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Abstract

AMR-to-text generation is a challenging task of
generating texts from graph-based semantic rep-
resentations. Recent studies formalize this task a
graph-to-sequence learning problem and use vari-
ous graph neural networks to model graph struc-
ture. In this paper, we propose a novel approach
that generates texts from AMR graphs while recon-
structing the input graph structures. Our model em-
ploys graph attention mechanism to aggregate in-
formation for encoding the inputs. Moreover, better
node representations are learned by optimizing two
simple but effective auxiliary reconstruction objec-
tives: link prediction objective which requires pre-
dicting the semantic relationship between nodes,
and distance prediction objective which requires
predicting the distance between nodes. Experimen-
tal results on two benchmark datasets show that our
proposed model improves considerably over strong
baselines and achieves new state-of-the-art.

1 Introduction

Abstract Meaning Representation (AMR) is a popular seman-
tic formalism in representing the meaning of natural language
text. AMR abstracts away from the surface form of a sentence
and encodes its meaning as a rooted and direct graph, where
nodes denote the concepts and edges denote the relations be-
tween the concepts. AMR-to-text generation is the task of
recovering a text representing the same meaning as a given
graph and it has attracted lots of attention in recent years.
Because the function words and syntactic realizations are ab-
stracted away and numerous details including tense, number,
and definiteness in AMR graph are underspecified, this task
is very challenging.

Off-the-shelf approaches for neural machine translation
have been explored for AMR-to-text generation.  Kon-
stas et al.  [2017] first transform the graph into sequence
and apply sequence-to-sequence model to solve the task.
Such a method may lose the information of reentrant struc-
ture. Recent works regard this task as a graph-to-sequence
learning problem [Beck er al., 2018; Song et al., 2018;
Damonte and Cohen, 2019]. These studies propose various
graph neural networks to encode the graph, which focus on

Figure 1: An example of AMR graph meaning “The study stated that
the high output per acre was attributed to a good growing season
in the south.”. The current graph2seq model outputs “The study
stated that the high output had been attributed to high output at a
good growth season in the south.”, which misses the information
of concept “acre” and mistranslates the semantic relation between
“attritube” and “season”.

aggregating information from one-hop neighbors. The cur-
rent state-of-the-art methods propose using relation encoders
to model relation of indirectly connected concepts by en-
coding the shortest path between nodes [Zhu et al., 2019;
Cai and Lam, 2019]. They extend the encoder in the Trans-
former and use relative position encoding to utilize the in-
formation captured by the relation encoder. However, these
graph-to-sequence models bring errors like missing informa-
tion from the input graph and mistranslation of the semantic
relations between the concepts [Konstas et al., 2017] , which
indicates that some graph structure information is not cap-
tured in the node representations. An example is shown in
Figure 1.

To enhance graph structure learning, we propose a novel
approach that generates natural language texts from AMR
graphs while reconstructing the input graph structure. We
adopt the Transformer encoder-decoder architecture and pro-
pose a variant of Transformer, which employs graph attention
mechanism to aggregate information from one-hop neighbor-
hoods. To learn better node representations, we propose to
optimize two simple but effective auxiliary reconstruction ob-
jectives, i.e. link prediction objective and distance prediction
objective. Link prediction requires the model to predict the
relation between two given nodes or predict the target node
(or source node) given a source node (or target node) and a
labeled edge. Distance prediction requires the model to pre-
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dict the distance between two given nodes. All the informa-
tion to be predicted is explicitly or implicitly provided in the
input graph and we require the model to reconstruct the graph
structure based on the learned node representations. The for-
mer encourages the model to encode the neighbor relation
information as much as possible in the node representations,
and the latter helps the model to distinguish information from
neighboring nodes and distant nodes. The learned node rep-
resentations with the aid of the two objectives can reduce the
errors of mistranslation of semantic relations and missing in-
formation in the output texts.

Experimental results on two benchmark datasets show that
our model substantially outperforms the prior methods and
achieves a new state-of-the-art performance. Our model im-
proves the BLEU scores by 2.4 points on LDC2015E86 and
2.1 points on LDC2017T10, respectively. In all, our contri-
butions can be summarized as follows:

* We propose a novel approach that generates texts from
AMR graphs while reconstructing graph structures. Two
simple but effective reconstruction objectives are opti-
mized during training, which help better capture the in-
formation provided in the graph. !

* Qur proposed variant of Transformer shows its effective-
ness on AMR-to-text generation.

