
Robustness Computation of Dynamic Controllability in
Probabilistic Temporal Networks with Ordinary Distributions

Michael Saint-Guillain1∗ , Tiago Stegun Vaquero2 , Jagriti Agrawal2 and Steve Chien2

1Université Catholique de Louvain (UCLouvain), Belgium
2Jet Propulsion Laboratory, California Institute Technology, CA, USA

michael.saint@uclouvain.be, {tiago.stegun.vaquero, jagriti.agrawal, steve.chien}@jpl.nasa.gov

Abstract
Most existing works in Probabilistic Simple Tem-
poral Networks (PSTNs) base their frameworks
on well-defined probability distributions. This pa-
per addresses on PSTN Dynamic Controllability
(DC) robustness measure, i.e. the execution suc-
cess probability of a network under dynamic con-
trol. We consider PSTNs where the probability dis-
tributions of the contingent edges are ordinary dis-
tributed (e.g. non-parametric, non-symmetric). We
introduce the concepts of dispatching protocol (DP)
as well as DP-robustness, the probability of suc-
cess under a predefined dynamic policy. We pro-
pose a fixed-parameter pseudo-polynomial time al-
gorithm to compute the exact DP-robustness of any
PSTN under NextFirst protocol, and apply to vari-
ous PSTN datasets, including the real case of plan-
etary exploration in the context of the Mars 2020
rover, and propose an original structural analysis.

1 Introduction
Temporal networks formalize the arrangement and inter-
dependencies of tasks, or activities, that compose an opera-
tional project. In a simple temporal network (STN), activi-
ties are modeled as a finite set of time events. In practice,
some activity durations, considered as contingent, remains
unknown beforehand. In the case some stochastic knowledge
on the uncertain durations exists, then one can model it as
(estimated) probability distributions, leading to the extending
concept of probabilistic STN, or PSTN. Solving a STN then
amounts at finding an assignment of time values to events
that fulfils all the constraints between events. Whenever such
schedule exists, a network is said to be controllable. When
the operational assumptions enable it, the schedule may be
dynamically constructed, the time values being assigned as
durations are observed. Yet, even under dynamic decision,
due to unfortunate durations a network may reveal uncontrol-
lable. How likely is a PSTN to lead to a successful execution?

Provided some stochastic knowledge on contingent activity
durations, the degree of dynamic controllability (DDC) of a
PSTN can be quantified, as the success probability of a given
∗Contact Author

Figure 1: A simplified hypothetical sol on Mars for two planetary
rovers, encoded as a PSTN. Bold: controllable. Dashed: contingent.

task network. The current literature proposes DDC computa-
tion methods for PSTNs that involve unimodal distributions
only (uniform or normal), or exploit Monte Carlo simulation,
which admits ordinary distributions. On both cases, the com-
puted DDC values are approximations only, without guaran-
tee on the true robustness of the network.

Contributions. We propose the first efficient DDC (aka.
robustness) computation method capable of dealing with
PSTNs with any possible ordinary probability distributions
(i.e. non-parametric, non-symmetric, multi-modal, or even
hand-made). Our method computes a valid lower bound on
the exact DDC of a PSTN. Under a specific dispatching proto-
col, it computes the exact execution success probability. Fur-
thermore, it enables to compute a lower bound on each task’s
own success probability within that network, which can be
mapped to activity temporal brittleness. On the application
side, we propose a new method for identifying structural bot-
tlenecks in temporal brittleness analysis, applied to the real
case study of the Mars 2020 rover’s task networks.

2 Temporal Networks
STN. Simple Temporal Network is a popular formalism for
temporal constraint reasoning [Dechter et al., 1991], framed
as a constraint satisfaction problem over time point variables:
a STN is a tuple 〈T,C〉, where T is a set of time points
(ti ∈ T ⊆ IR) and C is a set of constraints c(ti, tj) that en-
code bounds on the differences between pairs of time points:
lij ≤ (tj − ti) ≤ uij , i.e. (tj − ti) ∈ [lij , uij]. A solution is
called a schedule, a specific assignment to all ti ∈ T . Con-
straint c(ti, tj) represents the valid bounds for the duration
of an activity defined by time points (ti, tj), whereas tj − ti
gives the activity duration set up by a specific schedule.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4168

Probabilistic STN. Most realistic operational contexts ac-
count for temporal uncertainty. PSTN is a natural extension
of STN in which probability density functions are associated
to activity durations [Tsamardinos, 2002]. The PSTN for-
malism partitions both sets T and C as T = TE ∪ TC , where
executable time points TE are determined by the agent, and
contingent time points TC are assigned by nature. The con-
straints set is C = CR ∪ CC where: requirement edges, CR,
are controlled by the agent; and contingent edges, CC , are de-
termined by nature, each element being described as a proba-
bility distribution (tj− ti) = Xi,j . A schedule assigns values
to executable time points only. The duration (tj − ti) asso-
ciated to any contingent time point tj remains unknown prior
to execution. In absence of stochastic knowledge for a con-
tingent duration (tj − ti), a common usage is to consider it
uniform: Xij ∼ U(lij , uij). A temporal network in which
that assumption applies to all its contingent edges is called a
STN with Uncertainty: STNU [Vidal and Ghallab, 1996].

