-the-art
results, significantly outperforms previous methods. Further-
more, we design additional subsidiary experiments to demon-
strate that the above-mentioned problems are alleviated on
FET tasks trained with noisy data.

2 Our Approach
The overall architecture of our proposed model is illustrated
in Figure 2. Concretely, our model consists of a feature en-
coder (which has the same structure and objective function
with NFETC model proposed by [Xu and Barbosa, 2018])
and a Probabilistic Automatic Relabeling module, along with
a three-phase training strategy.

2.1 Problem Definition
Given a training corpus D labeled with entity type hierar-
chy of knowledge base by distant supervision, we define
Γ = {t1, t2, · · · , t|T |} as all candidate type labels, where |T |
is the total number of types. Each type label ti is a path from
root node to the terminal node (e.g. artist represents /per-
son/artist), and a terminal node could be either a leaf node
or a non-leaf node. In this paper, we use the terminal types
as the predicted targets following settings in previous stud-
ies [Xu and Barbosa, 2018; Chen et al., 2019]. In most part
of this paper, we use type to refer to terminal type for sim-
plicity.

Training corpus D constructed by distant supervision con-
sists of triplets with form (mi, ci, yi), i = 1, 2, · · · , N , where
yi ∈ R|T | is the label vector (also denoted as noisy la-
bel as it may contain types which are not appropriate). For
each training sample, we denote the context sentence as a
word sequence ci = {w1, w2, · · · , wn}, and entity mention
mi = {wm1 , wm2 , · · · , wml

} as a continuous sub-sequence
from the context sentence. Given the mention-context input
pair, the FET task aims at predicting the most appropriate
type y∗i from the pre-defined candidate set Γ.

2.2 Feature Encoder
For fair comparison, we adopt the feature encoder used in [Xu
and Barbosa, 2018]. For each sample triple (mi, ci, yi) ∈ D,
each word wj in ci is first mapped into word embedding
ewj ∈ Rdw with a word embedding matrix W ∈ Rdw×|V |,
where |V | is the vocabulary size and dw is the embedding
size. Analogously, word position embedding [Zeng et al.,
2014] epj ∈ Rdp is incorporated to reflect relative distances
between each word and the target mention. Thus, the final

embedding of the j-th word can be represented as concatena-
tion of the two parts ej = [ewj , e

p
j ].

Context Representation. The Bidirectional LSTM (Bi-
LSTM) [Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005] is then applied to model contextualized
representations of context ci. The sequence of embedding
{e1, e2, ..., ej , ..., en} will be fed into the Bi-LSTM network.
By combining the last hidden state of forward and backward
pass, we get the contextualized representation of word wj as
hj = [

−→
hj ⊕

←−
hj ], where ⊕ represents the element-wise sum

operation. The hidden state size of Bi-LSTM notes as ds.
Following [Zhou et al., 2016], a word-level attention module
is adopted to attend to the most influenced words, and gener-
ate the final context representation rci .

Mention Representation. The mention encoder contains
two parts. Average encoder: given {em1 , ...emk

, ..., eml
} be

the sequence word embeddings of mi, the average encoder
simply averages value of each word embedding vector: ra =
1
l

∑l
k=1 emk

. LSTM encoder: by applying an LSTM over the
extended mention embeddings, the context-aware representa-
tion {hm1−1, ...hmk

, ..., hml+1} is achieved. The last hidden
state rl = hml+1 ∈ Rds is concatenated with ra to from the
final mention representation rmi = [ra, rl].

2.3 Cross-Entropy Objective Function
As illustrated by left dash box of Figure 2, the feature vec-
tor is represented using ri = [rmi

, rci ] and fed into a MLP
layer. Then we use a softmax classifier to predict ȳi over the
candidate set Γ, where W ∈ Rdr×|T | and b ∈ R|T | are train-
able parameters. The cross-entropy loss function is denoted
as Eq. 2, where θ denotes for trainable parameters of entire
model.

p(yi|mi, ci) = softmax(Wri + b) (1)

Lce(θ) = − 1

N

N∑
i=1

yilog (p(yi|mi, ci; θ)) (2)

Clearly, optimizing the FET model with standard cross-
entropy loss function has limitations for learning with noisy
labels. The one-hot labels y for training samples with mul-
tiple entity types are not reasonable distribution, which will
lead the model over-fitting to noisy labels and thus degrade
the model performance. In the next section, we propose a
probabilistic automatic relabeling method which helps to es-
timate the pseudo-truth label of each training sample and then
address the noisy labeling problem.