* Empirical studies on two benchmark datasets exhibit
that our model advances the state of the art for the AMR-
to-text generation task.

2  Our Approach

Our model adopt the Transformer encoder-decoder architec-
ture, which can generate natural language texts from AMR
graphs while reconstructing the input structure. In this sec-
tion, we begin by providing the notations we use, followed by
describing our variant of the Transformer model, including a
graph encoder which employs graph attention mechanism to
aggregating information of incoming neighbors and outgoing
neighbors, respectively, and a sentence decoder which gener-
ates sentence with copy mechanism. Then we introduce the
proposed graph structure reconstruction objectives. Finally,
the objective functions will be detailed. The overall architec-
ture of our model is shown in Figure 2.

2.1 Notations

Let G = {V, E, R} denote an AMR graph, where V is a set
of N nodes, FE is a set of M edges, and R is a set of L edge
label types. N, M, and L are the number of nodes, edges
and label types, respectively. Each edge e in F is denoted as
(¢,4,7;,3), where ¢ and j are the indices of source node and
target node, respectively, and r; ; € R is the edge label. In
addition, we denote the neighbor nodes reached by incoming
edges of node v; as A" and the neighbor nodes reached by
outgoing edges as N?“!. The distance d; ; of a given node
pair is defined as the length of the shortest path from v; to v;
(regardless of the direction of the edges).

'The code is available at
graph-reconstruction-amr2text.

https://github.com/sodawater/
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Figure 2: The overall architecture of our proposed model.

For convenience, we denote queries, keys and values for at-
tention in Transformer as @), K, and V. Let MHALtt(Q, K, V)
denote the multi-head attention, FEN(z) denote the feed-
forward network, and LN(z) denote the layer normalization.

2.2 Graph Encoder

The purpose of the graph encoder is to directly encode the
input graph and learn the representation for each node. It
is composed of a stack of L identical graph layers, where
different parameters are used from layer to layer. Each layer
has two sub-layers: a graph attention mechanism and a feed-
forward network.

At each layer, we first update the node representations
by aggregating a weighted average from neighbors by us-
ing learned attention weights. Let h' = (b} hb, ... hk) €
RémoactXN be the node representations learned at layer [,
where d,,04e; 1 the dimension size of the model. In particu-
lar, h® are the linearly transformed input embeddings.

R = Wea? (1)

where W, € RfmodetXdems ig the transformation matrix and
Ty € Rmb is the word embedding of node v;, and d¢pp
is the dimension size of the embedding. Considering that
AMR is a directed graph, neighbor nodes reached by incom-
ing edges and nodes reached by outgoing edges play differ-
ent roles and contribute different information to the central
node. We perform graph attention mechanisms over incom-
ing neighborhoods and outgoing neighborhoods, respectively.
We use an additive form of attention in our model. The atten-
tion score of outgoing edge (i, 7, r;, ;) for node v; is computed
as follows:

L = Wouy[LeakyReLu(Wo,, B B2l )] ()
where [; ;] is the concatenation operator, xi; € Rmedet ig the
embedding of edge label 7; j, and W, € R¥medetX3dmoder
and Wy, € R1Xdmodet gre the parameters. Similarly, the
attention score of incoming edge (j,,7,,) is computed as
follows:

‘el = Win,[LeakyReLu(Wi, (b B2l )] (3)

Then the attention probabilities @' ; and &' ; are calculated

; ij
as a softmax over the scores ?i ; and ?i ;> respectively. We
, ,
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further aggregate the information of neighbor nodes and cor-
responding edges using these attention probabilities.

S ()
YT S ()
P exp(%é,j)
P b
2,] ZkENM Cxp(€l< ) (4)
Ti= X Woulhsicl
jENlout
R DRSNS
JENT

where Wiy, Wou, € Rémodet X2dmodel

Following Veli¢kovié et al. [2017], we also extend the
graph attention mechanism to employ multi-head attention,
which is beneficial for stabilizing the learning process. We
split the attention into K heads and perform K indepen-
dent attention mechanisms to execute the computation of the
weighted average, which are further concatenated to get the
final representation.

K
7= aVwE, il )] )
k=1 je-/\/;out

where || is the concatenation operator. g}

same way.

Since the above graph attention mechanism does not ag-
gregate the information of the central node, we use a linear
transformation layer to combine the information of the cen-
tral node and neighborhoods.

gt =W h g g + b (6)

where W, € RdmodetX3dmodet and b, € Remodel are the pa-
rameters.

