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Abstract
For single-channel speech enhancement, both time-
domain and time-frequency-domain methods have
their respective pros and cons. In this paper, we
present a cross-domain framework named TFT-
Net, which takes time-frequency spectrogram as in-
put and produces time-domain waveform as out-
put. Such a framework takes advantage of the
knowledge we have about spectrogram and avoids
some of the drawbacks that T-F-domain methods
have been suffering from. In TFT-Net, we design
an innovative dual-path attention block (DAB) to
fully exploit correlations along the time and fre-
quency axes. We further discover that a sample-
independent DAB (SDAB) achieves a good trade-
off between enhanced speech quality and complex-
ity. Ablation studies show that both the cross-
domain design and the SDAB block bring large per-
formance gain. When logarithmic MSE is used as
the training criteria, TFT-Net achieves the highest
SDR and SSNR among state-of-the-art methods on
two major speech enhancement benchmarks.

1 Introduction
Single-channel speech enhancement addresses the problem of
recovering clean speech from a noise-corrupted speech. Ac-
cording to the signal domain they work in, existing methods
can be classified into two categories: time-frequency (T-F)
domain methods and time-domain methods.

The T-F domain methods operate on the two-dimensional
time-frequency spectrogram. As shown in Fig.1a, they of-
ten use short-time Fourier transform (STFT) to convert a raw
audio signal into a T-F spectrogram. Then a T-F mask is pre-
dicted by the separation network. Finally, the output spectro-
gram is converted back to a time domain signal by the inverse
STFT (ISTFT). T-F masking methods have been a great suc-
cess for computational auditory scene analysis (CASA). They
are also the mainstream methods for speech enhancement in
the deep learning era. The theoretical ground for T-F anal-
ysis is that auditory patterns, such as proximity in frequency
and time, harmonicity, and common amplitude and frequency
modulation, are revealed on a T-F spectrogram [Wang and
Chen, 2018]. However, the T-F domain methods are facing
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Figure 1: Illustration of different speech enhancement frameworks.
The color-filled modules are learnable neural networks. The separa-
tion network, either in T-F domain or in time domain, separates the
features of clean speech from that of noise.

some challenges. First, STFT transforms the input signal into
a complex domain with magnitude and phase. The phase of a
signal is difficult to modify, but ignoring it will create a per-
formance upper bound. Second, in supervised deep learning,
a loss is computed at the output of the learnable network. It is
a natural choice for T-F methods to compute the mean square
error (MSE) loss for the T-F spectrogram. However, mini-
mizing the MSE of spectrogram does not necessarily results
in maximized signal-to-distortion ratio (SDR) of the output
speech. This is known as the metric mismatch problem.

Time-domain methods try to avoid or solve these two prob-
lems by directly processing the raw waveform. Fig.1b shows
the standard time-domain speech enhancement framework.
Time-domain methods directly model the mixture waveform
using an encoder-decoder framework and perform the separa-
tion on the output of the encoder. As phase no longer exists,
the phase prediction problem is avoided. Besides, the loss is
computed at the output of the learnable decoder. One is free
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to pick whatever metric that is important to the speech qual-
ity. As such, the metric mismatch problem is solved. How-
ever, the separation network in a time-domain method cannot
leverage the known auditory patterns on a T-F spectrogram.
This will potentially bring a performance loss.

A natural question to ask is whether it is possible to take
advantages of methods in the two domains and avoid their
respective drawbacks. Luckily, we find that the advantages of
the T-F domain methods are mainly reflected in the front of
the network and those of the time-domain methods are mainly
in the latter part of the network. But an obstacle to connect
these two parts is that the encoder and the decoder have to be
paired in the conventional wisdom. Thanks to the powerful
learning capability of deep neural network, this is no longer
an issue with a learnable decoder. Fig.1c shows the flow chart
of the proposed cross-domain framework, dubbed TFT-Net.

