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Abstract
The recent success of Distant Supervision (DS)
brings abundant labeled data for the task of fine-
grained entity typing (FET) without human annota-
tion. However, the heuristically generated labels in-
evitably bring a significant distribution gap, namely
dataset shift, between the distantly labeled train-
ing set and the manually curated test set. Con-
siderable efforts have been made to alleviate this
problem from the label perspective by either intel-
ligently denoising the training labels, or designing
noise-aware loss functions. Despite their progress,
the dataset shift can hardly be eliminated com-
pletely. In this work, complementary to the label
perspective, we reconsider this problem from the
model perspective: Can we learn a more robust typ-
ing model with the existence of dataset shift? To
this end, we propose a novel regularization mod-
ule based on virtual adversarial training (VAT). The
proposed approach first uses a self-paced sample
selection function to select suitable samples for
VAT, then constructs virtual adversarial perturba-
tions based on the selected samples, and finally
regularizes the model to be robust to such pertur-
bations. Experiments on two benchmarks demon-
strate the effectiveness of the proposed method,
with an average 3.8%, 2.5% and 3.2% improvement
in accuracy, Macro F1 and Micro F1 respectively
compared to the next best method.

1 Introduction
Fine-grained entity typing (FET) aims at assigning types to
mentions of entities based on thier conext. It is an impor-
tant task as the type information provided by it is useful for
many downstream tasks, such as entity linking and event ex-
traction [Yang et al., 2019; Ding et al., 2015]. State-of-the-art
FET systems usually utilize distant supervision (DS) to fetch
abundant training data by first linking a target mention to an
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Figure 1: An hypothetical demonstration of dataset shift. The X-
axis indicates the parameters of the model and Y-axis indicates the
value of loss function. ∆s denotes the dataset shift between training
set and test set. θ∗F and θS are the parameters where training loss
achieves flat minumum and sharp minimum respectively. ∆L is the
loss gap between training set and test set.

existing entity in a knowledge base (KB) and then assigning
all possible types of the entity to the target mention [Onoe
and Durrett, 2019; Chen et al., 2019]. Despite of the con-
venience in reducing human annotation, DS inevitably intro-
duces noises to the heuristically generated labels. For exam-
ple, the mention Shelton in the sentence “The telephone num-
ber for the charity in Shelton, Conn., has been disconnected”
is assigned with types {person, state province} by DS, while
only {state province} is the correct label for manual label-
ing. Such inconsistency brings a significant distribution gap,
namely dataset shift [Moreno-Torres et al., 2012], between
the distantly labeled training set and the manually curated test
set. Figure 1 is a hypothetical demonstration of the dataset
shift problem, where ∆s denotes the dataset shift. As shown
in Figure 1, due to the existence of dataset shift, even though
we achieve a local minimum of loss function on training set,
the loss on test set can still be large.

With aware of the dataset shift problem, prior arts attempt
to alleviate this problem from the label perspective can be
briefly summaried into two categories: (1) the first kind of
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“denoising” models aim to directly model the label noise
and denoise the training labels. For instance, [Gillick et al.,
2014] uses heuristic rules to filter out noisy labels, [Ren et
al., 2016b] uses the prior knowledge of KB and the partial
loss based label embedding to remove noisy labels, [Onoe
and Durrett, 2019] relabels and filters out noisy data with a
neural network. (2) the other kind of methods try to infer the
correct labels dynamically and use the inferred labels to di-
rect the model during the training phase. For example, [Xu
and Barbosa, 2018] proposes a variant of partial label loss to
handle noisy labels and [Chen et al., 2019] proposes to infer
the correct labels with a graph-based algorithm. Actually, all
the above denoising methods are dedicated to reduce the gap
of joint distribution P (y, x) between the training set and test
set, that is, the dataset shift ∆s in Figure 1. However, since
it is impossible to completely eliminate the datataset shift in
distantly-supervised FET, the test loss can still be large even
we achieve the minimum loss on the training set. Specifi-
cally, the denoising methods try to get low test loss by solv-
ing argminθ f(∆s|θ) ∗ f(Ltrain|θ). As is shown in Figure
1, even though the model achieves the minimum loss on the
training set at θs and the dataset shift is reduced to a small
value ∆s, the test loss can still be large.

