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Abstract
Width-based planning algorithms have been shown
to be competitive with state-of-the-art heuristic
search and SAT-based approaches, without requir-
ing access to a model of action effects and pre-
conditions, just access to a black-box simulator.
Width-based planners search is guided by a mea-
sure of the novelty of states, that requires observa-
tions on simulator states to be given as a set of fea-
tures. This paper proposes agnostic feature map-
ping mechanisms that define the features online, as
exploration progresses and the domain of continu-
ous state variables is revealed. We demonstrate the
effectiveness of these features on the OpenAI gym
“classical control” suite of benchmarks. We com-
pare our online planners with state-of-the-art deep
reinforcement learning algorithms, and show that
width-based planners using our features find poli-
cies of the same quality with significantly less com-
putational resources.

1 Introduction
Width-based search methods have been used successfully
with game simulators [Lipovetzky et al., 2015; Geffner and
Geffner, 2015; Shleyfman et al., 2016; Jinnai and Fukunaga,
2017], as well as, classical [Lipovetzky and Geffner, 2012;
Lipovetzky and Geffner, 2017a], non-deterministic [O’Toole
et al., 2019], and multi-agent [Gerevini et al., 2019] planning.
All these works have successfully addressed problems with
discrete state variables, yet we argue that the most natural
setting for simulation-based planning is that with continuous
state variables, which has been seldom worked on [Ramirez
et al., 2018]. We also perceive a vast untapped potential for
width-based methods when it comes to address control prob-
lems over complex non–linear systems, such as those typi-
cally modeled and portrayed in aircraft and spacecraft simu-
lators [Stevens et al., 2015].

Continuous state simulations pose major challenges for ex-
isting width-based search algorithms to be applicable. Han-
dling efficiently continuous state variables is an open prob-
lem, since naively mapping them onto finite-domain variables
results in search trees of colossal size. Multi-dimensional
control inputs, or continuous actions need to be discretised,

resulting in huge branching factors. To both of these prob-
lems we offer an answer in the form of a dynamic, adap-
tive feature map algorithm, the boundary extension encod-
ing (BEE), that handles efficiently continuous variables and
generates positive synergies with existing search strategies to
deal with the blow up in branching factors.

The paper is structured as follows. Section 2 includes es-
sential background on optimal control problems over general
dynamical systems, classical planning over simulators and
width-based search. Section 3 describes a novel adaptive al-
gorithm for defining feature maps to calculate the novelty of
states. In Section 4 we evaluate experimentally the dynamic
feature maps over OpenAI’s gym suite of classical control
problems, and we compare against state-of-the-art deep re-
inforcement learning (DRL) and optimal control techniques.
We conclude discussing related and future lines of work.

2 Background
2.1 Optimal Control Problems over Simulators
We start by describing the systems of interest in a very generic
way due to [Willems, 2007], as we do not make any special
assumptions on the form of dynamic and state constraints.
We consider the space of observable signals to be an arbitrary
n dimensional subset of R, X ⊂ Rn, with a given initial
configuration q0 ∈ X . The set of feasible trajectories over
X is modeled as a dynamical system Σ = (T,X ,B). T is
the interval [0, T ] where T is a positive real number. B is
the behaviour of the model, a subset of X T, the set of all
maps from T to X , and formalizes what trajectories or paths
τ : T→ X are possible. Each q(t) ∈ X in paths τ ∈ B needs
to satisfy a given set of differential path constraints describing
what changes on signals q are possible:

∀t ∈ T :h(q(t), q̇(t), q̈(t)) = 0, (1)
g(q(t), q̇(t), q̈(t)) ≤ 0, (2)

with the additional constraint that q(0) = q0. Of interest to
us are control problems where it is required that trajectories
end on a specific target or goal point in configuration space,
q∗, so we will further require that q(T ) = q∗.