In TFT-Net, the input waveform is converted to T-F spec-
trogram through the predefined STFT. The subsequent T-F
domain separation network can make full use of the auditory
patterns revealed on the spectrogram. After the masked spec-
trogram is obtained, a learnable decoder can fully recover any
spectrum modification after STFT. Note that supervision sig-
nal is given only after the decoder, and we do not intend to
recover the ground-truth T-F spectrogram before the decoder.
In fact, the output spectrogram is in a latent domain defined
by the learned decoder. In the design of the separation net-
work, we find that long-range correlations on the T-F spectro-
gram are important to the denoising performance. To tackle
the high complexity, we propose dual-path attention blocks
(DAB) to exploit the correlations along time and frequency
dimensions in parallel. We further discover that the attention
maps for different samples resemble each other, indicating
sample-independent correlation is sufficient. Therefore, we
employ sample-independent DABs (SDABs) in TFT-Net to
balance the performance and computational cost.

In a nutshell, the contributions of our work are three-fold:

• We propose a cross domain learning framework TFT-
Net for speech enhancement. It takes advantages of both
time domain and T-F domain approaches.

• We propose a novel sample-independent dual-path atten-
tion block (SDAB) to capture long-range temporal and
frequency correlations with low computational cost.

• We perform comprehensive ablation studies and evalu-
ate the proposed system TFT-Net on two major speech
enhancement benchmarks. Results show that TFT-Net
outperforms the state-of-the-art methods.

2 Related Work
This section reviews single-channel speech enhancement
methods in different domains. Focuses are put on masking-
based methods in which the separation network generates a
mask that describes the relationship between clean speech
features and noisy features.

2.1 T-F Domain Methods
In a typical T-F domain masking method, as shown in Fig.1a,
a pair of predefined encoder and decoder are used to con-

vert the signal between time-domain waveform and T-F do-
main spectrogram. STFT and ISTFT are the most widely
used transforms for the encoder and the decoder, respectively.
A complete T-F spectrogram is composed of magnitude and
phase. Early T-F masking methods only try to estimate the
magnitude of the spectrogram due to the difficulty in modi-
fying the phase. Later, research [Paliwal et al., 2011] reveals
that phase also plays an important role in speech enhance-
ment. There is a performance upper bound if only the mag-
nitude is enhanced. PSM [Erdogan et al., 2015] and cIRM
[Williamson et al., 2016] are then proposed to recover the
phase in the spectrogram. While PSM is still a real-valued
mask, cIRM is a complex-valued mask which can potentially
recover both amplitude and phase of the clean speech.

In order to predict cIRM, the authors [Williamson et al.,
2016] propose a DNN-based approach to estimate the real
and imaginary components of the cIRM. However, the ex-
perimental results show that using cIRM does not achieve
significantly better results than using PSM. We believe that
the potential of a complex mask is not fully exploited in this
work. In [Ephrat et al., 2018], a much deeper neural network
with dilated convolution and bi-LSTM is designed. Dilated
convolution enlarges the receptive field and bi-LSTM learns
long-range correlations along the time axis. More recently,
Yin et al. [Yin et al., 2019] propose a two-stream network
for both magnitude and phase estimation. A frequency trans-
formation block (FTB) is used in the front of the network to
capture harmonic correlations along the frequency axis. A bi-
LSTM is used at the latter part of the network to capture tem-
poral dependencies. In [Kim et al., 2019], the spectrogram is
treated as a time sequence and a Transformer is employed to
capture long-range temporal correlations.

All these T-F domain methods benefit from the rich audi-
tory patterns in the T-F spectrogram. However, we notice that
when the long-range correlations along the time and the fre-
quency axes are both considered, they are always learned in
separate steps in prior works. We believe that learning long-
range correlations along both axes is important, as harmonics
exist in speeches [Plapous et al., 2005], [Krawczyk and Gerk-
mann, 2014], [Wakabayashi et al., 2018] and distinguishing
noise needs long-term statistics. We also believe that learning
the two types of correlations should be performed in parallel
and the learned information needs to be fully fused. This be-
comes the motivation of our DAB design.