The second sub-layer is a fully connected feed-forward net-
work. Residual connection and layer normalization are em-
ployed for connecting the adjacent layers.

h' = LN(FFN(g') + h'™1) (7

A linear transformation layer is employed upon the en-
coder stack for aggregating the outputs of different layers.

is computed in the

L,y
hi = Wil || il + b ®)
1=0
where the final representation for node v; is denoted as h;
for convenience, and W, € Rémoder (L1t dmoder gnd b, €
R¥model are the parameters.

2.3 Sentence Decoder

The sentence decoder in our model has an architecture similar
to the decoder in Transformer. It is composed of L, identi-
cal layers, where parameters are different from layer to layer.
Each layer has three sub-layers: a multi-head self-attention
mechanism, a multi-head attention mechanism over the node
representations, and a feed-forward network.
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At each layer, we first update the token representations
by a self-attention mechanism. Let h = (h},hL, ..., h}) €
RmoactXT" represent the token representations at layer /. In

. ~0 . .
particular, h are sum of the linearly transformed input em-
beddings of tokens x* and position encoding pe.

Ry = Weal + pe; 9)

Note that a masking is used for ensuring that the attention and
prediction for position ¢ depend only on the known words at
position preceding 7.

1 ~1-1

I ~l—1 ~l— ~l—1
a'! =LN(MHAwt(h  ,h~ ,h )+h ) (10

Following the self-attention, we employ a multi-head at-
tention over the output of the encoder and a feed-forward net-
work.

¢ = LN(MHAtt(a', h,h) + a’)

A~
h = LN(FFN(c') 4 ¢})

For convenience, we denote the final representations of the

tokens in the decoder as h. The final output is transformed
and passed through a softmax layer to generate the probability
p? of next word over the vocabulary

(1)

p? = softmax(W,h; + b,) (12)

where W, € RdvocasXdmoder € Rvocab and dypeqp is the
size of vocabulary.

We apply a copy mechanism to tackle the data sparseness
problem. A gate for controlling generating words from vo-
cabularies or copying words from inputs is used.

n; = sigmoid(W,,, [tanh(W,,, [hi; zi] + b)) + byy)  (13)

where Wnl c Rdw:.odelXQdm,odel’ an c RIanLodel’ bm c
R¥modet and by, € R are the parameters. We use the average

of the K independent attention probabilities a * of the last
multi-head attention sub-layer as the copy probablhtles 5.

N o[ K
i3 (kye)s oo
j=1 k=1

where z; is the one-hot indicator vector for the node v;. The

final distribution p; is the weighted average of the two proba-
bilities with gate 6;.

+ (1 —mi) *pf 15)

2.4 Graph Structure Reconstruction

To learn better node representations from the graph structure,
we propose to optimize two simple but effective auxiliary re-
construction objectives.

The first objective is based on link prediction, which re-
quires the model to predict the semantic relations for the
given node pairs. For a given pair of nodes (v;,v;), we con-
catenate the representations of these two nodes and employ a
multi-layer perceptron to predict the corresponding semantic
relation.

pi = ni *pi

74,; = softmax(W,.[MLP([h;; h;])] + b;) (16)
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where W, € REFD Xdmoder e RL+L and L is the num-
ber of semantic label types in the AMR graph. For the pair
of nodes that are adjacent in the graph, i.e., connected with
an labeled edge, the gold relation label is exactly the given
semantic relation r; ;. For the pair of nodes that are not adja-
cent, the gold label is non-adjacent.

The link prediction can be expressed in another way, which
requires the model to predict the target node (or source node)
given a source node (or target node) and a semantic relation
type. In other words, we aim to predict the node v; in relation
(vs,vj,75,;) when v; and 7; ; is given. We employ a pointer
module to predict the node.

A Woh; (Wk (i3 m?,k])T

€ik

)

dmodel
. exp(éik) 17

QG k. = N -
ch:1 exp(ei_’,;)

k* = arg ml?x(oli,k)

Obviously j is the gold answer for k£*. Either of the above
two forms of link prediction encourages the model to exactly
encode the neighbor relations as much as possible in the node
representations, so less information will be missing and less
semantic relation will be mistranslated during decoding.

