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Abstract

The formal synthesis of automated or autonomous
agents has elicited strong interest from the ar-
tificial intelligence community in recent years.
This problem space broadly entails the derivation
of decision-making policies for agents acting in
an environment such that a formal specification
of behavior is satisfied. Popular formalisms for
such specifications include the quintessential Lin-
ear Temporal Logic (LTL) and Computation Tree
Logic (CTL) which reason over infinite sequences
and trees, respectively, of states. However, the re-
lated and relevant problem of reasoning over the
frequency with which states are visited infinitely
and enforcing behavioral specifications on the same
has received little attention. That problem, known
as Steady-State Policy Synthesis (SSPS) or steady-
state control, is the focus of this paper. Prior related
work has been mostly confined to unichain Markov
Decision Processes (MDPs), while a tractable solu-
tion to the general multichain setting heretofore re-
mains elusive. In this paper, we provide a solution
to the latter within the context of multichain MDPs
over a class of policies that account for all possible
transitions in the given MDP. The solution policy is
derived from a novel linear program (LP) that en-
codes constraints on the limiting distributions of the
Markov chain induced by said policy. We establish
a one-to-one correspondence between the feasible
solutions of the LP and the stationary distributions
of the induced Markov chains. The derived policy
is shown to maximize the reward among the con-
strained class of stationary policies and to satisfy
the specification constraints even when it does not
exercise all possible transitions.

1 Introduction

There has been a focus in recent years on the verification
of autonomous systems by leveraging techniques used for
decades in the model checking of software [Fisher et al.,
2013]. While this verification step is crucial for the develop-
ment of robust autonomous capabilities, a promising comple-
mentary approach is to design these capabilities in such a way

that the search for a correct design is driven by the same spec-
ifications used for verification. This methodology is often
called correct-by-design construction [Haesaert et al., 2015]
or formal/controller synthesis [Kress-Gazit er al., 2018]. Our
contribution is in the same vein and entails the search for poli-
cies which satisfy constraints on the steady-state distribution
of the resulting agent as it interacts with its environment for
an indefinite period of time following said policies. It is worth
noting that progress in this area has interesting applications
to problems where steady-state distributions are commonly
used. This includes the derivation of maintenance plans for
various systems such that asymptotic failure rate is minimized
[Boussemart and Limnios, 2004] [Boussemart et al., 2002] as
well as to problems in constrained routing where average de-
lay and packet loss metrics must be enforced [Lazar, 1983]
[Skwirzynski, 1981].