2.2 Time Domain Methods
Time-domain methods have emerged recently to tackle the
difficulty in phase estimation and the metric mismatch prob-
lem in T-F domain methods. The most influential work in this
category is Conv-TasNet [Luo and Mesgarani, 2019] which
uses a pair of learnable encoder-decoder in time domain as
an alternative to the predefined STFT-ISTFT. Before Conv-
TasNet, SEGAN [Pascual et al., 2017] uses generative ad-
versarial networks (GANs) to directly predict the 1D wave-
form of the clean speech. In [Rethage et al., 2018], Wavenet
is modified for speech enhancement. TCNN [Pandey and
Wang, 2019] adopts a similar approach as Conv-TasNet, but it
uses nonlinear encoder-decoder and longer frame length than
Conv-TasNet.
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Figure 2: Illustration of the proposed TFT-Net framework for speech enhancement. The input signal is the T-F domain spectrogram and
the output signal is the time-domain signal. TFT-Net stacks several learning blocks to learn a multiplicative mask for the spectrogram. The
predicted spectrogram in the latent domain is decoded into time-domain signal through a learnable decoder.
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Figure 3: Each learning block is composed of four 3 × 3 convolu-
tional layers with skip connections followed by a DAB.

These methods achieve their design goal in the sense that
they avoid the problems of T-F domain methods. However,
the most impressive performance is achieved by Conv-TasNet
in the speech separation task. When applied to speech en-
hancement, its performance is inferior to the top-performing
T-F domain method [Yin et al., 2019]. A possible reason for
this phenomenon is that speech and noise patterns are eas-
ily distinguishable on T-F domain representations, and time-
domain methods cannot make use of such prior knowledge.

3 The Proposed Scheme
We design a speech enhancement system with two objectives
in mind. First, it should make full use of the prior knowl-
edge about the T-F spectrogram. To realize this, the pipeline
starts from the spectrogram and we design dual-path attention
blocks to exploit the long-range correlations along both the
time and frequency axes. Second, it should avoid the draw-
backs of T-F domain methods. To this end, we propose an
innovative cross-domain framework which directly uses time-
domain metric to supervise the network learning.

3.1 The TFT-Net Framework
The most prominent feature of the proposed TFT-Net frame-
work is that it starts with T-F spectrogram and directly out-
puts time-domain waveform. Fig.2 gives detailed illustration
of the TFT-Net framework. Compared to Fig.1c, we omit the
predefined STFT module so that we can concentrate on the
end-to-end fully learnable parts.

Formally, the input noisy waveform Rin ∈ R is first trans-
formed into STFT spectrogram, denoted by Sin in Fig.2.
Here Sin ∈ RT×F×2 is a complex-valued spectrogram,

where T represents the number of time steps and F rep-
resents the number of frequency bands. Sin is fed into
two two-dimensional convolution layers to produce feature
S0 ∈ RT×F×C , where C is the number of channels. S0 is
then fed into N stacked learning blocks.

Each learning block consists of two parts, as shown in
Fig.3. The first part is a group of 3 × 3 convolution layers
that focus on capturing local correlations. We use four con-
volution layers and each of them is followed by batch nor-
malization [Ioffe and Szegedy, 2015]. Around each of the
two convolution layers, we employ a skip connection [He et
al., 2016]. The second is the DAB which focuses on captur-
ing long-range correlations and we will describe it in Section
3.2. The output features of each learning block are denoted
by Si for i ∈ {1, 2, ..., N} where N is an adjustable hyper-
parameter. They have the same dimension as S0.