2.4 Automatic Relabeling Module
In this section, we propose the probabilistic Automatic Rela-
beling (AR) module, an approach that strikes a balance be-
tween sufficient learning and robustness to noisy labels.

Our method aims to investigate the underlying truth la-
bel for each sample. The basic assumption of our idea is:
for each mention-context pair (m, c), there exists only one
most appropriate type given the candidate set Γ. Hence, the
de-noising process over training set D implies that we seek
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Figure 2: An overall illustration of our proposed NFETC-Automatic-Relabeling (NFETC-AR) model.

to find the pseudo-truth label distribution p̃ over Γ of each
sample. From the probabilistic perspective, how can we es-
timate this distribution? We realize it by treating p̃ as part
of trainable parameters and p̃ will be jointly updated during
the learning process. Therefore, when training with cross-
entropy loss without automatic relabeling, the optimization
problem of FET task can be defined as:

θ∗ = argminθL(m, c, y; θ) (3)

In our automatic relabeling module, the optimization objec-
tive is formulated as:

θ∗, p̃∗ = argminθ,p̃L(m, c, y; θ, p̃) (4)

As shown in Figure 2, the proposed automatic relabeling
module contains a pseudo-truth label distribution estimation
term accompanied by two specifically designed constraints.

Pseudo-truth Label Distribution Estimation
The ground truth label distribution is not available, which
must be estimated under proper assumptions. Although
the training set is constructed through distant supervision
method, the label noises are correlated and context-aware.
This basic observation makes it possible to estimate the
pseudo-truth label distribution p̃ using a self-supervised
learning approach, which has also been verified by previous
work [Wu et al., 2019]. Concretely, we target on maximiz-
ing the information-theoretic dependency between the con-
text and the pseudo-truth label associated. Although the orig-
inal predicted distribution p is not completely correct, it is
still a high-quality prior knowledge to guide the distribu-
tion estimation process of p̃. Inspired by [Hu et al., 2017;
Wang and Wu, 2019], we could directly estimate the pseudo-
truth label distribution p̃ via minimizing the KL-divergence
between p̃ and p(m, c; θ).

Formally, we assign a continuous label distribution p̃i to
each training sample, where p̃i = {p̃ij : p̃ij ∈ [0, 1],

∑
j p̃ij =

1}. The KL-divergence loss function can be represented as:

Lkl =
1

N

N∑
i=1

KL(p̃i‖p(yi|mi, ci; θ))

=
1

N

N∑
i=1

|T |∑
j=1

p̃ij log (
p̃ij

pj(yi|mi, ci; θ)
), (5)

where θ denotes for all trainable parameters in the basic
model. Additionally, p̃ ∈ RN×|T | will be updated as other
trainable parameters.

However, using the KL-divergence loss alone is not enough
to get a well-estimated pseudo-truth label distribution. As we
take the prediction p as objective, the Lkl can’t deal with the
wrong predictions produced by the basic typing model. These
errors will continue to accumulate during the training process
and then cause confirmation bias. Moreover, we empirically
observe that the final estimated distribution p̃ is very smooth
when employing only Lkl, which is unhelpful to optimize it
towards the ground-truth one-hot label distribution. Thus, we
add two additional constraints to guide the pseudo-truth label
distribution estimation process.

Distant label Constraint
As illustrated in Table 2, the majority of training data (64.46%
of Wiki, 73.13% of OntoNotes and 75.92% of BBN) con-
structed by distant supervision contains only one type label,
which is treated as clean sample in previous studies [Xu and
Barbosa, 2018; Chen et al., 2019]. The distantly-supervised
labels still contain valuable information about the ground
truth label distribution, although not all training samples with
only one label are absolutely correct. By using this informa-
tion, we can constrain the distribution estimation process and
reduce the learning difficulty.