Steady-State Policy Synthesis (SSPS) is framed in the con-
text of constrained Markov Decision Processes (MDP) that
model the agent-environment dynamics. This framework has
long been studied in the stochastic dynamic control and oper-
ations research literature to handle multi-objective decision-
making in the presence of uncertainty. The pioneering work
of Derman [Derman, 1970] and Altman [Altman, 1999] de-
veloped a constrained optimization framework to dynamic
control problems based on linear programming for both the
discounted and total reward, as well as the expected aver-
age reward formulations. The vast majority of existing work,
however, have focused on ergodic or unichain structures. This
was pointed out recently by Altman in [Altman et al., 20191,
where it is stated that “...the existing theory for solving such
problems requires strong assumptions on the ergodic struc-
ture of the problem”. Under such assumptions, average-
reward constrained MDPs have been shown to admit efficient
solutions owing to an established one-to-one correspondence
between the optimal solutions of a formulated linear program
(LP) and the optimal policies of the MDP. The notable work
of Kallenberg in [Kallenberg, 1983] has laid the groundwork
for Markovian control problems and their characterizations
in multichain settings and the construction of optimal poli-
cies based on linear programming under several optimality
criteria. However, the algorithms developed to construct an
optimal policy for general multichain structures were shown
to be computationally prohibitive for the expected average re-
ward formulation.
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Summary of contributions. In this paper, we make three
main contributions.  First, we introduce the Multichain
Steady-State Policy Synthesis over Edge Preserving Policies
(MaStEr) problem as a generalization of the SSPS and steady-
state control problems studied in [Velasquez, 2019] and [Ak-
shay er al., 2013], respectively. In particular, given a multi-
chain MDP, we seek a policy in a predefined class of policies
that maximizes an expected reward signal while enforcing
steady-state specifications on the behavior of such a policy.
In sharp contrast to [Akshay er al., 2013], we dispense with
the strong assumption about the ergodicity of the underlying
MDP, which requires that every stationary deterministic pol-
icy induces an ergodic (i.e., recurrent and aperiodic) Markov
chain. Further, unlike [Velasquez, 2019], we neither search
for a policy that induces a recurrent Markov chain consisting
of all the states within the given MDP, nor require the exis-
tence of such a chain. For example, it may very well be the
case that such a recurrent chain does not exist if some states
are inevitably transient. As our second contribution, we de-
velop a scalable multi-step approach to synthesize a policy
that provably meets the asymptotic steady-state specifications
through the use of a novel linear programming formulation.
Our third contribution lies in deriving important theoretical
results, including sufficient conditions for the existence of
a one-to-one correspondence between the feasible solutions
of the proposed LP and the steady-state distributions of the
Markov chains induced by the synthesized policies, and in
turn establishing provable performance and behavior guaran-
tees for the derived policy. To the best of our knowledge, this
is the first work to allow synthesis of stationary steady-state
policies with verifiable behavior in multichain MDPs.

2 Background

In this section, we introduce preliminary definitions and no-
tation used throughout the paper. The vector e denotes the
vector (of appropriate dimension) of all ones and ” the trans-
position operator. Given a vector x and index set 1/, the vector
xy = [zy],v € V. By | S|, we denote the cardinality of a set
S. For an integer n > 0, the set [n] := {1,...,n},and A\ B
denotes the set difference of sets A and B.

Definition 1 (Markov Chain). A Markov chain is a stochas-
tic model given by a tuple M = (S,T, ), where S is the
state space, T the transition function T : S x S — [0,1]
with T(s'|s) denoting the probability of transitioning from
state s to state s', and 3 the initial state distribution. With
slight abuse of notation, the transition function can also be
thought of as a matrix T € [0, 1]151XI51 where the (s, s') en-
try T(s,s") = T(s'|s). Its use will be clear from the context.
Given a Markov chain M = (5,7, (), a state s € S is
said to be transient if there is a non-zero probability of never
returning to s given that we start in s. A set of transient states
is termed a transient set. We define an isolated component
I as a set of states in M that can never be visited, that is,
Br = 0 and I is not reachable from any state in S \ I, i.e.,
YoerT(s']s) =0,Vs € S\ I.
Definition 2 (Markov Decision Process (MDP)). An MDP
represented by the tuple M = (S, A, T, R, ) is a proba-
bilistic automaton, in which S denotes the state space, A the

set of actions, T : S x A x S — [0,1] the transition func-
tion with T (s'|s, a) denoting the probability of transitioning
from state s to state s' under actiona, R: S x Ax S — R
a reward obtained when action a is taken in state s and we
end up in state s', and [ the initial distribution. We often
use the alternative reward function R : S x A — R, where
R(s,a) := >, cgT(s'|s,a)R(s,a,s"). By A(s) C A, we
denote the set of actions available in state s.

Definition 3 (Terminal Strongly Connected Component
(TSCC)). Consider the digraph formed by an arbitrary
Markov chain or MDP M with state space S and initial
distribution 8. A Terminal Strongly Connected Component
(TSCC) S’ C S is a strongly connected component reach-
able from some initial state s,[3(s) > 0 and with no out-
going transitions to any state in S \ S’. We denote by
r(M) = Upepn) 7r(M) the set of states in the m TSCCs

of M, with r,(M) C S denoting the k™ TSCC. The comple-
ment set is denoted by 7(M) := S\ r(M). In the case of
Markov chains, this is the set of transient or isolated states.