In this work, complementary to the label perspective, we
reconsider this problem from the model perspective: Can we
learn a more robust typing model with the existence of dataset
shift? As is shown in Figure 1, when dataset shift ∆s 6= 0 is
fixed, test loss not only depends on training loss f(Ltrain|θ)
but also depends on the gap ∆L between test loss and train-
ing loss. Therefore, we propose to learn a robust typing model
by solving argminθ f(∆L|∆s, θ) ∗ f(∆s|θ) ∗ f(Ltrain|θ),
where f(∆L|∆s, θ) is a measure of the generalization abil-
ity and robustness to dataset shift of models. As is shown in
Figure 1 and pointed out in [Keskar et al., 2016], the vulnera-
bility of the models to dataset shift (i.e., large f(∆L|∆s, θ))
is due to the fact that models tend to converge to sharp min-
imizers. Based on this observation, we propose to improve
the robustness of typing models to dataset shift with a variant
of VAT. Specifically, we first use a self-paced sample selec-
tion function to select suitable samples for VAT, then con-
struct virtual adversarial perturbations masked by the noisy
labels for selected smaples, finally regularize the model to be
robust to such perturbations. Since the construct perturba-
tions can also be seen as a series of dataset shifts, the model
is regularized to be robust to dataset shifts and the general-
ization ability of the model is finally improved. Since this
process is orthogonal to denoising process, both our model
and denoising models can serve as plug-and-play modules to
enhance existing neural typing systems in a complementary
way. Experiments on two benchmarks shows the effective-
ness of the proposed method, with average 3.8%, 2.5% and
3.2% improvements in accuracy, macro F1 and Micro F1 re-
spectively compared to next best method.

The major contributions of this paper are summarized as fol-
lows:

1. This work provides a new perspective on the problems
caused by distant supervision for fine-grained entity typ-
ing and explores a new way to improve FET systems by

regularizing the model to be robust to dataset shift.

2. A novel regularization module for FET is proposed,
where a variant of VAT and a sample selection function
is proposed to control the robustness of typing model.

3. Extensive experiments on standard benchmarks with
two different base models demonstrate that our method
brings stable and significant improvement over the base
models. Finally, the proposed method consistently out-
performs several state-of-the-art (SOTA) FET systems
by a significant margin.

2 Related Work
Fine-grained entity typing was first proposed by [Ling and
Weld, 2012] who used distant supervision to induce a rel-
atively large training corpus for FET. Due to the context-
agnostic nature of the distant supervision, the training data
labeled in this way is inevitably noisy by assigning mentions
with the types that cannot be inferred from the context of the
mentions. Some works ignore such noise: [Yogatama et al.,
2015] proposed to jointly learn feature and type representa-
tions utilizing embedding techniques and [Lin and Ji, 2019]
proposed to use a hybrid type classifier to capture latent type
interdependency.

However, the major challenge of FET remains the prob-
lems posed by the noisy labels of the training corpus. With
respect to the label noise, [Gillick et al., 2014] proposed con-
text dependent FET and cleaned the noisy labels with heuris-
tics, which suffers from losing training data. To mine the
information in noisy labels, [Ren et al., 2016a] proposed par-
tial label loss (PLL) to distinguish the impact of clean data
and noisy data. [Xu and Barbosa, 2018] proposed a variant
of PLL. From data perspective, [Ren et al., 2016b] proposed
to reduce label noise using partial-label embedding, which
brings a significant improvement to FET and can be viewed as
a milestone for FET. More recently, [Onoe and Durrett, 2019]
further proposed to reduce the label noise of the Ontonotes
dataset augmented by [Choi et al., 2018] via relabeling and
filtering out noisy data, which is the SOTA FET system on
the Ontonotes dataset before this work. From data consis-
tency perspective, [Chen et al., 2019] proposed Compact La-
tent Space Clustering (CLSC) method to regularize the rep-
resentation of mentions with the same types to form compact
clusters, which achieves a great success in FET. Instead of
just trying to reduce the noise in the dataset, this work is de-
voted to train a robust model with the noisy dataset and de-
noise the training data jointly. In this work, we propose a
regularization based framework to enhance the robustness of
the model to dataset shift utilizing a variant of VAT.