After SN is produced by the last learning block, it is fed
into the head layer to predict mask M ∈ T × F ×Cm. Here,
Cm is the number of channels. The enhanced spectrogram
Sout in the latent domain can be calculated by the following
generic function:

Sout = f(M)� g(Sin) (1)

In our framework, we use the training target in [Choi et al.,
2019]. So the head layer is a 1 × 1 convolution layer with
Cm = 2. f(M) = tanh(|M |)∗M/|M |, g(Sin) = Sin and�
indicates complex multiplication. Finally, Sout is fed into the
decoder layer to produce the enhanced time-domain signal
Rout ∈ R. Logarithmic MSE loss is computed between the
original clean waveform and Rout.

In conventional wisdom, the encoder and the decoder need
to be paired. Although Conv-TasNet [Luo and Mesgarani,
2019] has shown that the decoder does not have to perform
the exact inverse operation of the encoder, we use the fol-
lowing method to ensure the convergence of our network. In
short, the network structure of the learnable decoder is de-
signed to be exactly the same as the convolutional implemen-
tation of ISTFT. Specifically, the learnable decoder is a 1D
transposed convolution layer whose kernel size and stride be-
ing the window length and hop size in the STFT. As such,
TFT-Net becomes a fully end-to-end learnable system.
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Figure 4: Illustration of DAB. The main idea is to apply attention
along the time and the frequency axes in parallel, before combining
them with the original features. In SDAB, FC layers are used to
learn sample-independent correlations.

3.2 Dual-path Attention Block

Long-range correlations exist along both the time and the fre-
quency axes in a T-F spectrogram. It is quite obvious that au-
dio signals, as time series, contain global correlations along
the time axis. Along the frequency axis, there are well-known
harmonic correlations. Although it is possible to treat the
spectrogram as a 2D image and learn the correlations between
every two pixels in the 2-D image, this is computationally too
costly. DAB is designed to be a light-weight solution to cap-
ture the long-range correlations exhibited in T-F spectrogram.

As Fig.4 shows, we decompose the 2D T-F spectrogram
(with C channels) into two stacks of 1D signals, one along
the frequency axis and the other along the time axis. When
the input feature dimension is T × F ×C, it can be reshaped
into TC vectors with dimension 1 × F or FC vectors with
dimension 1 × T . Then, attention is applied along each axis
in parallel. The attended features and the original features are
then combined to generate the final output.

Ideally, we can use self-attention [Vaswani et al., 2017]
to learn the attention map for each sample. But this might
not be necessary. In classic speech enhancement literature
[Scalart and FILHO, 1996], a uniform non-linear function
is applied to the frequency axis to regenerate harmonics. It
also matches with the intuition that harmonic correlations
are sample-independent. On the time axis, when calculat-
ing Signal-to-Noise Ratio (SNR), the same set of parameters
in recursive relation are used, which suggests that temporal
correlation is time-invariant. Based on this understanding,
we propose a sample-independent DAB, or SDAB. Specif-
ically, the attention layer on F and T are implemented by
fully-connected (FC) layers. Along the time path, the in-
put and output dimensions of FC layers are T . Along the
frequency path, the input and output dimensions of FC lay-
ers are F . FC layer is a kind of attention operation that uses
learned weights. In other words, the relationship between ev-
ery two elements is not a function of the input data. So using
a FC layer is equivalent to learning a sample-independent
correlations for all the training data. SDAB further reduces
the computational complexity of the proposed network. In
the experiment section, we will show through ablation study
that SDAB performs almost as good as a sample-dependent
self-attention.

4 Experiments
4.1 Datasets
AVSpeech+AudioSet
Audios from the AVSpeech dataset are used as clean speech.
It is a large dataset proposed by [Ephrat et al., 2018]. It is
collected from YouTube, containing 4700 hours of video seg-
ments with approximately 150,000 distinct speakers, span-
ning a wide variety of people and languages. The noisy
speech is a mixture of the above clean speech segments with
AudioSet [Gemmeke et al., 2017] which contains a total of
more than 1.7 million 10-second segments of 526 kinds of
noise. The noisy speech is synthesized by a weighted lin-
ear combination of speech segments and noise segments:
Mixi = Speechj + 0.3 × Noisek, where Speechj and
Noisek are 3-second segments randomly sampled from the
speech and noise dataset. In our experiments, 100k segments
are randomly sampled from the AVSpeech dataset and the
“Balanced Train” part of AudioSet are used to synthesize the
training set, while the validation set is the same as the one
used in [Ephrat et al., 2018], synthesized by the test part of
AVSpeech dataset and the evaluation part of AudioSet.