Illustrative example: rover operations. An hypothetical
example of Mars rovers PSTN is depicted in Fig. 1. Each
rover has three activities in sequence: drive towards a science
site, experiment, and relay results to an orbiter. A special time
point t0 = 0 represents the beginning of the operations. Time
events are linked by temporal constraints, either controllable
or contingent. In our example, the rovers work independently
during their driving and science activities. They do not coor-
dinate until the communication time window, which strictly
happens between time 600 to 700. Communication tasks can-
not overlap, and Rover1 is chosen to relay first. However, du-
ration of driving and experimental activities are highly uncer-
tain. In practice, distributions can be estimated from histor-
ical observations. Even an inaccurate stochastic knowledge,
e.g. obtained accurate observations, leads to valuable results
in practice (as illustrated in [Saint-Guillain, 2019] for Mars-
inspired operations). In Fig. 1, distributionX1,2 describes the
stochastic duration of driving activity (t1, t2), encoded in the
PSTN as a contingent constraint c(t1, t2) ∈ CC , t2 ∈ TC .

3 Robustness
Ideally, a perfect assignment of all time points in TE would
work for any situation imposed by nature. In practice that is
very restrictive, if not impossible. Instead, we refer to a strat-
egy mapping observations to schedules during execution. In
fact, if the PSTN of Fig. 1 involves some probability distri-
bution with unbounded tail, then such perfect schedule does
not exist. Under uncertain activity durations, how likely is
the execution of a PSTN to succeed? What is the probability
that our rovers get their relay activities (≥20 long for Rover1,
≥30 long for Rover2) during the communication window?

3.1 Controllability
In STNU and PSTN realm, consistency is not directly applied
due to the unpredictable assignment of contingent time points
and edges. A PSTN relies instead on checking controllabil-
ity, which verifies whether an agent can generate a consistent
schedule to any situation that may arise in the external world.
Controllability theory is usually applied to STNUs, but can

also be applied to more general PSTNs (distributions being
not restricted to uniform ones), at specific different levels.

An PSTN is said to be strongly controllable (SC) [Vidal
and Ghallab, 1996] iff there exists at least one strong sched-
ule (a.k.a. static schedule), i.e. a “universal” schedule that fits
any situation, guaranteed to satisfy all temporal constraints
regardless of the nature’s assignments. That is motivated by
cases where agents have to compute a schedule offline before
making any observations, with no opportunity to adapt on-
line. Nevertheless, in practice a valid static schedule is rarely
available in dynamic and unpredictable environments.

A more practical level would be dynamically controllable
(DC) [Morris et al., 2001; Morris, 2014], in which we check
whether there exists an execution strategy such that, at any
time during execution, the partial sequence executed so far
extends to a complete solution, whatever durations remain to
be observed. It requires the agent to be able to determine, in a
dynamic fashion, a valid assignment of executable time points
based on observed past contingent ones, without violating any
future temporal constraints.

3.2 Degrees of Dynamic Controllability
Whereas controllability checking has been proven polyno-
mial in many cases [Bhargava and Williams, 2019], evalu-
ating the degree of controllability of uncontrollable networks
is still an open problem. In [Akmal et al., 2019], the degree
of dynamic controllability (DDC) of a STNU is introduced.
When considering uniform distributions only, the DDC is de-
fined as the proportion of contingent edges realizations in
which the temporal network remains dynamically control-
lable.

In the context of a PSTN, the DDC must rather be defined
in terms of the probability mass of the controllable realization
space. That definition of DDC is equivalent to the robustness
measure, independently introduced in [Brooks et al., 2015],
as the probability of the network to be successfully executed
under dynamic control. Assuming discrete distributions:

DDC(N) ≡
∑
ξ∈Ω

P{ξ} Φ(N, ξ) (1)

where Ω is the set of all possible realizations of the ran-
dom contingent edges’ duration. The deterministic function
Φ(N, ξ) takes value 1 iff the network N is dynamic control-
lable in scenario (a.k.a. situation) ξ. In fact, in both cases
and given scenario ξ, a PSTN reduces to a regular STN, as
the contingent edges get assigned fixed durations. Whereas
Φ(N, ξ) can be checked in linear time, the computation of (1)
is intractable in practice, as the size of Ω grows exponentially
with the number of contingent edges.

3.3 Dispatching Protocols
Operational contexts such as space missions usually forbid
recomputing a schedule in the middle of the operations [Chi
et al., 2019]. Yet, the use of a static schedule is often either
impossible in practice, or comes with a significant waste in
terms of operational time. Such approach is currently oper-
ating Curiosity rover, with static schedules that overestimate
processing times by 30% in average [Gaines et al., 2016].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4169

Future planetary rover M2020 will be equipped with a non-
backtracking onboard scheduler, designed to take online de-
cisions based on current observations [Agrawal et al., 2019;
Chi et al., 2018; Rabideau and Benowitz, 2017]. However,
because of computational limitations, such online decisions
must remain very light, thus following a predefined strategy:
a dispatching protocol (DP).

We derive the concept of DP from that of recourse strategy
[Birge and Louveaux, 2011]. Given the state at time t and
new observation ξt, a DP function returns an assignment of
(a subset of) the n remaining executable time points:

TE → IRn = DP(N, ξt)

We distinguish three families of DP’s, depending on the com-
plexity of DP(·). First, the case where DP(·) is constant time
directly corresponds to a static/strong schedule. Second, the
case of non-polynomial time functions generally stands for an
online reoptimization process, aimed at solving the inherent
multistage stochastic program. In that case, there is no pre-
defined strategy, a new scheduling problem is solved at each
time step, regardless the computational expense.