3 Task Formulation
The task of FET is to uncover the entity type information for
entity mentions (i.e., a sequence of tokens representing the
appearance of an entity) in natural language sentences [Ren
et al., 2016a]. The task takes a corpus D labeled with a pre-
defined entity type hierarchy Y as input and predicts the most
suitable type-path in Y for each entity mention from the test
set Dt based on the mention’s context.
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Figure 2: The overall framework of our method.

Because manually labeling a large training set for FET
is too expensive and error-prone, current entity typing sys-
tems annotate the training corpus utilizing DS. Specifically,
the entity typing systems first detect mentions mi and link
them to one or more entity ei in a KB, and then assign
the entity types Yi of ei in KB to mi as candidate types.
Formally, a labeled training corpus can be represented as a
set of triples D = {(mi, ci, Yi)}, where mi is the i-th de-
tected mention, ci is the context of mi and Yi is the set of
candidate types of mi. We denote the all terminal types
for each type path in Yi as target type set Y ti (e.g. for
Yi = {person, doctor, artist}, Y ti = {doctor, artist}).
This setting is also adopted by [Xu and Barbosa, 2018;
Chen et al., 2019].

Note that candidate types in Yi can form multiple type
paths, which may cause out-of-context noise (i.e. Yi contains
type paths that are irrelevant to the mention mi in context ci).
We treat samples labeled with single type path (i.e. triples
(mi, ci, Yi) in D whose corresponding |Y ti | = 1) as clean
data and others as noisy data. The major challenge of DS
entity typing systems is to utilize both the clean data and the
noisy data to produce a high-performance typing classifier.

4 Methodology
4.1 Overview
Our method is mainly based on the following assumption: the
model should predict smoothly around the mention points in
the feature space because mention points close to each other
in feature space have similar context. For this assumption,
we apply masked VAT to construct gradient-based local per-
turbation in the feature space for mentions and regularize the
classifier to be robust to such kind of perturbation, so that the
model’s prediction is smoothed.

As demonstrated in Figure 2, our model mainly consists of
three parts: (1) a feature extractor to project mentions with
their contexts to the feature space, (2) a self-paced sample
selection function to select some noisy samples for VAT, (3)
and a classifier regularized by the VAT loss. All the clean
data is used for adversarial training, but some noisy data will
be select for VAT. Specifically, for the i-th sample (ei, ci, Y

t
i )

in the training set, the mention with its context (mi, ci) is
transformed into a vector zi in the feature space using a fea-
ture extractor F (z|(mi, ci), θf ) parameterized by θf . Then
the posterior p(y | zi, θC) will be given by a classifier C pa-

rameterized by θC . After that a self-paced filter function Γ is
applied to decide whether the sample will be used for VAT.

4.2 Feature Extractors and Classifier
We have explored two different feature extractors, namely
NFETC [Xu and Barbosa, 2018] and BERT [Devlin et al.,
2019].

NFETC. For fair comparison, We first adopt NFETC as the
feature extractor, which is the same feature extractor as in [Xu
and Barbosa, 2018] and [Chen et al., 2019]. In shot, NFETC
can be summarized as follows: (1) the word embedding of
NFETC is the concatenation of Glove [Pennington et al.,
2014] embedding and word position embedding; (2) the men-
tion representation umi of NFETC is the concatenation of the
average of the embedding sequence of mi and the last hidden
state of a LSTM over mi; (3) the context representation uci
is the result of a word-level attention over the hidden states of
a bidirectional LSTM on the context; (4) the final representa-
tion of the mention with the context is zi = FN([umi

, uci ]),
where FN is a feedforward neural network of n layers.