Definition 4 (Markov Chain Induced by a Policy). The tuple
M, = (S, Ty, B) is the Markov chain induced by a policy T :
S x A — [0,1] in an underlying MDP M = (S, A, T, R, ),
where Tr(s'|s) = 3 ca) T(s'|s, a)m(als) and 7(als) is
the probability of taking action a in state s.

Definition 5. An MDP M is called unichain if the Markov
chain M induced by any admissible deterministic policy 7
is unichain, that is, consists of exactly one closed recurrent
set and possibly some transient states. An MDP is said to be
multichain if it is not unichain.

Definition 6. Given an MDP M and policy 7, the steady-
state distribution Pr;° : S x A — [0, 1] over the state-action
pairs (also known as the occupation measure) is the long-
term proportion of time spent in state-action pair (s,a) as
the number of transitions approaches o, i.e.,

o0 : 1 -

Pr°(s,a) = nh_)rr;C - ;Pr(st =s, A =a|B,m) (1)

where S; and A, are the state and action at time t. Also,
Prif(s) == X qca(s) Pra (s,a) is the steady-state probabil-
ity of being in state s € S.
Definition 7 (Steady-State Specification [Velasquez, 2019]).
Given an MDP M = (S,A,T,R, ) and a set of labels
L ={Ly,...,L,,}, where L; C S, a set of steady-state
specifications is given by ®° = {(L;, [l;,wi])};k,. Given
a policy , the specification (L;, [l,u]) € ® is satisfied if
and only if > . Pri¥(s) € [l,ul; that is, if the steady-
state probability of being in a state s € L; in the Markov
chain M. falls within the interval [l,u]. An MDP M =
(S,A,T,R,3,L, &%) augmented with the label set L and
specifications ®7° is termed a labeled MDP (LMDP).

Lemma 1. [Kallenberg, 1983] Given an MDP M =
(S,A,T,R, () and policy 7 € Tls, where Ilg is the set
of stationary policies, the steady-state distribution Pr° =
{Pr°(s,a)}s,a of the Markov chain M is given by (2),
where T2 := lim,,_,oo = 31" | T is the Cesaro limit.

Pr(s,a) = (ﬂTTT?O)SW(a\S), seS,aeAls) (2
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3 Related Work

The problem of arbitrating control in discrete-time MDPs
has been studied for many decades, with LP solutions based
on occupation measures being proposed in [Manne, 1960;
De Ghellinck, 1960] for unichain MDPs. While such LPs can
easily handle steady-state constraints in unichain settings, se-
rious issues arise when a similar approach is used for multi-
chain MDPs, as described in the pioneering work [Kallen-
berg, 1983]. In particular, it was shown that there is not
a one-to-one correspondence between the feasible solutions
of the augmented LP and the stationary policies. Instead,
the space of feasible solutions is partitioned into equivalence
classes of various feasible solutions mapping to the same pol-
icy. The key deficiency is that the steady-state distribution of
the Markov chain induced by the synthesized policy does not
match the optimal solution to the LP in general, and so the
derived policy does not always meet the steady-state specifi-
cation constraints.

To work around these difficulties, existing works either im-
pose severe restrictions on the input MDP, or allow the pro-
duction of troublesome non-stationary policies. One common
restriction excludes multichain MDPs altogether. The most
restrictive requirement can be found in [Akshay et al., 2013]
and the reinforcement learning algorithms of [Bhatnagar and
Lakshmanan, 2012], which assume that the input MDP is er-
godic or irreducible, respectively. These MDPs guarantee that
the Markov chain induced by any stationary and deterministic
solution policy is itself ergodic or irreducible, thereby ensur-
ing a valid solution to the steady-state equations. The authors
proceed to find policies in such MDPs which satisfy a set
of steady-state specifications. Though the steady-state con-
trol problem defined therein is described in the full generality
of Markovian and history-dependent policies, an equivalence
between the two is established and the solutions proposed fo-
cus on the latter. The works of [Ross, 1989; Altman, 1999;
Feinberg, 2009] contain a slight relaxation in that unichain
MDPs are allowed. Nonetheless, the strict underlying re-
quirement of a single recurrent class remains.