Finally, the case of a (non-constant) polynomial-time
DP(·) allows agents to dynamically adapt the schedule, while
being computationally limited. For example, Rabideau and
Benowitz [2017] describe a O(n2) quadratic DP(·) protocol
to be computed by the future M2020 onboard scheduler, in
order to make online decisions based on observations and
pre-optimized parameters [Chi et al., 2019]. Brooks et al.
[2015] consider a linear time protocol, called NextFirst pro-
tocol, which we further describe below.

DP-Robustness. Most of existing work in the literature
aims at computing the DDC in (1). Yet, one may be interested
in the success probability of a networkN under a specific dy-
namic dispatching protocol P , the DP-robustness:

rP(N) =
∑
ξ∈Ω

P{ξ} ΦP(N, ξ) (2)

where ΦP(N, ξ) returns 1 iff following protocol P in situ-
ation ξ leads to a successful execution. Given a dispatching
protocol P , the DP-robustness necessarily constitutes a lower
bound on the true DDC of a network:

∀P : rP(N) ≤ DDC(N).

It is worth noting that in many operational contexts, under
computationally limited settings (e.g. Mars 2020 rover), a
DP-robustness measure based on an appropriate protocol may
be more adequate than the DDC, as the latter relies on optimal
online re-scheduling, which is intractable in general.

NextFirst dispatching protocol. The NextFirst protocol
[Brooks et al., 2015], also known as DC-dispatch [Morris et
al., 2001], achieves a O(n) linear time dynamic control by
starting activities as soon as possible. Let tj be a controllable
time point in a PSTN, and Ij = {(0, j), . . . , (i, j)} the set
of incoming edges in tj . We assume Ij to contain control-
lable edges only, which one can easily enforce as shown in
Fig. 2(b). Therefore, tj is assigned a time value as soon as all

Figure 2: (a) An example of NextFirst incompleteness on a basic
STN. (b) The network can be transformed in order to avoid synchro-
nisation points involving contingent incoming edge(s).

Comp. value Prob. distribution

≤ ' ∼U ∼N All Cont.

Monte Carlo X X X X X
[Akmal et al., 2019] X X X

[Cui et al., 2015] X X X
[Vaquero et al., 2019] X X X X
[Cesta et al., 1998] X X

[Wilson et al., 2014] X X
[Saint-Guillain, 2019] X X X X

Our proposal X X X X X

Table 1: Existing DDC measurement methods. The key properties
we consider are 1) Quality of the computed value: lower bound (≤)
on DDC, approximation (') of DDC, and 2) Properties of the sup-
ported probability distributions: Uniform, Normal, any ordinary dis-
tribution, and finally whether distributions can be continuous).

the preconditions are validated, that is, all the t0, . . . , ti time
points are known:

tj = max(t0+l0j , . . . , ti+lij). (3)

In the case tj > min(t0+u0j , . . . , ti+uij), the dynamic ex-
ecution is considered as failed, and is interrupted. Back to our
PSTN example in Fig. 1, the value of t11 is then dynamically
set to max(t10, t6 + 5) as soon as tasks Rover2:expe and
Rover1:relay are completed. Execution fails if t11 exceeds
t6 + 10. Eventually, we hope for t13 ≤ 700.

Incompleteness of NextFirst. The simplicity of NextFirst
enables efficient DP-robustness computation, but comes at
the expense of being incomplete. A more clever dispatch-
ing protocol assigns a time value based not only on past time
events, but also remaining ones. Fig. 2(a) shows an example
of a basic (deterministic) STN, for which operating t1 as soon
as possible, following (3), leads to a failure.

4 Landscape of Robustness Measures
Table 1 summarizes the existing contributions on computing
(or approximating) the DDC of a network. Recent studies,
such as [Cui and Haslum, 2019], focus on computing valid
dynamic decisions for dynamically controllable networks,
whereas we focus on uncontrollable PSTNs. Finally, we do
not cover conditional (P)STNs [Williams et al., 2009], nor
(P)STNs with resource usage [Kumar et al., 2018].

In the context of dynamic controllability, the work of [Ak-
mal et al., 2019] is the first attempt to compute the true DDC
of a network. They propose an approximation technique,
achieving good accuracy rate. In [Brooks et al., 2015], a
Monte Carlo sampling approach approximates the DDC, un-
der the NextFirst protocol. Other approximated robustness

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4170

metrics have been considered: Cesta et al. [1998] and Wil-
son et al. [2014] see the robustness of a network as a poten-
tial of solution flexibility (i.e. aggregate time slack). They
coarsely approximate how easily a schedule can be adapted
during operations. A quite similar approach has been pro-
posed by [Tsamardinos, 2002], by reasoning on the proba-
bility distributions describing the gaps between the time con-
straint bounds. All these approaches suffer from the fact that
they do not account for correlation between temporal con-
straints, hence over-estimating the true robustness (or flexi-
bility). Cui et al. [2015] define the robustness of STNUs
(i.e. under non-probabilistic uncertainty) as the maximum
variations that all the contingent durations may face while
still having strong/dynamic control. Based on the same idea,
Vaquero et al. [2019] define the notion of activity tempo-
ral brittleness, by analysing how much duration deviation
(based on a distribution) each activity, taken separately, can
absorb before the network becomes dynamically uncontrol-
lable. [Saint-Guillain, 2019] constitutes the first attempt at
computing a valid lower bound on the DDC, handling ordi-
nary distributions. Yet, their computational method applies
to a particular PSTN only, leading to an approximation in the
general case. Although not expressed by Table 1, only sam-
pling based methods, such as Monte Carlo, allow to consider
PSTNs with dependent contingent constraints realizations.