In this paper, we assume that we do not have available a de-
scription of constraints h and g, but rather we have access to
a simulator, a procedure which is guaranteed to generate only
trajectories τ ∈ B. The simulator discretises T, that becomes
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a finite subset of R0+, T = {0, ∆t, 2∆t, · · · , T∆t} where
∆t is a positive real number and T∆t = T . For brevity, we
refer to each tk ∈ T by their index k ∈ {0, 1, · · · , T} and
similarly we shorthand qk := q(tk). At every time step k, or
control cycle, the simulator requires an input u(tk) ∈ U ⊂ N,
abbreviated as uk, in order to steer the evolution over time of
the dynamical system Σ. We loosely define the simulator as
a function F : X × U → X . F can be defined in many
ways, but we will assume that inputs map some or all of q̇(t)
or q̈(t) to a function over X or constant real values, and qk+1

is calculated with a numerical integration algorithm.
An optimal control problem [Bertsekas, 2017] over a sim-

ulator F is then defined as the problem of seeking sequences
of control inputs that maximize a given performance index,
which we formalise as follows

max
u0,...,uT−1

`T (qT ) +
∑
k

`(qk, uk) (3)

s.t. qk+1 = F (qk, uk) (4)
qT = q∗ (5)

`T and ` are respectively the terminal and stage cost func-
tions. When `T (qT ) = 0, the problem above becomes a clas-
sical planning problem [Bonet and Geffner, 2013] over a fi-
nite horizon T , since U is discrete. If equation (5) is dropped,
it becomes a net-benefit planning problem [Helmert et al.,
2008; Keyder and Geffner, 2009].

2.2 Factored State Models and Simulators
Francès et al [2017] have noted that purely declarative plan-
ning languages are not the only way to represent classical
planning models compactly, as illustrated by the discussion
above. Indeed, state models S = 〈S, s0, SG, Act, A, f , c〉
can also be represented in general by using state variables and
by encoding the functions A(s), f(a, s), and c(a, s) as black
box1 procedures.

For this, in order to represent the dynamic system Σ =
(T,X ,B), we adapt the definition by Francès et al [2017] of
a factored state model as a tuple F = 〈X , D, s0, G, Act, A,
f , c〉. X is the set of variables, their possible values given
by D, the domain Dx of variable x ∈ X . s0 is the initial as-
signment to the variables compatible with their domains, G is
a set (conjunction) of goal Boolean conditions over terminal
states qT expressing Equation 5. Act is a one-to-one surjec-
tive map onto U . Lets denote S as the set of possible assign-
ments (states) s : X → D, then A : S 7→ 2Act, f : S × A 7→
S = F (q, u), and c : S×A→ R = −`(q, u) are all functions
given as procedures that compute the set of actions applicable
in each state, successor states, and the cost incurred by doing
an action. The tuple F provides a compact representation of
the state model S = 〈S, s0, SG, Act, A, f, c〉 where S is the
set of states as defined above, and SG is the set of assign-
ments satisfying each goal condition in G. While in planning
it is common for costs to be positive, as noted above, we con-
sider the net-benefit setting, where instead of costs we have
rewards.

1“Black box” meaning that the planner can evaluate these func-
tions, but does not have access to their internal structure or a sym-
bolic representation.

2.3 Width-Based Search
The content of this Section summarises the state-of-the-art in
width-based search as discussed elsewhere [Lipovetzky and
Geffner, 2012; Lipovetzky and Geffner, 2017a; Bandres et
al., 2018]. We refer the reader to these papers for a more
thorough discussion of the algorithms and concepts below.

Width-based search is a blanket term referring to a diverse
set of classic blind and heuristic search algorithms, adapted to
use the so–called novelty heuristics first proposed by Lipovet-
zky and Geffner [2012]. In general terms, these heuristics
proceed to determine whether a state s, with generation or-
der e(s)2 contains values of variables not present in any other
state s′ with generation order e(s′)< e(s). Based on this sim-
ple and effective idea, follow-up works have proposed sev-
eral methods to define the novelty measure, w(s), along with
search algorithms designed to exploit them and seek syner-
gies with other heuristics. We discuss next two recent ap-
proaches that have been demonstrated to be state-of-the-art in
offline and online planning.
k-BFWS(f ) [Lipovetzky and Geffner, 2017b] is an incom-

plete, polynomial-time, greedy best-first search (GBFS) al-
gorithm where the evaluation function f is such that nodes
are ordered by their novelty and an estimate of costs-to-go.
Nodes are pruned if their novelty w(s) is greater than a given
bound k. The novelty heuristic w(s) is defined over a set of
functions3 that partition S, so only states s′ in the same par-
tition than s are considered to determine if novel information
is being contributed by s.