The second objective is based on distance prediction,
which requires the model to predict the distance between a
pair of nodes in the graph. As mentioned before, the distance
d; ; of a pair of nodes is defined as the length of the short-
est path from v; to v; regardless of the edge direction. In
the graph encoder, non-local information is captured by using
multiple aggregation layers. This objective helps the model
to distinguish nodes whether they are adjacent or distant, so
direct relations of neighbor nodes and indirect relations of
distant nodes can be encoded with distinction and mixing of
semantic relation during generation can be reduced. We em-
ploy a multi-layer perceptron to predict the distance between
two nodes.

d;,j = softmax(W4[MLP([h;; h;])] + ba) (18)

where W, € RO+ ¥dmoder p, e RP+L and D is the max-
imum diameter of the AMR graphs in the dataset. Obviously
d; ; is the gold answer.

2.5 Objective Function

We aim to optimize the negative log-likelihood of each gold-
standard output sentence, S, given the input graph G.

T
L, = _ZlogP(si|S1;i71’Ga9) (19)

i=1

where s; is the gold answer for i-th token, 6 represents
the model parameters, and P(s;|s1.,—1, G, 6) is computed in
Eq.(15).

To learn better node representations and generate texts of
better quality, we also optimize the two proposed graph re-
construction objectives. As described before, link prediction
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objective has two forms. The first form is to predict the rela-
tion given the node pair, which aims to optimize the following
negative log-likelihood:

L=- >

(4,4,m4,5)EE

1 ..
N)\n . Z logP(ri,jh)JaGa 9)
(4,5,%)¢E

where 7; ; is the gold answer for the relation of nodes v; and
v; (note that the gold label is set to non-adjacent when the
two nodes are not adjacent), \,, and % are used for balancing
the weight of negative samples and P(r; ;|i, j, G, 0) can be
computed from the predicted probability 7; ; in Eq.(16).

The second form of link prediction objective is to predict
the target node given a source node and a labeled edge.

Li=— >

(4,5,ri,5)EE

log P(le |7’a j7 G7 0)7

(20)

logP(]‘Zvrz,JvGa 0) (21)

where P(j|i,7; ;,G,0) can be computed from the results in
Eq.(17).
Distance prediction objective is defined as follows

N N
1
Li=—~ D> log P(di |G, 0) @)

i=1 j=1

where P(d; ;j|G,6) can be computed from the results in
Eq.(18).

Our model is trained by optimizing the weighted sum of
the generation objective and graph reconstruction objectives.

L=Ly+N*L%+ Nax Ly (23)

where Ell/ 2 represents one form of the link prediction objec-
tive and \; and )\, are the hyper-parameters.

3 Experiment

3.1 Data

Two standard English AMR corpora (LDC2015E86 and
LDC2017T10) are used as our evaluation datasets. The
LDC2015E86 dataset contains 16833 training instances,
1368 development instances, and 1371 test instances. The
LDC2017T10 contains 36521 training instances and the same
instances for the development and test as LDC2015ES86.

3.2 Setup

We set the model parameters based on preliminary experi-
ments on the development set. d,;,,q¢; 1S set to 512. The num-
bers L1, Lo of layers of the encoder and decoder are both set
to 6. The head number K is set to 2. The batch size is set
to 64. A, is set to 0.1, \; is set to 0.4 and Ay is set to 0.1.
We share the vocabulary of the encoder and decoder, and use
Glove vectors [Pennington ef al., 2014] to initialize the word
embeddings and d,; is set to 300. We apply dropout and use
arate of 0.2. Label smoothing is employed and the rate is set
to 0.1. We use the Adam optimizer [Kingma and Ba, 2015]
with 81 = 0.9, B2 = 0.98 and ¢ = 10~?. The same learning
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Model | LDC2015E86 | LDC2017T10
| BLEU Meteor CHRF++ | BLEU Meteor CHRF++

S2S [Konstas et al., 2017] 21.7 - - - - -
Transformer [Zhu et al., 2019] 25.5 33.1 59.9 27.3 34.6 61.9
GGNN [Beck et al., 2018] - - - 23.3 - 50.4
GGNN* [Beck et al., 2018] - - - 27.5 - 53.5
GraphLSTM [Song et al., 2018] 233 - - - - -
GCNSEQ [Damonte and Cohen, 2019] 24.4 23.6 - 24.5 24.1 -
DenselyGCN [Guo et al., 2019] 25.7 - - 27.6 - 57.3
DenselyGCN* [Guo ef al., 2019] 28.2 - - 30.4 - 59.6
G2S-GGNN [Ribeiro et al., 2019] 24.3 30.5 - 27.9 33.2 -
StructuralTransformer-SA [Zhu et al., 2019] 29.7 35.5 63.0 31.5 36.0 63.8
Structural Transformer-CNN [Zhu et al., 2019] | 29.1 35.0 62.1 31.8 36.4 64.1
GraphTransformer [Cai and Lam, 2019] 27.4 32.9 56.4 29.8 35.1 59.4
Ours (w/o graph reconstruction) 30.5 35.5 63.2 32.7 36.5 64.9
Ours 32.1 36.1 64.0 33.9 37.1 65.8

Table 1: Comparison results on the test set of LDC2015E86 and LDC2017T10. * denotes the ensemble model.