BERT. To further explore the potential of our method,
we have also performed experiments using the popular pre-
trained language model BERT as a new baseline for fine-
grained entity typing. Given a mention mi = (wl, ..., wr)
with its context ci = (w1, ..., wL), we simply feed the
sequence ([CLS], ci, [SEP ],mi, [SEP ]) to BERT encoder
and use the output of [CLS] token as the representation of
the mention with its context zi.

Classifier. With the representation zi of a mention with
its context, we employ a softmax classifier parameterized
by θC = [WC , bC ] to get the posterior: P (y|zi) =
softmax(Wczi + bC), where WC ∈ RK×dz can be treated
as the type embeddings, bc ∈ Rdz is the type bias, where K
is the number of types. The predicted type ŷ is the type with
maximum posterior probability: ŷ = arg maxy P (y|zi).

4.3 Masked Virtual Adversarial Training for FET
The basic idea of VAT is to find the adversarial perturbation
radv (i.e. the perturbation on the input that lead to the most
different posterior from the original posterior) and regular-
ize the model to be robust to such perturbation, so that the
prediction of the model is smoothed. In this work, we pro-
pose to improve distantly-supervised FET which is a partially
labeled problem with a masked VAT. The process of apply-
ing masked VAT to FET can be decomposed into the follow-
ing three parts: (1) sample selection; (2) masked adversarial
perturbation generation; (3) local distributional smoothness
(LDS) regularization. The details of the process are intro-
duced in following sections.

Sample Selection
In the early stage of training, the model is prone to give wrong
prediction for a mention, in which case the use of VAT will
make the classifier further fit the wrong result. To alleviate
this problem, we design a self-paced sample selection func-
tion to select some samples for VAT, on which the model is
not confident in its predictions. Specifically, given a sample
(mi, ci, Y

t
i ), we first find all the types Yi in the type path
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terminating at Y ti , then convert Yi to an type index vector
Ỹi ∈ RK , where Ỹij = 1 if the j-th type is in Yi, otherwise
Ỹij = 0. After that, we could get the posterior P (y|(mi, ci))
using the feature extractor and the classifier. With the type in-
dex vector Ỹi and the posterior P (y|(mi, ci)), we define the
self-paced filter function Γ as following:

Γ(P (y|(mi, ci), Ỹi = 1(arg max
y∈Ỹi

P (y|(mi, ci)) > τi) (1)

where 1 is an indicator function, τi = sigmoid(β(|Ỹi| − η))
is a real value indicating how noisy the i-th sample is, β
and η are two hyper-parameters. Only when a sample’s
Γ(P (y|(mi, ci), Ỹi) = 1, the sample will be used for VAT.

Perturbation Generation and Regularization
Adversarial training. Since our method is closely related
to adversarial training (AT), we first introduce the process of
AT. Given the representation zi of a mention mi with its con-
text ci, and a classifier parameterized by θC , AT adds the fol-
lowing regularization term to the objective function:

LAT = D(q(y|zi), p(y|zi + radv, θC)) (2)
where radv = arg maxr,||r||<=εD(q(y|zi), p(y|zi + r, θC)),
q(y|zi) is the ground truth, radv is the perturbation on the rep-
resentation zi, ε is the maximum perturbation step size which
is a hyper-parameter, D(q, p) is a non-negative function mea-
suring the divergence between two distributions q and p, and
in practice we use KL divergence. Since exact minimiza-
tion with respect to r is intractable for many neural networks,
[Goodfellow et al., 2014] proposed to approximate radv using
the Fast Gradient Signed Method (FGSM):

radv ≈ εsign(∇ziD(q(y|zi), p(y|zi, θC))) (3)
where sign() is the sign function.
Masked virtual adversarial training. Since some type in-
formation is unreachable in semi-supervised learning, [Miy-
ato et al., 2018] proposed using the posterior p(y|zi; θC)
given by classifier as an estimation of the ground truth q(y|zi)
and defined the local distributional smoothness (LDS) to be
a measure of the local smoothness of the current classifier at
each data point zi:

LDS(zi, θC) = D(p(y|zi; θ̂C), p(y|zi + rv−adv; θ)) (4)

where rv−adv = arg maxr,||r||<=εD(p(y|zi; θ̂C), p(y|zi +

r; θ̂)), θ̂C denotes the current parameters of the classifier. For
the task of FET which is a partially labeled problem, we pro-
pose to use masked VAT to further utilize the noisy labels.
Given the representation zi of a sample (mi, ci, Y

t
i ), we first

compute the type index vector Ỹi, then apply the modified
virtual adversarial loss:

Lvat,i = D(p̃(y|zi; θ̂C), p̃(y|zi + rv−adv; θ)) (5)

where p̃(y|∗; θ̂C) = softmax(log(Ỹi ⊗ (ŴC ∗ +b̂C))),
rv−adv = arg maxr,||r||<=εD(p̃(y|zi; θ̂C), p̃(y|zi + r; θ̂)),
p̃(y|zi; θ̂C) is the posterior masked by all candidate types
Yi, and ⊗ denotes element-wise product. The intuition of
masked VAT is to prevent the model from strengthening to-
tally wrong predictions and to encourage the model to distin-
guish between the noisy candidate types.

Dataset Ontonotes BBN
#types 89 47
Type hierarchy depth 3 2
#mentions-train 253241 86078
#mentions-test 8963 12845
%clean mentions-train 73.13 75.92
%clean mentions-test 94.00 100

Table 1: Dataset statistics.

Methods Strict Acc. Macro F1 Micro F1
BERTClean 66.1 82.1 76.4
BERTFull 66.7 82.7 77.1
BERTSS 67.3 83.2 77.3
BERT-VATClean 70.1 84.1 78.3
BERT-VATFull 69.8 84.6 78.8
BERT-VATSS 69.9 84.9 79.2

Table 2: Ablation study of individual components on the Ontonotes
test set. The subscripts Clean, Full and SS indicate the model is
trained with clean data, full training data and sample selection func-
tion respectively.

Solving virtual adversarial perturbations. The evalua-
tion of rv−adv cannot be performed using Eq.(3) because the
gradient of D(p̃(y|zi; θ̂C), p̃(y|zi + r; θ̂)) with respect to r
is always 0 at r = 0. To solve this problem, [Miyato et al.,
2018] proposed to approximate rv−adv using the second or-
der Taylor expansion ofD and solve the rv−adv via the power
iteration method. Specifically, we can approximate rv−adv
by repeatedly applying the following update nt times (nt is a
hyper-parameter):

rv−adv ← ε∇rD(p̃(y|zi; θ̂C), p̃(y|zi + r; θ̂)) (6)

where the sign v means the unit vector of v.

4.4 Overall Objective
The final loss function consists of two parts: the supervision
loss Lsup and the VAT loss Lvat. Given a batch of sam-
ples {(mi, ci, Y

t
i )}Bi=1, we use the modified version of partial

label loss for softmax classifier to calculate Lsup: Lsup =
1
B

∑B
i=1

∑K
k=1 yiklog(P (yi|zi; θC))k, where K is the num-

ber of target types and B is the batch size. Besides, the corre-
sponding VAT loss is Lvat = 1

B

∑B
i=1 Γ(P (y|(mi, ci), Ỹi) ∗

Lvat,i. So the final loss function is Lfinal = Lsup + λvat ×
Lvat, where λvat is a hyper-parameter controlling the influ-
ence of VAT.

5 Experiments
5.1 Dataset
We evaluate out method on two benchmarks: Ontonotes and
BBN. Statistics of the datasets are shown in Table 1.

Ontonotes. The Ontonotes dataset is derived from the
Newswire part of Ontonotes corpus and annotated by [Gillick
et al., 2014]. The training set of Ontonotes is annotated utiliz-
ing DBpedia spotlight, while the test set is manually labeled.
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Methods Ontonotes BBN

Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1

NFGEC+LME [Xin et al., 2018] 52.9 72.4 65.2 - - -
UFET [Choi et al., 2018] 61.6 77.3 71.8 - - -
LABELGCN [Xiong et al., 2019] 61.6 77.3 71.8 - - -
NFETC-CLSC [Chen et al., 2019] 62.8 77.8 72 74.7 80.7 80.5
FET [Lin and Ji, 2019] 63.8 82.9 77.3 55.9 79.3 78.1