Considering all above, we make use of the distant noisy
labels y with three operations: 1) At the beginning of the au-
tomatic relabeling process, we initialize the trainable distribu-
tion p̃ with the normalized version of original noisy labels y,
i.e., p̃ = softmax(y). 2) We also maintain the cross-entropy
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loss Lce of the basic model as a part of the final optimization
objective to ensure the rationality of the predicted distribution
p(m, c; θ). 3) To avoid the estimated pseudo-truth label distri-
bution p̃ from being totally different from the original noisy
label distribution y, we add a cross-entropy loss between p̃
and y, which can be denoted as:

Ld = − 1

N

N∑
i=1

|T |∑
j=1

p̃ij log yij (6)

Distribution Sharpen Constraint
As mentioned above, the FET task assumes that each sam-
ple has only one most appropriate true type label [Wu et
al., 2019]; thus we want to keep the distribution p̃ obeying
the same property. We try to control the pseudo distribution
by encouraging the predicted label distribution to be sharpen
for each sample. Under this purpose, another regularization
term is introduced: the distribution sharpen constraint, which
pushes the predicted probability of each type to nearly 0 or 1,
as shown in Eq. 7.

Ls = − 1

N

N∑
i=1

|T |∑
j=1

pj(yi|mi, ci; θ)log pj(yi|mi, ci; θ) (7)

2.5 Training Strategy
To this end, we can train the AR module in an end-to-end
manner with the standard back-propagation algorithm. The
overall loss function can be formulated as:

Lar = β · Lce + γ · Lkl + ω · Ld + δ · Ls, (8)

where β, γ, ω and δ are hyper-parameters.
We divide the entire optimization process into three phases:

1) Preliminary training. Since the proposed approach does
not rely on any extra supervision, at the beginning of the en-
tire training process, we first train a basic entity typing model
with parameters θ only using the original noisy labels (can
be treated as warm-up training). 2) Probabilistic Automatic
Relabeling. After a preliminary network is trained, we can
step into the second phase and jointly estimate the pseudo
label distribution p̃. 3) Fine tuning. Finally, we normalize
the estimated distribution p̃ to one-hot labels ŷ by choosing
one label with maximum value for each sample, and then the
pseudo labels ŷ are used for continuous fine-tuning the ba-
sic typing model. More details about the three-phase opti-
mization process are described in Algorithm 1. The training
epoch number for each phase e1, e2, e3 are hyper-parameters
and chosen by grid search.

3 Experiments
We thoroughly evaluate the performance of our method on
three benchmarks using several comparable approaches as
baselines. Furthermore, we conduct several auxiliary experi-
ments to analyze the effectiveness of our proposed method.

3.1 Settings
Datasets. We conduct the experiments on three standard
and publicly available datasets. Wiki [Ling and Weld, 2012],

Algorithm 1: Training Procedure
Input:
- D = {(mi, ci, yi), · · · , })
- Xb ← Batch(D)
- Yb ← Batch(D)
Parameters:
- Model parameters: θ, Pseudo distribution: p̃
Randomly initialize model parameters θ
for epoch←1 to e1 do

Update θ w.r.t. Lce (Xb,Yb; θ)
Initialize p̃← softmax(y)
for epoch←1 to e2 do

Update θ, p̃ w.r.t. Lar (Xb,Yb; θ, p̃)
ŷ ← argmax(p̃)

Ŷb ← Batch(ŷ)
for epoch←1 to e3 do

Update θ w.r.t. Lce (Xb, Ŷb; θ)

OntoNotes [Weischedel et al., 2013] and BBN [Weischedel
and Brunstein, 2005]. We follow the same hierarchy re-
finement pre-processing of datasets used in [Abhishek et al.,
2017; Xu and Barbosa, 2018]. The detailed statistics of the
datasets are shown in Table 2.

Implementation Details. Table 3 shows the hyper-
parameters used in our method. The model is trained us-
ing mini-batched back-propagation, and Adam optimizer
[Kingma and Ba, 2014] is used for optimization.

Evaluation Metrics. We adopt three commonly used eval-
uation metrics: Strict Accuracy (Strict Acc), Micro-averaged
F1 (Micro-F1) score and Macro-averaged F1 (Macro-
F1) [Ling and Weld, 2012]. On all datasets, we use the same
training/development/test sets settings with previous studies,
and the development sets are used to select the model with
the best performance among all epochs.

Baselines. We compare our method with several state-of-
the-art FET systems, including AFET [Ren et al., 2016a],
AAA [Abhishek et al., 2017], Attentive [Shimaoka et al.,
2016], NDP [Wu et al., 2019], NFETC [Xu and Barbosa,
2018] and NFETC-CLSC [Chen et al., 2019]. [Xu and Bar-
bosa, 2018] propose to model the type hierarchy with the hi-
erarchical loss, which has been proven effective for FET task.
Thus, for all NFETC based methods, we report results pro-
duced by NFETC and NFETChier respectively.