5 Exact Computation of DP-robustness
Assumptions and network preprocessing. We assume
discrete time horizon and probability distributions. The hori-
zon is noted H = 1..h. We also assume independence be-
tween the activity duration probabilities. Let then pdij =
P(tj − ti = d) be the probability that the uncertain activity
duration, represented by contingent edge (i, j), is of d ∈ H
time units. The dynamic execution follows the NextFirst dis-
patching protocol. To each time point ti ∈ T is always asso-
ciated a constraint [l0i, u0i], defining the valid time window
w.r.t. t0. If no such is specified, we assume [0,∞[. Follow-
ing Fig. 2(b) we transform the network to avoid contingent
synchronisation points. We call tleaf ∈ TC the final time event
(e.g. t12 in Fig. 1). In case of multiple final events, we add a
final synchronisation one, that links these with [0,∞[edges.
Exact computation. We now describe how to compute the
DP-robustness rnf(N) of a networkN , using closed-form ex-
pressions instead of (1), when using NextFirst protocol.

We are interested in the probability that every controllable
time point gets assigned a time unit within its boundaries:

rnf(N) = P
{ ∧
tj∈Tc

tj ≤ min(t0+u0j , . . . , ti+uij)
}

(4)

= P
{
tleaf ≤ min(t0+u0j , . . . , ti+uij)

}
=
∑
t∈H

Pleaf(t) (5)

A little abuse of notations: probability P{α = >} for a log-
ical formula α to be true is denoted P{α}. Since NextFirst
execution interrupts as soon as something goes wrong, the
network’s success probability is equivalent to that of tleaf: (4)
reduces to (5), where Pj(t) is the random function that re-
turns the unconditional probability that tj ∈ TC gets dynami-
cally assigned time unit t, when following NextFirst protocol.

Pj(t) is recursively computed from tj to t0. In general, the
NextFirst DP-robustness of any time event tj is:

rnf(j,N) =
∑
t∈H

Pj(t). (6)

The remaining of this section describes the computation of
Pj(t). We necessarily have Pt0(0) = 1 and Pt0(t) = 0 for
t > 0. For any time point tj , other than initial t0, let

fj(t) ≡ P
{
t = max

i:1..n
(ti+li) ∧ t ≤ min

i:1..n
(ti+ui)

}
(7)

be the probability that tj may be assigned value t, when not
considering its lower bounding constraint l0j , if any. Time
bounds [lij , uij], i : 1..n are noted [li, ui] for short. NextFirst
protocol tells us t must be equal to max(t1+l1, . . . , tn+ln),
except if t comes too late, as suggested by the second condi-
tion of (7). Then, now considering constraints l0j as well:

Pj(t) =


∑l0j
t′=0 fj(t

′) if t = l0j
fj(t) if l0j < t ≤ u0j , t ≥ 0

0 otherwise.
(8)

The summation in the first case accounts for the situations in
which ti+lij < l0j . Finally, the computation of fj(t) de-
pends on the type of time point tj which belongs to: either
transition or synchronisation point.

Transition point. The time point has at most one incoming
edge (i, j), either contingent or controllable, in addition to
the incoming controllable edge (0, j). This is true for all time
points in Fig. 1 excepted t0 and t11. Under NextFirst, where
for any controllable event, pdij = 1 if d = lij , 0 otherwise:

fj(t) =
∑

0≤d≤t

pdij · Pi(t− d) if t ≤ u0j , 0 otherwise, (9)

Synchronisation point. A tj having three or more control-
lable incoming edges (e.g. t11 in Fig. 1) is called a synchro-
nisation point. From a probability point of view:

fj(t) = P
{ ∧
i:1..n

ti+li ≤ t ≤ ti+ui︸ ︷︷ ︸
α

∧¬
(∧
i:1..n

ti+li < t
)

︸ ︷︷ ︸
β

}
(10)

= P
{ ∧
i:1..n

ti+li ≤ t ≤ ti+ui)
}
+ P

{
¬
(∧
i:1..n

ti+li < t
)}

− P
{ ∧
i:1..n

ti+li ≤ t ≤ ti+ui ∨ ¬
(∧
i:1..n

ti+li < t
)}

(11)

using the relation P{α ∧ β} = P{α} + P{β} − P{α ∨ β}.
Let us assume that all ti’s involved in the synchronisation
are mutually independent, not to be confounded with that
assumed on the contingent constraints TC . We later discuss
how to deal with dependency. In such case, the P{α} and
P{β} terms of (11) become straightforward to compute:

P{α} = P
{∧
i:1..n

t−ui ≤ ti ≤ t−li
}
=
∏
i:1..n

Fi(t−li)−Fi(t−ui−1)

(12)

P{β} = 1− P
{ ∧
i:1..n

ti < t−li
}
= 1−

∏
i:1..n

Fi(t−li−1) (13)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4171

where Fi(t) is the cdf of ti: Fi(t) =
∑
t′:1..t Pi(t

′). If there
is no upper bound constraint ui (i.e., ui = ∞, i : 1..n), then
P{α ∨ β} = 1. Otherwise, we have P{α ∨ β} =