The unichain MDP assumption is dissolved in [Velasquez,
2019], where the SSPS problem is introduced as a general-
ization of steady-state control. The solution proposed finds
a policy which induces a recurrent Markov chain and max-
imizes the average reward objective while satisfying a set
of steady-state specifications, if one exists. The work in
[Velasquez, 2019], however, cannot reason about multichain
MDPs, as it requires the existence of a policy which induces a
strongly connected Markov chain containing all states in the
MDP and optimizes over such policies. Therefore, this effort
fails to produce a policy in the most general setting.

To eliminate restrictions on the input MDP, another line of
work allows non-stationary policies as output. The first exam-
ple of this appears in [Kallenberg, 19831, where the proposed
algorithm produces a policy with a different decision rule for
each time step. Not only is the policy impractical to apply,
but the algorithm itself is computationally intractable.

In contrast to the aforementioned methods, our approach
is computationally tractable, works with the most general
MDPs, and always produces a stationary policy.

Figure 1: Liogi = {S34, S36, S38, 43}, Liogz = {52, $55, $57, S61}+
Lecanoel = {533}, Lcanoez = {549} L = {548}, Ly = {564}'

4 Multichain Steady-State Policy Synthesis

We begin with a simple motivating example. Suppose some
autonomous agent is stranded on three connected frozen
islands as pictured in Figure 1. The agent’s mission is
to build a canoe to escape the islands while maximiz-
ing the amount of time it spends fishing for sustenance.
The agent begins on the larger island of size n x n/2
with an initial uniform distribution over those states, i.e.,
B(s) = 2/n? for every state belonging to the large is-
land. Once the agent transitions into one of the two smaller
islands, it can never go back. In these smaller islands,
one quarter of the land consists of logs which can be used
to build a canoe, and there is one fishing site as well.
For each island, we have (Liqg1, [0.25, 1]), (Liog, [0.25,1]),
(Leance1, [0.05,1.0]), (Lcanoe2, [0-05, 1.0]), (Lgish1, [0.1,1.0]),
(L2, [0.1,1.0]), R(-,-, Lesm) = R(,- Lasn2) = 1,
R(-,-, S\ (Lgish1 ULgsnz)) = 0. Since these islands are frozen,
the agent has a chance of slipping whenever it moves, causing
a transition into one of three possible states. Namely, if the
agent chooses to go right (left), there is a 90% chance that it
will transition to the right (left), and the chance of transition-
ing to either of the states above or below it is 5%. Similarly,
if the agent chooses to up (down), it will end up in the states
above (below) it with 90% chance, and in the states to the
right and left of it with chance 5% each. This Frozen Island
scenario is similar to those found in OpenAl Gym’s Frozen-
Lake environment [Brockman et al., 2016].

In this example, the feasible set of the LP of [Velasquez,
2019] will be empty. While the LP of [Kallenberg, 1983]
returns a solution, the corresponding policy may not satisfy
the specified constraints. We will demonstrate this deficiency
by using a simple example.

Example 1. Consider the MDP defined in Figure 2 with re-
wards R(ss,a3) = R(ss,a1) = 1 and zero otherwise. One
optimal solution x* to LP (4.7.6) in [Kallenberg, 1983] ex-
pressed in terms of state-action variables xs,,s € S,a €
A(s) has z3_,, = 0.5, 2% ,, = 0.25, xzsa&): 0.25, yielding a
policy © with Pr°(ss5, as) = 0.4173, Pr;°(se, az) = 0.2724
and Pri°(ss,a1) = 0.2724. For the remaining state-action
pairs, z*, and Pri°(s, a) are both less than 10719, Clearly,
Pre° £ a*, so any desired specifications for Pry° (encoded
as constraints on the variables x,) are generally not met.
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Definition 8 (Edge-Preserving Policies). Given an MDP M,
we define the ‘Edge-Preserving’ set of policies llgp as the set

of stationary policies that exercise all existing transitions in
the TSCCs r(M) of M and such that r(M ) = r(M), ie.,

r(Mz) = r(M)A
m(als) > 0,Vs € r(M),a € A(s)} 3)

Note that the condition (M) = r(M) in Definition 8
implies that 7(M) consists of transient or isolated states in
M., for any 7 € Tlgp.