Objective function BLEU
only generation 29.8
generation + link (first form) 31.0
generation + link (second form) 30.9
generation + distance 30.5
generation + link (first form) + distance 31.3
generation + link (second form) + distance 314

Table 2: Ablation results on the LDC2015E86 development set

rate schedule of Vaswani ef al. [2017] is adopted and the
maximum learning rate is set to 0.0005. During training, we
filter out instances with more than 50 nodes in graph or 50
words in sentence for speeding up. During inference, beam
search with size 5 is used.

Following prior works, we use BLEU [Papineni et al.,
20021, Meteor [Banerjee and Lavie, 2005], and CHRF++
[Popovié, 2017] as automatic metrics for evaluation.

3.3 Comparison Results

We compare our model with several strong baselines, in-
cluding sequence-to-sequence models and graph-to-sequence
models. We use the first form of link prediction objective in
this experiment. Models trained with the second form of link
prediction objective or other combination of objectives will
be detailed in the ablation study. Our base model without
graph reconstruction objectives is also compared. Note that
some compared baselines are ensemble model but our models
are both single model.

Table 1 summarizes the results of these models on the
benchmarks. Our model substantially outperforms previous
models and achieves the new state-of-the-art performances.
Our base model (i.e., without graph reconstruction) also out-
performs baselines, which shows the effectiveness of our pro-
posed variant of Transformer. With graph reconstruction
objectives, the performance of our model improves by 1.6

BLEU points and 1.2 BLEU points on two datasets, respec-
tively. Among all the baselines, StructuralTransformer-SA
achieves the best score on LDC2015E86. Our model im-
proves the BLEU score by 2.4 points, Meteor score by 0.6
points, and CHRF++ score by 1.0 points. On LDC2017T10,
our proposed model also outperforms Structural Transformer-
CNN by more than 2 BLEU points. Comparing the two
sequence-to-sequence neural models, Transformer is much
better than the RNN-based model S2S. Similar phenomenon
is observed in the graph-to-sequence models. This is the rea-
son we adopt the Transformer encoder-decoder architecture
in our model. We can also see that ensemble models achieve
better performance than single models with the same archi-
tecture, which indicates that ensemble learning is beneficial
in this task. However, our single model still strongly outper-
forms these ensemble models.

3.4 Ablation Study

We further perform an ablation study on the LDC2015E86
development dataset to investigate the influence of the pro-
posed auxiliary objectives. We vary the overall objective
function in the following ways: only use the generation ob-
jective (L,); use auxiliary link prediction objective in the first
form (L, + A * £}); use link prediction objective in the sec-
ond form (£, + \; * L£?); use distance prediction objective
(Lg 4 Mg * Lg); use link prediction objective in the first form
and distance prediction objective (L, 4+ A; * ,Cll + g * Lg);
use link prediction objective in the second form and distance
prediction objective (L, + A * EZQ + Agq * L4). Note that we
only report the BLEU score in this experiment.

Table 2 presents the results. We can see that using either
the link prediction objective or the distance prediction objec-
tive could improve the performance. Both two forms of the
link prediction objective result in an improvement of about 1
BLEU points. With the distance prediction objective, the re-
sult is 0.7 BLEU points higher. Our model achieves the best
performance by optimizing the generation objective and two
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Metric DGCN GT  Ours(base) Ours Human
SMATCH 68.4 68.1 69.9 70.8 76.3
Unlabeled 71.9 71.3 73.6 74.2 79.0
Concepts 77.1 78.3 80.9 80.8 84.8
Reentrancies 51.7 49.8 54.9 553 59.8
SRL 62.0 60.8 64.8 65.7 69.6

Table 3: SMATCH and fine-grained F1 scores on the test set
of LDC2015E86. DGCN denotes DenselyGCN and GT denotes
GraphTransformer.

graph reconstruction objectives at the same time. These re-
sults verify the usefulness of graph structure reconstruction.