P
{ ∧
i:1..n

ti+li ≤ t ≤ ti+ui ∨ ¬
(∧
i:1..n

ti+li < t
)}

= 1− P
{ ∨
i:1..n

ti > t−li ∨ ti < t−ui ∧
∧
i:1..n

ti < t−li
}

= 1− P
{ ∨
i:1..n

ti < t−ui ∧
∧
i:1..n

ti < t−li
}

Removing redundant conjunctions due to t−ui ≤ t−li leads
to the noticeable square shaped clauses:

1−P
{
(t1 < t−u1 ∧ t2 < t−l2 ∧ . . . ∧ tn < t−ln)

∨ (t1 < t−l1 ∧ t2 < t−u2 ∧ . . . ∧ tn < t−ln)

. . .

∨ (t1 < t−l1 ∧ t2 < t−l2 ∧ . . . ∧ tn < t−un)
}

(14)

Let Ai be the random event in which the conjunction at line i
of (14) is true. The intersection of any two or moreAi’s leads
a conjunction of same size n. For example, P

{
A1 ∩A2

}
=

P
{

(t1 < t−u1 ∧ t2 < t−l2 ∧ . . . ∧ tn < t−ln)

∧ (t1 < t−l1 ∧ t2 < t−u2 ∧ . . . ∧ tn < t−ln)
}

= P
{

(t1 < t−u1 ∧ t2 < t−u2 ∧ . . . ∧ tn < t−ln)
}
.

Similarly, A1 ∩ A2 ∩ Ai also leads to a A-shaped conjunc-
tion of exactly n inequalities, and so on. Since the ti random
variables are assumed mutually independent, the probability
of an event AI⊆{1..n} =

⋂
i∈I Ai is simply the product of all

the probabilities of its terms. For example, forAI = A1∩A2:

P{A1 ∩A2} = F1(t−u1−1) · F2(t−u2−1) · . . . · Fn(t−ln−1).

Using the inclusion-exclusion principle, we finally rewrite:

P{α ∧ β} = 1− P
{ ⋃
i:1..n

Ai
}

= 1−
∑
k:1..n

(
(−1)k−1

∑
I⊆{1..n}
|I|=k

P
{⋂
i∈I

Ai
})

. (15)

Since we assumed ti variables to be mutually independent,
P
{⋂

i∈I Ai
}

is computable as a product of Fi(·)’s. How-
ever, what if (a subset of) the ti’s are not independent?
Proposition. Random variables t1, . . . , tn are dependent if
they share at least one common unpredictable ancestor. A
time point is a predictable ancestor of ti iff its value is deter-
ministic, and can be reached from ti by reversing edges.
Proof: Independence hypothesis between contingent con-
straints implies ti’s to be mutually independent if they share
no common ancestor. Now suppose: a) All common ances-
tors are predictable. An equivalent network is obtained by re-
moving those and adding a constraint [l0j ,∞[to all remaining
events, where l0j is the predicted value of the closest ancestor.
b) At least one common ancestor ta is not predictable. Know-
ing ti’s value limits the possible realizations for ta, which in
turn influences any ti′ having ta as ancestor.

Corollary. In the case some contingent constraint has
bounded probability distribution, (b) does not hold in general.
Yet, we can still infer that if they do not share any common
unpredictable ancestor, the events are consequently mutually
independent. This is the case for t6 and t10 in Fig. 1.
Imposing independence. Whenever a subset of the ti’s are
potentially dependent, we impose ”local independence” on
them, by fixing the time value of their closest common ances-
tor ta, using the law of total probability:

fj(t) =
∑
t′∈H

fj(t | ta = t′) · Pa(t′). (16)

In fact, {ta = 0, ta = 1, . . . , ta = h} is a partition of Ω.
Probability fj(t | ta = t′) is computed after reprocessing
part of the network, up to tj , with ta fixed to value t′. That
part corresponds to all the uncommon ancestors, that is, every
time point being an ancestor of at least one, but all, of the ti’s.

Computational complexity. At synchronisation time
points, the complexity of computing (15), given t, depends
on the maximum number L of dependent events at a
synchronisation point. The cdfs F (·) being incrementally
maintained, (15) requiresO(L·2L) operations, to be repeated
at most h times through (16). Putting pieces together, the
overall worst-case complexity of computing rnf for a PSTN
involving m = |T | time events is bounded byO(mh2L · 2L).

6 Experimental Validation
We validate our approach on the same dataset as [Akmal et
al., 2019] , involving 452 dynamically controllable and 110
uncontrollable instances, with uniform contingent durations.
Durations are continuous, whereas our method requires a dis-
crete horizon H = 1..h, so we must round each time con-
straint [l, u], in a pessimistic way: dle, buc in the controllable
case, dle, due for contingent edges. For better accuracy, we
include the first D decimals of time bounds l, u at round-
ing. More decimals leads to better accuracy, but increases
the computation times as each decimal multiplies h by 10.