Example 2. Figure 2 (left) shows a multichain MDP with two
TSCCs designated by different colors. Figure 2 (right) shows
the Markov chain M induced by an edge-preserving policy
7w € lgp. As shown, T preserves all edges in the TSCCs of the
MDP, however, the policy T does not necessarily exercise all
transitions in the transient states. In M, state sy is isolated
and so is transient.

HEPZ{WEHS:

We can readily define MaStEr as the problem of finding
a policy in IIgp that maximizes the average expected reward
and satisfies a given set of steady-state constraints.

Definition 9 (MaStEr). Given an LMDP M =
{S,A,T,R,3,L, 2}, we define MaStEr as the prob-
lem of finding a stochastic policy m € 1lgp that maximizes the
objective in (4) and satisfies the steady-state specifications
B9, i.e., solves

maxz Z Pr°(s,a)

mell
ses a€A(s)

Z Z Pr:°(s,a)

s€L; acA(s)

,a) subject to

“

) e lul, V(Li,[l,u]) € T .

In order to solve the MaStEr problem, we first determine
the TSCCs (M) of M and the complement set (M ) using
standard techniques from graph theory [Tarjan, 1971]. These
are then used to define the LP (5) from which the solution
policy is derived.

Z Z ZsqR(s, a) subject to

s€S acA(s)
Zsza (s | s,a) = sza,VSGS
SES a€A(s) a€A(s’)
Z Z ysaT(S/ | Sva)
s€S acA(s)
= Z (Q?s/a + ys/a) = Bsr, vs' e S
a€A(s’)
(iii) Z Z Tgq = Zﬁfpfk—FZBé, Vke
s€Erg (M) a€A(s) fer(m) s€rg(M)
(iv) Z Pfk = 1, Vf c f( )
ke[m]
M) > D =0
fer(M) acA(f)

(Vi) xsq >0, Vs € rp(M), k € [m],a € A(s)

B =0 !
'Bsi =1/8 VSi7£S1

1/2

Figure 2: (left) Multichain MDP with two TSCCs. (right) Markov
chain induced by some 7 € Ilgp.

VZl l; < Z Z Tsq < Ui, V

SEL; ac A(s)
Zsa € [0,1],ysa =0, Vs € S,a € A(s)
Pfk € [0,1], Vf € F(M), k € [m)]

Constraint (i) ensures that x is a stationary distribution
[Altman, 1999] [Puterman, 1994]; constraint (ii), which is
described in [Kallenberg, 1983] [Puterman, 1994], enforces
consistency in the expected average number of visits y ¢, for
any transient state-action f € 7(M),a € A(f); constraints
(iii), (iv) encode valid absorption probabilities psj, ensuring
that from any state f € 7(M), the process will be ultimately
absorbed into the recurrent components (M), k € [m];
constraint (v) preserves the non-recurrence of the states f €
7(M) by forcing zero steady-state occupancy; the strict pos-
itivity constraints (vi) preserve the transitions in the TSCCs
for yielding edge-preserving policies; finally, constraints (vii)
encode the steady-state specifications.

Theorem 1. Given an LMDP M, let (x,y,p) € Q and 7 be
defined as in (6), where Q is the feasible set of solutions to
LP (5), x5 := ZaeA(s) Lsa» Ys = EaeA(s) Ysar P 1= {5 €
S:xzs>0}and E, := {s € S : y; > 0}. Then, we have

e HEP~
Tea s€ Ey,ac A(s)
r(als) = { L= s€B,\E,acAls) (6
arbitrary o.W.