NFETC [Xu and Barbosa, 2018] 60.2 76.4 70.2 73.9 78.8 79.4
NFETC-VAT 63.8 78.7 73 76.7 80.7 80.9
D-NFETC-VAT 66.5 83.4 77.5 - - -

DenoiseET [Onoe and Durrett, 2019] 64.9 84.5 79.2 - - -
BERT-VAT 69.9 84.9 79.2 75.9 83.0 83.8
D-BERT-VAT 68.9 86.4 81.2 - - -

Table 3: Performance comparison of FET systems. The prefix “D” indicates the model is trained on the augumented Ontonotes dataset offered
by DenoiseET.

BBN. The BBN dataset is derived from 2,311 Wall Street
Journal articles. We use the version processed by [Ren et al.,
2016a].

In this work, we use the preprocessed dataset provided
by [Chen et al., 2019; Onoe and Durrett, 2019].

5.2 Compared Methods

We compare the proposed method with several SOTA FET
systems: NFGEC+LME [Xin et al., 2018] measures the
compatibility between context sentences and labels utilizing
a language model; NFETC [Xu and Barbosa, 2018] models
type hierarchy with the hierarchical loss function; NFETC-
CLSC [Chen et al., 2019] compresses the clusters in the la-
tent space with a manifold regularization loss; UFET [Choi
et al., 2018] augments the Ontonotes training set with new
sources of distant supervision; LABELGCN [Xiong et al.,
2019] introduces a label-relational inductive bias with a graph
propagation layer; FET [Lin and Ji, 2019] models type inter-
dependency with a hybrid type classifier; DenoiseET [Onoe
and Durrett, 2019] augments the Ontonotes training set and
reduces the label noise with a filter and a relabel function;
NFETC-VAT and BERT-VAT are the proposed models us-
ing VAT to regularize the classifiers. The methods with prefix
“D” indicates the model is trained on Ontonotes dataset de-
noised by DenoiseET, which can be seen as the combination
of our method with DenoiseET.

5.3 Evaluation Settings

For evaluation metrics, we evaluate the performance by strict
accuracy, loose macro F-score and loose micro F-score,
which is the most widely used evaluation setting for FET sys-
tems [Ling and Weld, 2012].

For BERT feature extractor, we use the pretrained BERT-
Base, cased model with a step size of 2e-5 and batch size 32.
For NFETC feature extractor, we follow the setting of [Xu
and Barbosa, 2018; Chen et al., 2019] using the 300 dimen-
sional pretrained GloVe [Pennington et al., 2014] word vec-
tors.

5.4 Performance Comparison and Analysis
Table 3 shows the performance comparison between the two
VAT improved base models and several SOTA FET systems.
Note that the proposed method can be further improved when
combining with DenoiseET by training the model on the aug-
mented and denoised Ontonotes dataset. On both bench-
marks, the proposed method consistently outperforms other
methods by a significant margin on all three metrics.

To evaluate the influence of individual components of our
method, an ablation study is conducted as shown in Table 2.
To further evaluate the proposed method, we conduct another
ablation study, where several variants of our method are eval-
uated, and the result is shown in Table 4. Our analysis of the
results in Table 4 is as following.

What if we use adversarial training. By comparing the
base models with AT improved models, we can see that AT
improves the performance of FET systems. Although AT
only regularize model to be robust to perturbations around
clean data, it can still improve the generalization ability of
models. Besides, with the observation that VAT improved
models consistently outperform AT improved models, we
cloud draw a conclusion that masked VAT makes full use of
noisy data to improve FET systems.

Why not generate perturbation in input space. We per-
formed the experiment of generating perturbations on word
embedding (NFETC-VAT*), and there is an improvement
over the base model NFETC. But performing VAT in such
way is inefficient, because it requires much more computa-
tional resources than constructing perturbations in the feature
space. Besides, the performance gap between NFETC-VAT*
and NFETC-VAT maybe because of the accumulation of a
series of perturbations on word embedding may cause a large
drift in semantics of the sentences.