Computational method. For each of the 110 uncontrol-
lable PSTNs, we compare the rnf computed values with
Monte Carlo (MC) simulations, which simply record the av-
erage success rate of NextFirst protocol onM randomly sam-
pled scenarios. The following table gives an overview of the
computation times (min, max, mean, geometric mean) as well
as the average difference |rnf−MC|, and maximal difference
dmax, between predictions and simulations:

min max mean geo |rnf-MC| dmax

M = 104 0.01 0.62 0.12 0.08 0.003 0.01
M = 105 0.14 5.58 1.06 0.73 0.0007 0.004

rnf D=2 0.0002 3.95 0.34 0.09 n.a. n.a.
rnf D=3 0.0002 52.9 3.85 0.18 n.a. n.a.
We now replace the initial uniform distributions involved in
the dataset by ordinary ones, randomly generated within the
initial bounds. Examples are provided in Fig. 3. The follow-
ing table shows the average results obtained, where we no-
tice an increased computation time for MC, due to more ex-
pensive sampling operations on non-parametric distributions:

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4172

Figure 3: Examples of randomly generated ordinary distributions.

min max mean geo |rnf-MC| dmax

M = 104 0.02 2.47 0.39 0.24 0.002 0.01
M = 105 0.02 20.6 3.5 2.18 0.0007 0.004

rnf D=2 0.0004 3.23 0.29 0.08 n.a. n.a.
rnf D=3 0.0006 53.8 4.38 0.21 n.a. n.a.

Experiments thus validate our equations, but also point poten-
tial limitations of our framework, in terms of computational
time. When rounding time values to D=3 decimals, the re-
sulting horizon is of h= 49300 time units in average. For
some instances, rounding to 4 decimals results in unreason-
able computation times (and memory usage).

NextFirst dispatching protocol. We now compare our
results (rounding to D=3 decimals) with that of [Akmal et
al., 2019], on the 110 uncontrollable instances. In the table
below, line a (resp. b) corresponds to the number of instances
for which the robustness measure (resp. simulations) used in
[Akmal et al., 2019] is of at least the probability p:

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a 97 92 86 80 73 67 61 49 32 0
b 98 91 85 79 70 64 56 45 29 5

rnf 99 94 89 82 76 68 59 48 32 5

The average robustness difference a − rnf is of −0.011, a
percent of probability gain. Tested on the 452 dynamically
controllable instances, NextFirst obtains 1.0 robustness on
all of them. It means the dynamically controllable instances
should not be considered as ”hardly controllable”, since
solved by a simple dispatching protocol. Our results show
that despite its simplicity, NextFirst achieves noticeably
good robustness compared with a state-of-the-art method.
Consequently, the DP-robustness of NextFirst provides a
pertinent, close lower bound to the true DDC of a PSTN.

7 Application: Mars 2020 Rover’s Task
Network Structural Analysis

Our computational method allows to compute a valid lower
bound on the probability of success of each time event of a
PSTN, under dynamic control, following eq. (6). We exploit
that ability and propose a generic structural brittleness analy-
sis method (inspired by the analysis in [Vaquero et al., 2019])
which computes the impact, on each and every time events
of the network, and on the network itself, of increasing (or
decreasing) the uncertainty of an activity a by α%.

As a proof-of-concept, let us analyse a typical Mars
2020 rover (M2020) sol type, represented as a PSTN, of 18
contingent activities (36 time events). As our M2020 PSTN
only (currently) involves Normal distributions, increasing (or
decreasing) an activity’s uncertainty amounts at modifying
its standard deviation by α%. The following table shows
how the network gets structurally affected by α = +50%.

Figure 4: Structural dependency matrix of a M2020 task network of
typical size: 40 activities. Empty rows are not shown. The darker
the color of a cell, the bigger the robustness impact.

Cell at row i, column j, gives a amount of probability loss of
activity j success when i’s uncertainty is increased by 50%:

3 4 ... 12 13 14 ... 18 rnf

95.4 51.0 ... 90.5 90.5 90.4 ... 100 43.7
3 -8.5 -3.9
4 -0.2 -0.2
... ...
12 -9.6 -9.6 -9.6 -4.7
13 -0.0 -0.0
14 -0.3 -0.1
... ...
18 -0.0 -0.0

Empty rows and column are not displayed. The second
line of the table gives the initial success probability (%) of
each activity; rnf (last column) stands for the entire network’s
DP-robustness. In fact, the resulting matrix appears quite
sparse, meaning that most activities (1-2, 5-11, 15-17) have
no impact at all on the robustness of the network. Some
activities (3, 4, 13, 14, 18) impact only their own robustness,
although some are really unstable: 4 has only 51% success
probability, but does not affect the remaining activities.
Finally, activity 12 (a long duration drive) here should be
considered as structurally critical, as it impacts others (13,
14); it also has the biggest overall impact on the network
(-4.7%). This activity has a tight execution time window,
which in fact, makes it brittle. This is the same kind of hardly
constrained activities observed in [Vaquero et al., 2019].

Finally, Fig. 4 gives an overview on the structural depen-
dency of another M2020 task network. We notice the most
critical activities as being 16, 22, 35, 38. Activities 16 and
22 are remote sensing activities (SuperCam). 35 and 38 are
NavCam imaging activities. Unlike 12, they enjoy large time
window and thus are likely to succeed (e.g. 22’s uncertainty
does not even impact its own success probability); however,
they have a critical impact on many activities later on. These
are typically the kind of activities that would not be spotted
by previous brittleness analysis, unlike e.g. 5 and 6.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4173

Figure 5: The vehicle first travels to Patient 1 (P1) location with a
stochastic travel duration. The patient show-up time is also stochas-
tic, and may be late. P1 is then picked up (P1′) as soon as the vehicle
arrives and the patient shows up. Then P2 is picked up (P2′). Now
P2 is dropped to her appointment (D2), in time, which finishes at a
time D2′ . Meanwhile, P1 is also dropped to her appointment. Af-
ter dealing with other patients (e.g. P3), P1 is picked up (P1′′) at
most 20 minutes after the end of her appointment. P2 (P2′′) is then
picked up before dropping P1 (D1′′) at home, fulfilling a maximum
ride time constraint, and so it is for P2.