Voice Bank+DEMAND
This is an open dataset proposed by [Valentini-Botinhao et
al., 2016]. Speeches of 30 speakers selected from Voice Bank
corpus [Veaux et al., 2013] are used as clean speech: 28 are
included in the training set and 2 are in the validation set. The
noisy speech is synthesized using a mixture of clean speech
with the DEMAND dataset [Thiemann et al., 2013]. A total
of 40 different noise conditions are considered in the training
set and 20 different conditions are considered in the test set.
Finally, the training and test set contain 11572 and 824 noisy-
clean speech pairs, respectively. Both speakers and noise con-
ditions in the test set are totally unseen by the training set.

4.2 Evaluation Metrics
We mainly use SDR [Vincent et al., 2006] and PESQ (per-
ceptual evaluation of speech quality) in the ablation study.
We further adopt CSIG [Hu and Loizou, 2007], CBAK [Hu
and Loizou, 2007], COVL [Hu and Loizou, 2007], and SSNR
(Segmental SNR) in the system comparison. For all the met-
rics, a higher value means a better result.

4.3 Implementation Details
Our method is implemented in Pytorch. All audios are resam-
pled to 16kHz. STFT is computed using a Hann window of
length 25ms, hop length of 10ms, and FFT size of 512, result-
ing in an input audio feature of 301 × 257 × 2 scalars. Con-
volution operation with zero padding, dilation=1 and stride=1
is used, making sure the input and output of the features are
the same size. The number of channels for each convolution
layer is 96. ReLU activations follow all network layers ex-
cept for head layer (mask). Batch normalization [Ioffe and
Szegedy, 2015] is performed after all convolutional layers.

When training model with the T-F domain framework,
we use the training target and loss function in [Yin et al.,
2019]. When training model with the cross-domain frame-
work (TFT-Net), the training target in [Choi et al., 2019] is
used and the loss function is logarithmic MSE.
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(a). Learned weights of SDAB along frequency path.

(b). Learned weights of SDAB along time path.

Figure 5: Illustrations of learned weights of SDAB along frequency
path and time path. From left to right is the 1st, 4th and 6th learned
weights of SDAB. There are six SDABs in total.

4.4 Ablation Study
In the ablation study, all the networks are trained with the
same random seed. Adam optimizer with a fixed learning
rate of 0.0002 is used and the batch size is 8. Mean SDR and
PESQ are used on the test dataset as the evaluation metric.

One-path Attention versus Dual-path Attention
SDAB operates on the T-F domain spectrogram, so the T-F
domain framework is used when we study SDAB. Besides,
two architectures are used to demonstrate the effectiveness
of SDAB including TF-2stream and TF-1stream. Here, TF-
2stream represents PHASEN without FTB [Yin et al., 2019].
TF-1stream represents our TFT-Net without decoder and six
learning blocks are used. Training target and loss function are
the same as PHASEN.

Table 1 aims to demonstrate the effectiveness of dual-path
attention. Based on TF-2stream, when dual-path attention is
applied, 0.57dB and 0.05 gain on SDR and PESQ respectively
are observed, compared to one-path attention only along fre-
quency by using FTB in the original PHASEN. Based on TF-
1stream, significant gains on SDR and PESQ are observed
when dual-path attention is applied. This large gain indicates
the necessity of attention along both axes.