3.2 Overall Results
Table 1 presents the final results of our method with three
metrics. The scores of each metric are calculated by running
the model for five times and computing the mean and standard
deviation values. We highlight the best performances of each
metric in bold. We find that our approach achieves the best
performance among all the baselines.

Our model improves the performances by a large margin
compared to the basic model (NFETC) on all three datasets.
Specifically, the auto-relabeling enhanced model improves
the strict accuracy on the three datasets from 68.9 to 70.1,
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Model Wiki OntoNotes BBN
Strict Acc Macro F1 Micro F1 Strict Acc Macro F1 Micro F1 Strict Acc Macro F1 Micro F1

AFET 53.3 69.3 66.4 55.3 71.2 64.6 68.3 74.4 74.7
AAA 65.8 81.2 77.4 52.2 68.5 63.3 65.5 73.6 75.2
Attentive 59.7 80.0 75.4 51.7 71.0 64.91 48.4 73.2 72.4
NDP 67.7 81.8 78.0 58.0 71.2 64.8 72.7 76.4 77.7
NFETC 56.2 ± 1.0 77.2 ± 0.9 74.3 ± 1.1 54.8 ± 0.4 71.8 ± 0.4 65.0 ± 0.4 73.8 ± 0.6 78.4 ± 0.6 78.9 ± 0.6
NFETChier 68.9 ± 0.6 81.9 ± 0.7 79.0 ± 0.7 60.2 ± 0.2 76.4 ± 0.1 70.2 ± 0.2 73.9 ± 1.2 78.8 ± 1.2 79.4 ± 1.1
NFETC-CLSC - - - 59.6 ± 0.3 75.5 ± 0.4 69.3 ± 0.4 74.7 ± 0.3 80.7 ± 0.2 80.5 ± 0.2
NFETC-CLSChier - - - 62.8 ± 0.3 77.8 ± 0.3 72.0 ± 0.4 73.0 ± 0.3 79.8 ± 0.4 79.5 ± 0.3
NFETC-AR 58.1 ± 1.1 79.0 ± 0.4 76.1 ± 0.4 62.8 ± 0.4 77.8 ± 0.4 71.8 ± 0.5 76.7 ± 0.2 81.4 ± 0.3 81.5 ± 0.3
NFETC-ARhier 70.1 ± 0.9 83.2 ± 0.7 80.1 ± 0.6 64.0 ± 0.3 78.8 ± 0.3 73.0 ± 0.3 74.9 ± 0.6 80.4 ± 0.6 80.3 ± 0.6

Table 1: Performance results on three benchmark datasets.

Wiki OntoNotes BBN
types 113 89 47
hierarchy depth 2 3 2
mentions-train 2009898 253241 86078
mentions-test 563 8963 12845
one label train data (%) 64.46 73.13 75.92
one label test data (%) 88.28 94.00 100

Table 2: Statistics of datasets.

Hyper-parameters Wiki OntoNotes BBN
Learning rate 0.0002 0.0006 0.0007
Batch size 512 512 512
LSTM layer 0 2 1
hidden size (ds) - 700 560
Word emb size (dw) 300 300 300
Pos emb size (dp) 85 70 20
Epochs (e1, e2, e3) (5,5,10) (10,10,10) (5,5,20)
β 0.8 0.8 0.8
γ 0.3 0.3 0.1
ω 0.3 0.3 0.4
δ 0.1 0.1 0.4

Table 3: Hyper-parameters chosen for the three datasets.

60.2 to 64.0 and 73.9 to 76.7, respectively. This observation
illustrates the necessity of noise reduction in the distantly-
supervised FET task and the effectiveness of our proposed
auto-relabeling method.

Comparing our NFETC-AR method with previous meth-
ods which process “clean” and “noise” data separately(e.g.
NFETC-CLSC), NFETC-AR performs much better. The rea-
son might be that the separate processing method can reduce
the impact of noisy samples to some degree, but it also ne-
glects the valuable information contained in noisy samples.
These results further verify the intuition for relabeling the
noisy samples and converting them into helpful training data.
Also, there is an obvious margin between NFETC-AR and
NDP. This result demonstrates that our model is more effec-
tive in finding correct type from the distantly-supervised type
set, and the ability to handle false-positive samples is quite
effective in improving the predictive performance.