8 Other Potential Application Domains
PSTNs are not limited to the coordination of planetary rovers.
When considering ordinary distributions, it could contribute
at providing new, original tools for solving various challeng-
ing real life problems. In the following applications, both
PSTN and NextFirst seem particularly well suited.

On-demand public transportation. Consider the problem
of transporting patients from their home to medical appoint-
ments [Paquay et al., 2020]. The so-called dial-a-ride prob-
lem (DARP) admits a significant part of temporal uncertainty:
patient delays, traffic jams, appointment durations. Each re-
quest consists in picking up a patient from home and drop-
ping it at an appointment, and return it to home. Because the
limited number of vehicles, the requests are typically mixed.
The problem consists in scheduling the pickup and deliveries
so that the probability of meeting all the constraints is maxi-
mized. In such context, only sampling approaches have been
proposed in order to approximate the probability of success of
a schedule. The PSTN formalism is particularly well suited
for describing such a schedule, as illustrated in Fig. 5. Not
only the PSTN formalism applies to such operational context,
but also the method we propose efficiently computes the exact
success probability of a given schedule.

Operations management in hospitals. Consider the prob-
lem of managing the use of operating rooms in a hospi-
tal. Whereas a number of non-urgent surgeries are known
in advance, additional emergencies requiring an immediate
surgery arise daily in a dynamic fashion. There is uncertainty
associated with a surgery duration. Provided a limited num-
ber of rooms, hospitals must schedule their interventions in a
way that any upcoming emergency can be scheduled as soon
as possible. Given an a priori surgery schedule, what is the
expected delay of each scheduled surgery due to the arising
of emergencies? A possible PSTN representation of an oper-
ating room schedule, while considering online emergencies,

Figure 6: Operations start with scheduled surgery S1, having uncer-
tain duration. There is a probability that an emergency appears in the
meanwhile. If it does, depending on its scheduled time, S2 may be
delayed. Our framework has the particularity to infer the time value
assignment probabilities at any time event, such as S2. This allows
to compute expected delays, the probability to be on time, etc.

is shown in Fig. 6. Given the probability of an emergency
arising during a time interval, and the probability distribution
of such an event duration, one can infer a contingent duration
describing the additional time inquired at facing the emer-
gency. Due to the inherent non-symmetric multi-modal na-
ture of such distributions describing events that may or not
arise, our method offers the only known efficient computa-
tion of the expected impact of online events on predefined
schedules. Here, the goal is not to compute a success proba-
bility. Instead, our method can compute the exact probability
distribution of each scheduled surgery’s time assignment, and
therefore its expected delay w.r.t. the initial schedule.

9 Conclusions
We introduced an exact approach to robustness computation
in the context of dynamic control of uncontrollable proba-
bilistic temporal networks, under discrete time assumption.
By relying on simplifying operational assumptions, the com-
puted robustness constitutes a strict lower bound on the de-
gree of dynamic controllability under perfect dynamic assign-
ment. Our method positions as an exact alternative to Monte
Carlo simulations, by also allowing to compute the success
probability of each activity of the network separately, leading
to new potential applications and analysis frameworks. An
open source C++ implementation of our method is available
online: https://bitbucket.org/mstguillain/dprobustness.

The developed method will be useful for Mars 2020 or
rovers to come. Further applications are under considera-
tions, including actual duration data histograms (i.e. non-
parametric, ordinary distributions) from Mars Science Lab-
oratory, for which the results should differ from those using
approximated normal distributions. We also described po-
tential contributions to significantly different application do-
mains, for which the only possible approach so far relied on
sampling approximations (e.g. Monte Carlo), as our method
allows to compute exact probability distributions of any time
point assignment, and deals with ordinary distributions.

Acknowledgments
The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4174

https://bitbucket.org/mstguillain/dprobustness

References
[Agrawal et al., 2019] Jagriti Agrawal, Wayne Chi, Steve

Chien, Gregg Rabideau, Stephen Khun, and Daniel
Gaines. Enabling Limited Resource-Bounded Disjunc-
tion in Scheduling. Proceedings of the 11th International
Workshop on Planning and Scheduling for Space (IWPSS),
pages 7–15, 2019.

[Akmal et al., 2019] Shyan Akmal, Savana Ammons,
Hemeng Li, and James C Boerkoel Jr. Quantifying
Degrees of Controllability in Temporal Networks with
Uncertainty. In 29th International Conference on
Automated Planning and Scheduling (ICAPS), 2019.

[Bhargava and Williams, 2019] Nikhil Bhargava and
Brian C. Williams. Complexity bounds for the controlla-
bility of temporal networks with conditions, disjunctions,
and uncertainty. Artificial Intelligence, 271:1–17, 2019.

[Birge and Louveaux, 2011] John R Birge and François Lou-
veaux. Introduction to stochastic programming. Springer,
New York, NY, 2011.