Sample-dependent versus Sample-independent
Next, we explore the effectiveness of sample-independent
dual-path attention. Sample-dependent attention is imple-
mented by using the self-attention mechanism [Vaswani et
al., 2017]. The results are shown in Table 2. Based on the
TF-2stream architecture, we find that sample-independent at-
tention achieves almost the same results as sample-dependent
attention in terms of SDR and PESQ. Based on the TF-
1stream architecture, the results of sample-independent dual-
path attention are a little better than the sample-dependent
one. Therefore, we can conclude that sample-independent

Method AttnF AttnT SDR(dB) PESQ
16.10 3.31

TF-2stream
√

(*) 16.84 3.40√ √
17.41 3.45
13.88 2.99

TF-1stream
√

15.57 3.27√
16.15 3.22√ √
17.56 3.46

Table 1: Ablation study on AVSpeech + AudioSet. TF-2stream rep-
resents PHASEN without FTB [Yin et al., 2019]. TF-1stream repre-
sents TFT-Net method without decoder layer and six learning blocks
are used. * represents applying attention along frequency by using
FTB. Without *, means applying attention by using fc layer.

Method Sample-dependent Sample-independent
SDR PESQ SDR PESQ

TF-2stream 17.45 3.41 17.41 3.41
TF-1stream 17.16 3.42 17.56 3.46

Table 2: Ablation study on AVSpeech + AudioSet. Sample-
dependent attention is implemented by using self-attention [Vaswani
et al., 2017]

attention will not negatively influence the accuracy of the
model. On the other hand, the sample-independent attention
mechanism within the SDAB is highly computationally effi-
cient. Specifically, given an input feature map with a size of
301 × 257 × 96, the FLOPs of SDAB is 6.28B which is sig-
nificantly smaller than the DAB’s 14.7B FLOPs. Besides, the
memory cost of SDAB is also less than DAB, since no big
matrix multiplication is needed.

In order to better understand the attention mechanism, we
visualize the learned weights of SDABs. The network we
used for analysis has six learning blocks, so there are six
pairs of attention weights. Fig.5 shows three pairs of them,
taken from the first, the fourth, and the sixth SDABs. The
attention weights along both frequency and time axis show
a local-global-local pattern. In the first SDAB, we observe
large weights on the diagonal, showing that more attention is
paid to local components. Large weights also appear in other
locations, but in a more random way. In the fourth DAB,
large weights are scattered around in both frequency and time
attention maps. But divergent lines can be observed in the
frequency attention map, which are consistent with the har-
monic correlations observed across the frequencies. In the
last SDAB, weights are more concentrated on the diagonal
than in the first SDAB, showing that global correlations have
been successfully utilized.

Method SDR(dB) PESQ
TF-1stream 17.56 3.46
TFT-Net* 18.14 3.40
TFT-Net 18.40 3.41

Table 3: Ablation study on AVSpeech + AudioSet. TFT-Net* repre-
sents replacing learnable decoder layer by ISTFT
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# of learning blocks SDR(dB) PESQ
3 17.63 3.30
6 18.40 3.41
9 18.54 3.42

Table 4: Ablation study on AVSpeech + AudioSet.

Cross-domain Framework
Table 3 shows the results of training the network with differ-
ent frameworks. TF-1stream represents training the network
with the T-F domain framework. TFT-Net represents train-
ing the network with the proposed cross domain framework.
Compared to TF-1stream, TFT-Net obtains 0.84dB gain on
SDR and a decrease of 0.05 on PESQ which are consistent
with our expectation, since logarithmic MSE is used as the
training criteria which is equivalent to optimizing the SDR to
a certain extent. This verifies the effectiveness of the cross do-
main framework. We also try replacing the learnable decoder
layer by ISTFT (TFT-Net*). When comparing it to TFT-Net,
there are 0.26dB and 0.01 loss on SDR and PESQ respec-
tively which also verifies the effectiveness of the proposed
framework.

The Number of Learning Blocks
In order to trade-off accuracy and complexity, we also train
the model with different number of learning blocks. Table 4
shows the results. It is consistent with our expectation that the
larger the model is, the better the result is. Compared to the
case of three learning blocks, when the block number is six,
we can obtain 0.77dB and 0.11 gain on SDR and PESQ re-
spectively. When compared to six learning blocks, nine learn-
ing blocks only obtain slight improvement. Therefore, for a
good trade-off between speed and accuracy, we use six learn-
ing blocks as our final proposed model to do comparisions to
other state-of-the-art works.