Proof. Let f € #(M). From constraint (v), we have z; = 0.
Two cases arise. If f ¢ E,, then y; = 0. It follows from
constraint (if) and (6) that 5y = 0 and T (f|f") = 0,Vf" €
L, as evidenced by

vr=Br+ > > ypdT(fIf ) (7)

frer(M) acA(f’)

_/Bf‘|‘zyf/ZT fIf s a)m(al ') = Br+ Y yp Te(f11)
j'/

Therefore, f € 7(M;). Now, consider the case where
f € E, and assume, for the sake of contradiction, that f &
r(Mx ) Hence, f € F' C r(M), for some TSCC F. Sum-
ming (7) over states f’ € F, we get that 3y = 0,Vf' € F.
From (7), we also have T,.(f|f') = 0,Vf' € (F(M) \
F)N E,. Therefore, F' C #(M,), yielding a contradiction.
Hence, f € 7(M ). We conclude that 7(M) C 7(M).

Consider s € ri(M) for some k& € [m] and assume,
for the sake of contradiction, that s € 7(M,;). From the
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positivity constraint (vi), we have that s € ry(M) N E,.
Since s € 7(M;), the column of the matrix T2° corre-
sponding to state s is zero. Hence, from constraint (i), we
have z; = 0, i.e., s ¢ E,, yielding a contradiction. Hence,
rr(M) C r(My),Vk € [m]. Since we have already shown
that #(M) C 7(M,), we conclude that r(M,) = r(M).
The second requirement in (3) now follows from constraint
(vi) and the definition of 7 in (6). Therefore, w € Ilgp. ]

We can readily state the following theorem establishing the
correctness of the proposed LP.

Theorem 2. Given an LMDP M = (S,A,T, R, 3, L, ®%°),
the linear program in (5) is feasible iff there exists a policy
m € Igp such that the Markov chain M, = (S,Ty) satis-
fies the specifications ®$°. Further, given an optimal solution
x*,y* of (5), the policy 7 as defined in (6) is optimal in the
class of policies I1gp and meets the specifications ®7°.

Proof. ( = ) Let (z,y,p) € @ denote a feasible solu-
tion to (5) and let 7 be defined as in (6). We will show that
PrX(s,a) = xsq,s € S,a € A(s), which implies that M,
meets the specifications ®7° per constraint (vii). By Theo-
rem 1, 7 € Ilgp. Therefore, 7(M;,) = 7(M), implying
PrX(f,a) = 0 = xfq,f € 7(M),a € A(f), where the
second equality follows from constraint (v).

First, note that from (7), we have yy = By +
o pypTx(f|f') for f € 7(M). This can be written as

Yrm) = (= Z5) 7 Bromy (®)

where Z, = [T (f', f)] € [0,1]TMIXITMI defines the
transitions between states in #(M ) under policy 7.

Second, recall that € IIgp and so the set 7 (M) for any
k € [m] is a TSCC of M. For every k € [m], we have

S Bi= D> me+ >y

s€rg(M) s€rg (M) s€r(M)

> > 2T

s€ErE (M) s'€r(M))UF(M) acA(s)

we— D ye D> Talsls) ©)

serg(M) s'eF(M)  serp(M)

(ss',a)ysra

where the first equality follows from (ii) and the fact that
r(M) is only reachable from states in 7 (M) U7(M). The
second equality follows by breaking the summation over the
union of the sets (M) and 7(M ) and the fact that 71, (M)
is closed. Combining (8) and (9), we get

Z (‘rs - Bs) = 6722/\/()([ - Zﬂ')_

SETE (M)