[Brooks et al., 2015] Jeb Brooks, Emilia Reed, Alexander
Gruver, and James C Boerkoel Jr. Robustness in Proba-
bilistic Temporal Planning. In 29th AAAI Conference on
Artificial Intelligence, pages 3239–3246, 2015.

[Cesta et al., 1998] Amedeo Cesta, Angelo Oddi, and
Stephen F. Smith. Profile based algorithms to solve mul-
tiple capacitated metric scheduling problems. In Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS), pages 214–223, 1998.

[Chi et al., 2018] Wayne Chi, Steve Chien, Jagriti Agrawal,
Gregg Rabideau, Edward Benowitz, Daniel Gaines, El-
yse Fosse, Stephen Kuhn, and James Biehl. Embed-
ding a Scheduler in Execution for a Planetary Rover.
In 28th International Conference on Automated Planning
and Scheduling (ICAPS), 2018.

[Chi et al., 2019] Wayne Chi, Jagriti Agrawal, Steve Chien,
Elyse Fosse, and Usha Guduri. Optimizing Parameters
for Uncertain Execution and Rescheduling Robustness.
In 29th International Conference on Automated Planning
and Scheduling (ICAPS), 2019.

[Cui and Haslum, 2019] Jing Cui and Patrik Haslum. Dy-
namic controllability of controllable conditional temporal
problems with uncertainty. Journal of Artificial Intelli-
gence Research, 64:445–495, 2019.

[Cui et al., 2015] Jing Cui, P Yu, Cheng Fang, Patrik
Haslum, and Brian C Williams. Optimising Bounds
in Simple Temporal Networks with Uncertainty under
Dynamic Controllability Constraints. In 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), pages 52–60, 2015.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artificial intelli-
gence, 49(1-3):61–95, 1991.

[Gaines et al., 2016] Daniel Gaines, Robert Anderson, Gary
Doran, William Huffman, Heather Justice, Ryan Mackey,
Gregg Rabideau, Ashwin Vasavada, Vandana Verma, Tara

Estlin, Lorraine Fesq, Michel Ingham, Mark Maimone,
and Issa Nesnas. Productivity Challenges for Mars Rover
Operations. Proceedings of the International Conference
on Automated Planning and Scheduling, Planning and
Robotics Workshop (PlanRob), 2016.

[Kumar et al., 2018] Satish T. K. Kumar, Zhi Wang, Anoop
Kumar, Craig Milo Rogers, and Craig A. Knoblock. Load
scheduling of simple temporal networks under dynamic
resource pricing. In 32nd AAAI Conference on Artificial
Intelligence, 2018.

[Morris et al., 2001] Paul Morris, Nicola Muscettola, and
Thierry Vidal. Dynamic Control Of Plans With Tempo-
ral Uncertainty. In 17th International Joint Conference
on Artificial Intelligence (IJCAI), page 494–499. Morgan
Kaufmann Publishers Inc., 2001.

[Morris, 2014] Paul Morris. Dynamic controllability and dis-
patchability relationships. In International Conference on
AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 464–479.
Springer, 2014.

[Paquay et al., 2020] Célia Paquay, Yves Crama, and
Thierry Pironet. Recovery management for a dial-a-ride
system with real-time disruptions. European Journal of
Operational Research, 280:953–969, 2020.

[Rabideau and Benowitz, 2017] Gregg Rabideau and
Ed Benowitz. Prototyping an Onboard Scheduler for
the Mars 2020 Rover. Proceedings of the International
Workshop on Planning and Scheduling for Space, IWPSS,
2017.

[Saint-Guillain, 2019] Michael Saint-Guillain. Robust Oper-
ations Management on Mars. In 29th International Con-
ference on Automated Planning and Scheduling (ICAPS),
Berkeley, CA, USA, 2019.

[Tsamardinos, 2002] Ioannis Tsamardinos. A probabilistic
approach to robust execution of temporal plans with un-
certainty. In Hellenic Conference on Artificial Intelligence,
pages 97–108, 2002.

[Vaquero et al., 2019] Tiago Vaquero, Steve Chien, Jagriti
Agrawal, Wayne Chi, and Terrance Huntsberger. Tem-
poral Brittleness Analysis of Task Networks for Planetary
Rovers. In 29th International Conference on Automated
Planning and Scheduling (ICAPS), 2019.

[Vidal and Ghallab, 1996] Thierry Vidal and Malik Ghallab.
Dealing with Uncertain Durations In Temporal Constraint
Networks dedicated to Planning. In 12th European Con-
ference on Artificial Intelligence (ECAI), pages 48–54.
PITMAN, 1996.

[Williams et al., 2009] Brian Williams, Patrick Conrad, and
Julie Shah. Flexible Execution of Plans with Choice.
In 19th International Conference on Automated Planning
and Scheduling (ICAPS), pages 74–81, 2009.

[Wilson et al., 2014] Michel Wilson, Tomas Klos, Cees Wit-
teveen, and Bob Huisman. Flexibility and decoupling
in Simple Temporal Networks. Artificial Intelligence,
214:26–44, 2014.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4175

	Introduction
	Temporal Networks
	Robustness
	Controllability
	Degrees of Dynamic Controllability
	Dispatching Protocols

	Landscape of Robustness Measures
	Exact Computation of DP-robustness
	Experimental Validation
	Application: Mars 2020 Rover's Task Network Structural Analysis
	Other Potential Application Domains
	Conclusions