3.3 Discussion and Analysis
Learning Curve of NFETC-AR. To better analyze the ad-
vantages of our model in tackling the noisy labeling problem,
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Figure 3: Strict Acc evolution on OntoNotes and BBN. We report
the best performances of model variants (with or without the hierar-
chical loss) and hide the suffix hier in the plot for brevity.

we compute the strict accuracy of our model on development
set and test set after each training epoch, as shown in Figure 3.
Note that the horizontal dotted lines in Figure 3 represent test
set performances of NFETC and NFETC-CLSC respectively.
We can see that: 1) In phase 1, our model is actually the basic
NFETC; thus, the performance of our model cannot exceed
the NFETC dotted lines by a meaningful margin. 2) In phase
2, as the loss function of the automatic relabeling module is
adopted, the NFETC-AR model is able to reduce the negative
effect of noisy data. As a result, the strict accuracy on the test
set is further improved and then exceeds the NFETC model
significantly. 3) In the third phase, the estimated pseudo-label
distribution (soft-labels) in phase 2 is transformed into one-
hot labels (hard-labels). Then we use these hard-labels (after
relabeling) to continue fine-tuning the basic model. As a re-
sult, the performance of our model keeps improving and then
surpasses the previous state-of-the-art model NFETC-CLSC.

Ablation Study of AR. We further evaluate the influence
of each component in the automatic relabeling (AR) module
by conducting an ablation study. From Table 5, we observe
that each component statistically improves the model perfor-
mance. Specifically, the KL-divergence loss is the key com-
ponent of the AR process. Without Lkl, the model produces
similar performance with the basic model (shown in w/o AR
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Source Type Context & Mention Original Label After Relabeling
OntoNotes Multi-to-one-in Jennifer Laden , NPR News , Jerusalem {/org/company/news, /person} /org/company/news
Wiki Multi-to-one-in the Plains of Abraham in Quebec City , Quebec , Canada . {/location/country, /person/director} /location/country
BBN Multi-to-one-in Federal researchers said lung-cancer mortality rates for people under 45 {/person, /org/government} /person
OntoNotes Multi-to-one-out Because along with Haditha comes Jesse Macbeth , allegedly ... {/other/art/writing, /other/art/stage} /person
OntoNotes One-to-one-out ... Alcee Hastings of Florida of eight impeachment articles ,... /other/health/malady /other/art/writing

Table 4: Cases of the automatic relabeling results on the three datasets.

Acc Macro F1 Micro F1
NFETC-ARhier 64.0 ± 0.3 78.8 ± 0.3 73.0 ± 0.3
w/o Lkl 61.2 ± 0.5 76.6 ± 0.4 70.4 ± 0.5
w/o Ld 63.8 ± 0.3 78.4 ± 0.2 72.6 ± 0.3
w/o Lce 61.1 ± 0.3 76.1 ± 0.3 69.9 ± 0.5
w/o noisy label init 55.0 ± 0.3 67.1 ± 0.4 60.3 ± 0.4
w/o Ls 63.7 ± 0.6 78.3 ± 0.4 72.3 ± 0.6
w/o AR 60.2 ± 0.2 76.4 ± 0.1 70.2 ± 0.2

Table 5: Ablation study on OntoNotes dataset.

line) on Marco-F1 and Micro-F1. Moreover, among the three
operations in the distant label constraint, we find that noisy la-
bel initialization has the greatest impact (switching to random
initialization will degrade the accuracy to 55.0). This result
again proves that the original noisy information is valuable to
some extent, and fully making use of this information is very
important to the automatic relabeling process.

Statistical Analysis of AR. In order to examine the rela-
beling results of our proposed model, we statistically analyze
the differences between the noisy labels y and the pseudo la-
bels ŷ after automatic relabeling. We find that there are three
types of modification. Multi-to-one-in: samples with multi-
ple distantly-supervised labels are modified into one of them;
In contrast, Multi-to-one-out represents samples with multi-
ple labels are finally modified into one label out of the origi-
nal ones. Besides, we find that a part of the samples with only
one label has also been modified, and it is noted as One-to-
one-out. Taking OntoNotes dataset as an example, 27.52%
of the training samples are modified. Among the modified
data, the percentages of the three different types are 97.49%,
0.12% and 2.39% respectively. Similar results are obtained
on both Wiki and BBN datasets. After careful inspection of
the corrected labels ŷ, we find: 1) not all samples with only
one type label are correctly labeled; 2) the assumption that
the ground truth label must exist in the distantly-supervised
labels is also biased. In Table 4, we select some samples of
each correction type for better understanding. The result of
statistical analysis and case studies illustrates the ability of
our model in automatic relabeling. Moreover, our proposed
method does not rely on any pre-set assumptions that are ac-
tually problematic.