4.5 Comparision to State-of-the-Arts
AVSpeech + AudioSet
We compare our method with three other recent methods,
Conv-TasNet [Luo and Mesgarani, 2019], ”Google” [Ephrat
et al., 2018], and PHASEN [Yin et al., 2019]. Our networks
are trained with Adam optimizer. Learning rate is 0.0002 and
batch size is 8. The results in Table 5 show that our method
outperforms all these three methods. Note that we use the
same training data as PHASEN which is only a small fraction
(100k/2.4M) of that used by “Google”. Such superior perfor-
mance on a large dataset demonstrates that our method can
be generalized to various speakers and various kinds of noisy
environments.

Voice Bank + DEMAND
In order to fairly compare the proposed method with many
other methods, we also train our model on this small but
commonly-used dataset. In this experiment, our networks are
trained for 40 epochs, with Adam optimizer. Learning rate is
0.0005 and batch size is 8.

Table 6 shows the comparision results. Our TFT-Net
achieves the best results on SSNR among all the methods
listed. This is consistent with our expectation since our

Method SDR(dB) PESQ
Conv-TasNet 14.19 2.93
Google(5M step, 2.4M speech) 16.00 -
PHASEN(1M step, 100k speech) 16.84 3.40
TFT-Net(1.5M step, 100k speech) 18.40 3.41

Table 5: System comparison on AVSpeech + AudioSet

Method SSNR PESQ CSIG CBAK COVL
Noise 1.68 1.97 3.35 2.44 2.63
SEGAN 7.73 2.16 3.48 2.94 2.80
Wavenet - - 3.62 3.23 2.98
DFL - - 3.86 3.33 3.22
MMSE-GAN - 2.53 3.80 3.12 3.14
PHASEN 10.18 2.99 4.21 3.55 3.62
MDPhD 10.22 2.70 3.85 3.39 3.27
TFT-Net 10.63 2.75 3.93 3.44 3.34

Table 6: System comparison on Voice Bank + DEMAND

method uses logarithmic MSE as the training criteria which is
equivalent to optimizing the SSNR to a certain extent. Com-
pared to time-domain methods like SEGAN [Pascual et al.,
2017], Wavenet [Rethage et al., 2018], and DFL [Germain et
al., 2018], our method outperforms them on all the five met-
rics. This demonstrates the advantages of using information
of the T-F domain. Compared to T-F domain methods like
MMSE-GAN [Soni et al., 2018], PHASEN [Yin et al., 2019],
our method does not get best results on the other four met-
rics. This maybe because these metrics depend on the magni-
tude spectrogram of speech and TF-domain methods optimize
the spectrogram directly while our method uses time-domain
signal as supervision. Besides, authors of Conv-TasNet have
given very detailed explanation of why time-domain methods
get a lower PESQ score but may still excel in (real subjec-
tive) MOS evaluation. MDPhD [Kim et al., 2018] performs
processing the two domains in a cascaded way and the input
signal is separately processed by two networks. Our method
outperforms it on all the metrics indicating the superiority of
our fully end-to-end learnable system in taking advantages of
both domains.

5 Conclusion
In this paper, we propose a cross-domain framework TFT-
Net which takes advantage of the knowledge we have about
spectrogram and avoids some of the drawbacks that T-F-
domain methods have been suffering from. We also propose a
novel long-range correlations learning module SDAB which
is very lightweight and effective. Through experiments on
two datasets, we show the superiority of the proposed method
over prior arts.

In the near future, we plan to speed up our model and apply
it to low-latency applications. Another important direction is
to study how different training targets and loss functions will
influence the proposed method. Finally, we plan to extend
the proposed method to various audio-related tasks such as
dereverberation.
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