Can masked VAT be effectively combined with different
denoising methods. We combined masked VAT with two
different denoising methods, namely NFETC-CLSC and De-
noiseET. Experiment results show that the combined meth-
ods are superior to the base methods to a great extent. This is
because mask VAT and denoising focus on handling dataset
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Methods Ontonotes BBN

Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1

NFETC [Xu and Barbosa, 2018] 60.2 76.4 70.2 73.9 78.8 79.4
NFETC-AT 62.4(+2.2) 77.9(+1.5) 72.1(+1.9) 74.8(+0.9) 79.4(+0.6) 79.7(+0.3)
NFETC-VAT* 62.7(+2.5) 77.9(+1.5) 72(+1.8) 76.2(+2.3) 80.4(+1.6) 80.6(+1.2)
NFETC-VAT 63.8(+3.6) 78.7(+2.3) 73(+2.8) 76.7(+2.8) 80.7(+1.9) 80.9(+1.5)
D-NFETC-VAT 66.5(+6.3) 83.4(+7.0) 77.5(+7.3) - - -

NFETC-CLSC [Chen et al., 2019] 62.8(+2.6) 77.8(+1.4) 72(+1.8) 74.7(+0.8) 80.7(+1.9) 80.5(+1.1)
NFETC-CLSC-VAT 63.9(+3.7) 78.6(+2.2) 73.1(+2.9) 76.9(+3.0) 81.2(+2.4) 81.4(+2.0)

BERT 66.7 82.7 77.1 75.5 80.8 81.5
BERT-AT 68.1(+1.4) 83.7(+1.0) 77.4(+0.3) 74.8(-0.7) 82.6(+1.8) 82.9(+1.4)
BERT-VAT 69.9(+3.2) 84.9(+2.2) 79.2(+2.1) 75.9(+0.4) 83.0(+2.2) 83.8(2.3)
D-BERT-VAT 68.9(+2.2) 86.4(+3.7) 81.2(+4.1) - - -

Table 4: Ablation study of our method with two base models. The prefix “D” indicate the model is trained on Ontonotes dataset augmented
and denoised by DenoiseET. The suffix “AT” denotes adversarial training. The suffix * indicates the virtual adversarial perturbation is applied
on word embedding rather than in feature space.

Figure 3: T-SNE visualization of the mention embedding with their
LDS generated by NFETC(left) and NFETC-VAT(right) on the BBN
test set.

shift problem from different perspectives, namely the robust-
ness to dataset shift and dataset shift reduction.

5.5 Case Study and Visualization
Does masked VAT really regularize the model to predict
smoothly. As illustrated in Figure 3, the model’s average
LDS on the sample points of test set has been significantly
improved, although we do not touch the samples of the test set
during the training phase. It demonstrates that the prediction
of our model is effectively smoothed, and the final model is
robust to the dataset shifts constructed by virtual adversarial
perturbation. Further more, the robustness of the model to
dataset shifts indicates that the parameters of our model have
converged to the flat minimum θ∗ in Figure 1.
Does masked VAT have effect on mention representation.
We measure the quality of the mention representation by the
quality of the k-NN (k=20) ranking of mentions. We use three
commonly used metrics to evalute the quality of the model’s
k-nearest neighbors, namely mean accuracy (MA), mean av-
erage precision (MAP) and mean Normalized Discounted Cu-
mulative Gain (mean NDCG). As shown in Figure 4, NFETC-
VAT consistently outperforms NFETC by a significant mar-
gin. Masked VAT constrains that the type of a mention can-
not be inverted via a small perturbation on representation, so
the mentions with similar initial representations but different
types become separated.

Figure 4: Quality of 20-top nearest neighbors for mentions on BBN
test set.

6 Conclusion
In this work, we propose to alleviate dataset shift problem in
FET by combining the proposed masked VAT with denois-
ing methods. Experiment results demonstrate the proposed
method consistently outperforms SOTA models by a signif-
icant margin. The proposed method is general and can be
used in other domains. As a part of future work, we plan to
explore the proposed method on other tasks with sever dataset
shift problem, such as relation extraction.
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