Rollout IW (RIW) [Bandres et al., 2018] is a rollout algo-
rithm like MCTS [Bertsekas, 2017] that constructs a depth-
first lookahead over a fixed horizon T , designed around a
definition of w(s) substantially different from previous ap-
proaches. Bandres et al. introduce a set of dynamic features
φx,v : S → [1, T ] for each state variable x ∈ X and value v
∈ Dx, initially defined as φx,v(s) := T . Whenever a state
st, with time index or depth t is generated, it is determined if
exists a feature φx,v(s) > t where xv ∈ st. If such a feature
exists, then w(st) = 1, and φx,v(s) := t. Otherwise, w(st)
is set to an arbitrary constant other than 1, the node in the
lookahead is marked, and a label is propagated backwards to
its parent. Marked nodes are not expanded. RIW terminates
whenever the label is backpropagated all the way to the initial
state.

3 Features for Measuring Novelty
Previous research on width-based algorithms for planning
has focused on problems with discrete state variables, where
states are given as sets of atoms, and features map sets of
atoms to Boolean values or some subset of N. A notable ex-
ception to this is the work by Ramirez et al. [2018], where
state variables are real-valued so Dx ⊂ R. We start noting
that in models of computation that support only finite preci-
sion arithmetic, it holds that the number of states generated
during search is finite, as long as a solution can be found in

2Initially, e(s0) = 0. For the first successor s′ of s0 generated
by a given algorithm, e(s′) = 1 and so on.

3Lipovetzky and Geffner use mainly heuristic cost-to-go approx-
imations. Other functions can be used too.
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a finite number of steps. This is not in contradiction with the
undecidability results by Helmert [2002], as these are predi-
cated on infinite arithmetic.

Ramirez et al. define features φx : S → [0, 2B − 1] map-
ping states to a subset of N, where B is the number of bits
in the floating–point representation of variable values. φx
can be evaluated in constant time, as long as the program-
ming language used allows to access the datum [Stepanov
and McJones, 2009] or binary encoding, for floating-point
datatypes. While this may seem naive, Ramirez et al. [2018]
proved it to be very effective. In goal–based tasks, where
no positive reward is attained until the goal is reached, or
when rewards are sparse, it suffers from significant issues that
negate the advantage of systematic yet efficient exploration
associated with width-based search methods. These limita-
tions can be illustrated by the well–known benchmark for Re-
inforcement Learning, Mountain Car, due to [Moore, 1990;
Boyan and Moore, 1995]. States in Mountain Car consist of
two variables, position p and velocity v, with three actions,
left, right and do-nothing. The former two actions respec-
tively set v̇ to a negative (positive) constant, and then inte-
grate the dynamics of the system for a given duration. The
task requires the car to reach a goal position p∗, and the ini-
tial state is set to the vector [0 0]T where the car is at rest and
has zero potential energy.

Mountain Car defeats Ramirez et al. approach as follows.
For a given search depth d, only a small subset of plans out
of 3d possible plans consistently increase potential energy
by moving the car away from the initial state. As the car
gains potential energy proportional to d, this allows it to at-
tain higher velocities when the do-nothing action is applied.
This sets the car into the right track to eventually reach p∗,
as the simulator is designed in such a way that the car needs
to swing back and forth a number of times before reaching
the goal. Most of the 3d paths are unrelated to optimal plans.
Under these conditions, Ramirez et al. features do not dis-
criminate much, and the lookahead size grows so large that
runtimes to determine the best action is orders of magnitude
larger than the duration set for the control cycle.

3.1 Boundary Extension Encoding – BEE
The previous discussion motivates our framework, the
Boundary Extension Encoding, or BEE for short, to define
features for width-based planning algorithms over continu-
ous state variables. We now summarise the key intuitions.
First, we propose features that go beyond static discretisa-
tions, as they take into account the dynamics of the problem
and choices made by the search algorithm. Second, we have
designed these features to produce novelty measures of states
such that a state is considered “novel”, iff it “pushes the enve-
lope”, as defined by the valuations already encountered dur-
ing the search. Doing so we overcome the challenge posed
by states that are not part of any optimal trajectory, yet differ
only by small amounts from previously generated trajectories.