3.5 Semantic Error Analysis

We further analyze the semantic error types in the outputs
of different AMR-to-text models. Similar to Konstas et
al. [2017], we observe that there are three types of common
semantic errors: 1) missing information; 2) generating words
inconsistent with the given concept; 3) mixing the given se-
mantic relations. To quantitatively compare different mod-
els, suitable metrics are needed. Considering that human
evaluation is very time-consuming and requires expertise, we
use an SOTA AMR parser [Zhang et al., 2019] to automat-
ically parse the outputs into graphs and compare them with
the given input graphs. SMATCH [Cai and Knight, 2013]
and a set of fine-grained metrics [Damonte et al., 2016] are
used for evaluation. These scores directly measure the degree
of semantic overlap between two semantic structures, and in-
directly reflect the semantic consistency between the gener-
ated sentence and the input graph. We compare the baseline
DenselyGCN (DGCN), GraphTransformer (GT), our base
model without graph reconstruction, our proposed model and
the gold answer.

The results are listed in Table 3. Because the text and
the AMR graph are not strictly one-to-one mapping and the
parser is not perfect, the scores of gold answer are not 100
points. The SMATCH score reflects the overall semantic
overlap and our model outperforms baselines. The Con-
cepts score reflects the translation quality of the concepts
and higher Concept score means that less concept informa-
tion might be missing or mistranslated. Our model performs
closely to our base model and outperforms GT and DGCN.
The Unlabeled and SRL scores reflect the translation quality
of semantic relations, i.e., the edges in the AMR graph. Our
model achieves higher scores than baselines on these metrics
but is still much lower than the gold answer, which indicates
that our proposed reconstruction objectives can reduce the
mixing of semantic relations to some extent. Higher Reen-
trancies score shows that our model can learn better represen-
tations for reentrant structure. In general, the above semantic
errors occur in outputs of all compared models and our pro-
posed model have less errors in the outputs than baselines.

4 Related Works

Most studies on AMR-to-text generation regard it as a distinct
machine translation task. Early works focus on statistical
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methods. Flanigan er al. [2016] apply tree-to-str transduc-
ers to generate texts after transforming AMR graphs to trees.
Pourdamghani er al.  [2016] use a phrase-based machine
translation model on the input of linearized graphs. Song
et al. [2017] adopt a synchronous node replacement gram-
mar to generate texts. Moving to neural machine translation
methods, Konstas et al. [2017] achieve promising results
by named entity anonymization and applying sequence-to-
sequence model on the linearized graphs. Zhu et al. [2019]
adopt the Transformer architecture and introduce Byte Pair
Encoding to solve the data sparseness problem.

Recent works treat the task as a graph-to-sequence learn-
ing problem and propose various graph neural networks to
tackle it. Beck et al. [2018] use Graph Gated Neural Net-
work (GGNN) to directly encode the graph and an attentive
decoder to generate texts. Song et al. propose a graph state
LSTM as the encoder. Damonte and Cohen [2019] develop
a hybrid neural model by stacking a BiLSTM on the output
of a Graph Convolution Network (GCN) encoder. Guo et al.
[2019] also use GCN and propose densely connected GCN
to capture both local and non-local semantic relations in the
graph. These methods all focus on aggregating information
from one-hop neighborhoods and propagate information from
distant nodes by stacking aggregation layers.

The current state-of-the-art approaches propose using rela-
tion encoders to model relation of indirectly connected con-
cepts by encoding the shortest path between these nodes. Zhu
et al. [2019] propose five different methods to encode the re-
lation path and further extend the conventional self-attention
architecture to explicitly utilize the encoded relation between
concept pairs. Cai and Lam [2019] use bi-directional GRU
encoder to get the representation for the shortest relation path.

5 Conclusion

In this paper, we propose a novel approach that utilize graph
structure reconstruction for the AMR-to-text generation prob-
lem. Two simple but effective reconstruction objectives, i.e,
link prediction objective and distance prediction objective,
are proposed for enhancing the capturing of structure infor-
mation and semantic relation in the node representations. We
perform experiments on two English benchmarks and the re-
sults show that our model achieves the new state-of-the-art
performance. The result of ablation study indicates the ef-
fectiveness of our base model and the graph reconstruction
objectives. In addition, we analyze the semantic errors in the
outputs by using automatic metrics.

In future work, we will apply our model to other graph-
to-sequence problems. We will also incorporate more well-
designed and effective graph reconstruction objectives for
better node representation learning.
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