'L xe (10)

where L j is the submatrix of T’ of transitions from 7(M)
to 7, (M). Given the definition of Pr>°(s) in Lemma 1 and
the known form of 7.>° [Puterman, 1994], we recognize that
the right hand side of (10) is exactly equal to Bg( M)Pﬂyk,

where Py, = [psi], f € (M) are the absorption proba-
bilities from 7#(M) to 7, (M) under policy 7 [Feller, 1968;
Kallenberg, 1983]. We conclude that 3 .. \o@s =

> serp(m) P17 (s). Finally, :177T,k(/\/l)T,r k va-k(M) from
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Island 1

Island 2

Figure 3: Heat maps showing the steady-state probabilities Pr>°(s)
for states s € (M) belonging to the two TSCCs of the Frozen
Lakes example in Figure 1.

constraint (i) and (6), where T7; ; is the submatrix of T’; cor-
responding to transitions between states in (M ). Hence,
by the ergodic Theorem for unichain components [Altman,
1999], the solution is unique for each component ri, (M), k €
[m] so x = Pry°, the unique steady-state distribution.

( <) Suppose there exists such a policy 7 as in the state-
ment of Theorem 2. Then Pry° is well-defined as in Lemma
1. Hence, we can set x5, = Pr:°(s,a),s € S,a € A(s).
Recall that 7(M) = 7(M) since 7 € Ilgp, so we set x5, =
Pr°(s,a) = 0,s € #(M). The variables y¢,, f € 7(M)
and pyy can be set as in (8) and (10). It can be easily veri-
fied that the variables y,, s € (M) can now be defined in
terms of Zsq,Yfa, Pk, T(s'|s,a) and 5 such that the corre-
sponding constraints are satisfied. The optimality of 7* fol-
lows from the optimality of (z*,y*), Theorem 1 and the es-
tablished equality Pr>% = x*. O

5 Numerical Results

We first run our proposed LP (5) to calculate the steady-state
distribution Pr;°(s) for the Frozen Island example shown in
Figure 1. The values for the two recurrent sets (the two is-
lands) are shown in Figure 3. The heat map provides in-
sight into the way in which the agent meets the specifications.
Once entering the islands, the agent spends a large proportion
of its time in states S33, S3g, S48, S49, Sg1, and Sg4, in the sense
of average expected number of visits. The agent satisfies con-
straints (Liog1, [0.25,1]) and (Liog, [0.25,1]) largely by vis-
iting states s3g and sg;, respectively. Likewise, the agent
meets constraints (Lcanoet, [0-05, 1.0]), (Lcanoez, [0.05,1.0])
(Lgsn1, [0.1,1.0]), (Lgsnz, [0.1,1.0]) by visiting states sss,
S49, S48, and sggq, respectively. While satisfying the con-
straints, the agent maximizes the accumulated reward by vis-
iting state s4g over 25% of the time.

Figure 4 (left) shows the values of Pro°(s) along with the
optimal values x% obtained from LP (5), demonstrating that
the steady-state distribution matches that estimated by the LP
for every state. This holds also for all state-action pairs, i.e.,
Pr® = z*. This condition is critical to the proof of Theo-
rem 2, and ensures that the policy is both optimal and meets
the steady-state specifications. For comparison, we solve
LP (4.7.6) from [Kallenberg, 1983] to obtain optimal values
x*,y*, then form the corresponding policy 7. Results are
shown in Figure 4 (right). As with Example 1, the produced
policy fails to yield a steady-state distribution equal to x*.

Table 1 demonstrates the consequences when Pr2° #£ z*.
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Specifications Rewards
Method Logs (> 0.25) Canoe (> 0.05) Fish Rod (> 0.1)
Island 1 Island 2 Island 1 Island 2 Island 1 Island 2 R* RX>®
x* Pr>® x* Pr> x* Pr> x* Pr> x* Pr>® x* Pr>
Proposed LP  0.25 0.25 025 025 0.05 005 005 005 025 025 0.10 0.10 0.3547 0.3547
Kallenberg 0.25 0.17 025 036 0.05 0.04 005 007 026 0.19 0.10 0.14 0.3621 0.3278

Table 1: Steady-state specification comparison. Bold red text indicates violated specifications. Constraints are specified in the header for

each label type.