Robustness to Noisy Data. To study the robustness of our
model in handling noisy data, we compare our method with
previous start-of-the-art systems after removing “clean” sam-
ples on the training set. For each dataset, we split the training
set into “clean” and “noisy” samples, and “clean” samples
are removed by different proportions (75% - 95%). Here,
we treat samples with one type label as clean data follow-
ing [Chen et al., 2019], as most of them contain correct in-
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Figure 4: Strict Acc on OntoNotes (upper) and BBN (lower) when
different proportions of “clean” training data are removed.

formation. We compute the strict accuracy given remaining
clean samples and all noisy samples to evaluate the model’s
robustness to more noisy data. According to Figure 4, our
model surpasses all baselines consistently on the OntoNotes
dataset. On the BBN dataset, our model achieves comparable
performances with NFETC-CLSC in most cases except when
removing 95% clean data. The reason might be that NFETC-
CLSC applies an unsupervised cluster-based noise reduction
method and thus is more robust with extremely limited clean
data. Overall, the experiment proves that our proposed ap-
proach makes the basic model much more robust.

4 Related Work
Fine-grained entity typing (FET) is a common task in NLP.
In general, a large amount of labeled data is required to
train a FET model, which is quite expensive. To ad-
dress this issue, [Ling and Weld, 2012] first proposed build-
ing the training data via distant supervision [Mintz et al.,
2009]. Embedding-based models were applied to FET since
then [Yogatama et al., 2015; Dong et al., 2015]. Re-
cently, deep neural methods have been widely applied to
FET. [Shimaoka et al., 2016] proposed to use LSTMs to en-
code the context information and then use attention mech-
anism to select informative information. [Ma et al., 2016;
Lin and Ji, 2019] exploited to improve the model performance
by leveraging the entity type information. [Xin et al., 2018]
proposed a knowledge attention model by jointly considering
the information from knowledge bases (KBs).

Despite the success of distance supervision, it still suf-
fers from the noisy labeling problem. To alleviate this is-
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sue, [Gillick et al., 2014] refined the training data by ap-
plying a set of heuristics to prune types, [Ren et al., 2016a;
Ren et al., 2016b] proposed the AFET model which sepa-
rates the loss function for clean and noisy entity separately,
and incorporates the imperfect annotation by partial-label
loss. Additionally, [Abhishek et al., 2017; Xu and Barbosa,
2018] proposed two variants of partial-label loss. Never-
theless, these methods still struggle with confirmation bias.
Based on the assumption that the distantly-supervised label
set must contain the ground-truth label, [Wu et al., 2019] pro-
posed to model the structured, noisy labels directly and then
weight out noisy labels during training with the help of ran-
dom walking process. [Chen et al., 2019] leveraged the noisy
samples as regularization via compact latent space clustering
method. [Onoe and Durrett, 2019b] tried to filter and relabel
the noisy samples with the help of additional human-labeled
data. Unlike these methods, we propose a unified framework
that treats the clean and noisy samples equally and solves the
noise labeling problem without extra supervision.

5 Conclusion and Future Work
In this paper, we propose a probabilistic automatic relabel-
ing method for fine-grained entity typing. The proposed ap-
proach is able to infer the pseudo label of each sample and
use the relabelled samples to fine-tune the backbone network.
The proposed approach does not rely on any prerequisite or
extra supervision, making it robust and effective on real ap-
plications. Extensive experimental results show that the pro-
posed method performs better than previous approaches, and
can certainly alleviate the noisy labeling problem in fine-
grained entity typing task. Our proposed method is indepen-
dent of the backbone network; thus, in future work we plan
to investigate the performance of our method under differ-
ent backbone networks. In addition, the automatic relabeling
approach can also be applied to other NLP tasks established
on distantly-supervised datasets, such as relation extraction,
lexicon-based named entity recognition. More research is un-
derway to explore these two directions.
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