For each specification (L;,[l,u]) € ®9°, Table 1 shows
eTxj and PryY(L;) = > e, Pra(s).  For the pro-
posed LP, all of the specifications are met. However, for
Kallenberg’s formulation, although z7, =—and z7 =~ meet
the specification, the policy yields steady-state distributions
Pr°(Liog) and Pry°(Leanoe1) Which violate the specifica-
tions (the violations are highlighted with bold red text). Ad-
ditionally, we show the optimal reward R* output by the LP,
as well as the average expected reward of the obtained policy
R =3 ses 2oaca(s) Pra (s,a)R(s, a). Although R* ob-
tained by Kallenberg’s formulation is larger than that of the
proposed LP, the proposed LP produces a policy which gives
a larger R°°.

Finally, we execute the policies to verify the validity of the
formulations and to further demonstrate the failure of Kallen-
berg’s formulation to meet specifications and yield optimal
rewards. Define S; and A, as the state and action, respec-
tively, of the Frozen Island example at time ¢ assuming initial
distribution 8 and policy . The average number of visits
frn and average reward g, ,, up to time n are defined as

1 n
frn(D) == 10(8), 1r(s) = { 5" ;f (11)
t=1
1 n
grn =~ R(Si, A, St11) (12)

t=1

For f (L) and g ., we take an ensemble average over 5000
paths. In Figure 5 (left), the solid and dotted lines show the
average number of visits to the states labeled as logs, the
dashed and dash-dotted lines indicate the steady-state distri-
butions, and the square markers show the specification lower
bound for the logs. For the proposed LP, fr »(Liogi) con-

03 Proposed LP Kallenberg
® ° ® x ) x
0.2 o x X3
° of | © P (s)
0.1 ® x
o
® ® a x
0 % secPees®es® cosesss’os® e® 022960e%9e° _ 2pe0000 @@
35 45 55 65 35 45 55 65
State (s) State (s)

Figure 4: Example showing that Pry°(s) = z%,s € r(M) for the
Proposed LP, but not for Kallenberg’s formulation.
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Figure 5: Execution of policy, showing (left) average visits and
(right) average reward up to time n.

verges to Pr° (Liog1 ) and meets the specification. For Kallen-
berg’s policy, although f ,,(Liog1) converges to Pr”(Liogi ),
it fails to meet the specifications for the reason described ear-
lier. In Figure 5 (right), the solid and dotted lines show the
average reward, and the dashed and dash-dotted lines indicate
the reward which was output by the LP. While the proposed
LP converges to the LP reward, as described earlier, Kallen-
berg’s formulation converges to a different reward.

We also demonstrate the scalability of the proposed LP
by running CPLEX 12.8 simulations on a standard desktop
computer with 128GB of RAM for random instances of the
Frozen Island problem. See Table 2 for runtime results.

Optimal LP
Runtime

8% 8
0.0049

16 x 16
0.0837

32 x 32
0.6587

64 x 64
6.5122

128 x 128
410.75

Table 2: Average runtime (in seconds) of 20 instances per LP for the
three-island problem described in Figure 1. These islands combined
form an n X n grid. In each of the smaller islands, logs are randomly
distributed over 1/4 of the states and a canoe (fishing rod) is placed
in the top-left (bottom-right) tile. For these experiments, we have the
constraints (Liog1 U Liog2, [0-3,1]), (Leanoet U Leance2, [0.05, 1]) and
reward function R(-, -, Lgsh1 ULssn2) = 1, R(+, -, S\ Lfisn1 U Lfisn2) =
0.

6 Conclusion

The multichain SSPS problem was defined for deriving poli-
cies that satisfy constraints on the steady-state behavior of the
agent. A linear programming solution was proposed and its
correctness proved for the class of edge-preserving policies.
Simulations of the resulting policies demonstrate that our ap-
proach overcomes limitations in the literature.
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