Figure 1 illustrates the operation of the BEE encoding,
defining features on–line, as the search progresses. We denote
as xs ∈ Dx the value of a state variable x ∈ X in state s. For
each variable x ∈ X , BEE keeps track of the new boundary
extensions of states visited during the search. Initially, the or-

initial
state var

value

-1.5

2nd

value
visited

2.3

1st update, βx = 1

interval 1

3rd

value
visited

-5.3

2nd update, βx = −1

interval -1

4th

value
visited

0.7

3rd update, βx = 1

5th

value
visited

4.6

4th update βx = 2

interval 2

Figure 1: Example of the boundary extension encoding (BEE) on a
single state variable. The value 0.7 has B = {βx = 1} because it
does not contribute to extend the boundaries of the visited values of
the state variable (it falls in the 1st visited interval). w(s) will be
greater than 1 and s will be pruned if no other boundary is extended.

dered list of boundary extensions associated with variable x,
B+(x) for positive extensions and B−(x) for negative exten-
sions, consists of a single element, B+(x) = B−(x) = (xs0)
where xs0 is the value of state variable x in the initial state s0.
B+(x) is sorted in increasing order, while B−(x) is sorted in
decreasing order, making sure xs0 is always the first element
in the lists. Every time a new state s is generated where xs
is greater than the positive boundary pbx, i.e. the maximum
element in B+(x), a new element xs is added into B+(x)
extending its positive boundary. Analogously, whenever xs
is less than the lowest negative boundary nbx in B−(x), a
new boundary xs is recorded, extending the negative bound-
ary nbx. The BEE features evaluated on s, B(s), is the set
of boundary indexes {βx = i ∈ Z | x ∈ X , xs > xs0} and
{βx = −i ∈ Z | x ∈ X , xs < xs0} such that xs is con-
tained in the interval (xi−1, xi] where xi−1, xi ∈ B+(x) or
the interval [xi, xi−1) where xi, xi−1 ∈ B−(x). Namely,
βx represents the index in the ordered list containing the ith
boundary extension that is greater than xs if xs > xs0 , or
the ith boundary extension that is smaller than xs. Indices
in the negative boundary extensions are represented as nega-
tive indices to differentiate them from their positive counter-
parts. The greatest positive boundary pbx and smallest nega-
tive boundary nbx outline the explored boundary of Dx.

When a state s is generated such that the value xs for vari-
able x falls between pbx ≥ xs > xs0 or nbx ≤ xs < xs0 , it
follows that it does not extend the boundary of the explored
domain of x. In Figure 1 we can see how the value 0.7 be-
longs to the interval (−1.5, 2.3], which was previously gen-
erated when the explored boundary of x was extended when
we came across value 2.3. As the interval represented by the
feature βx = 1 has already been observed, variable x alone
would not contribute to change the novelty measure of s.

The BEE features may look to be quite specific to domains
like Mountain Car, where optimal plans extend as much as
possible the explored boundary of the domains of certain vari-
ables. Yet our experiments show that they are useful in sev-
eral other continuous-state control domains, as well. Some-
what surprisingly, the BEE features turn out to be quite useful
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as well on net-benefit problems such as the classic Cart Pole
problem in Reinforcement Learning [Sutton, 1996]. This ob-
servation is explained by pointing out that the BEE features
dynamically create an abstraction of X , that promotes explo-
ration and results in a compact search tree. Width-based al-
gorithms then reach quickly the horizon T in Eqs. (3)–(5) and
back propagate information about dead-end states to avoid, in
Cart Pole, the pole touching the ground, or states rated poorly
by the cost function in Eq. (3).

3.2 BEE Features and Measuring Novelty
We formalize next the notions of boundaries, features and
novelty over the set of BEE features.
Definition 3.1 (BEE Boundaries). Given a factored state
model F , the ordered list of BEE positive B+ and negative
B− Boundaries is defined as B+(x) = ( x0, . . . , xn | xi ∈
Dx, xi < xj , i < j} and B−(x) = ( x0, . . . , xn | xi ∈
Dx, xi > xj , i < j} for every variable x ∈ X .

Boundary lists are sorted and contain the boundary exten-
sions that define contiguous intervals over each state variable.
Let nbx = minB−(x), and pbx = maxB+(x).
Definition 3.2 (BEE Boundary Updates). Given a state se-
quence s0, . . . , si, . . . , sn, the boundaries B+(x) = B+

si(x)
and B−(x) = B−si(x), for x ∈ X are updated as fol-
lows: (i) B−s0(x) = B+

s0(x) = (xs0 | xs0 ∈ Dx), (ii)
B+
si+1

(x) = B+
si(x)

⋃
N+(xsi+1

), (iii) B−si+1
(x) = B−si(x)⋃

N−(xsi+1
), where N+(xv) and N−(xv) are the sets of

new intervals for value variable xv:

N+(xv) =

{
(xv) xv > pbx
∅ otherwise

N−(xv) =

{
(xv) xv < nbx
∅ otherwise

A state can add at most |X | new boundaries as defined above.
Let B+

s (x) and B−s (x) be the list of boundaries created up to
state s for each variable x.
Definition 3.3 (BEE Features). Given a state s, the set of
active BEE features is defined as B(s) = B+(s) ∪ B−(s)
where B+(s) = { βx = i | xs > xs0 , x ∈ X} and xs ∈
(xi−1, xi] belongs to an interval defined by the ordered list
of positive boundary extensions xi−1, xi ∈ B+

s (x). When
xs ∈ (xi, xi−1] belongs to an interval within the negative
ordered list of boundaries xi, xi−1 ∈ B−s (x) then B−(s) =
{ βx = −i | xs < xs0 , x ∈ X}.

The set B(s) contains the features for active intervals as
indexes representing the intervals containing the value xs ∈
Dx for all state variables x ∈ X of the problem.
Definition 3.4 (Novelty over BEE features). Given a state se-
quence s0, . . . , sn−1 of previously generated states, the nov-
elty w(sn) of a new state sn is the size |t| of the smallest tuple
t ∈ B(sn) s.t. t 6∈ B(si), i = 0, . . . , n− 1.
If we restrict ourselves to tuples of maximal size 1, the above
simplifies to check that ∃x∈XN+(xs) ∪ N−(xs) 6= ∅ holds.
We note that when considering tuples of size 2, Definition 3.4
is sensitive to existing, yet unknown, couplings between pairs
of variables. The use of BEE features for novelty over RIW
and k-BFWS follows the same procedure described in Sec-
tion 2.3, but uses the feature valuation B(s) instead of φx,v .

4 Experiments
We run our experiments on an Amazon Web Service
p2.xlarge instance with 4 Intel Xeon 2.30GHz processors,
61 GB of RAM and 1 NVIDIA K80 GPU. We compare k-
BFWS with different evaluation functions, RIW, LQR and
PPO24 on the set of OpenAI gym’s classic control problems5.
LQR is a Linear Quadratic Regulator controller [Perez et al.,
2012] while PPO2 is a widely used deep policy-gradient re-
inforcement learning algorithm [Schulman et al., 2017]. All
algorithms use a single CPU except PPO2 that makes use
of 4 CPUs and 1 GPU. In all the presented experiments, k-
BFWS and RIW use the BEE features encoding, and start
with increasing values of novelty i from 1 until the problem
is solved. All the tested benchmarks required to reach a width
i = 2 except the Cart Pole benchmark which required i = 3
or i = 4 depending on the initial state. The fact that i > 1 is
required shows that none of those benchmarks can be solved
by trying to extend the boundaries of a single state variable
independently from the others. k-BFWS stops searching as
soon as it finds a solution, and RIW stops whenever the com-
putation budget, measured in number of calls to the simulator,
is consumed. We tried also naive features, φx : S → Dx so
a variable value is a feature, and Ramirez et al. features from
binary representations described in Section 3. We do not re-
port results for them since neither k-BFWS nor RIW could
solve a single problem in the set of benchmarks considered.

Since the initial state is set randomly by simulators when
restarting, we report performance metrics for k-BFWS and
RIW averaged over several independent runs.

We implemented k-BFWS, RIW and the BEE encoding in
the scikit-decide library [AIRBUS - AI Research, 2020].

Feature Composition and Base Policy for RIW
Bandres et al. present RIW using as the base policy a simple
random walk. Instead, we use an ε-novelty policy, that uses a
one-step lookahead choosing the action that leads to the suc-
cessor state that is not novel with probability ∝ ε, 0 < ε < 1,
and novel ones with probability ∝ 1−ε

w(s) , thus favoring states
with better (smaller) novelty. As noted in Section 3, we
have a BEE feature βx for every state variable x, so we have
to redefine Bandres’ features over these, rather than state
variables. This is straightforward, as we map states s into
βs = {βx(s) |x ∈ X}, and implementing φβx,v does not
require to know beforehand the domain of x.

4.1 Goal-Based Problems
We discuss first Mountain Car and Acrobot, benchmarks
where the task is to reach a goal state from a set of initial
states, of which the simulator chooses one randomly. Both
tasks are challenging because the underlying dynamics can
make the agent perform very small steps that do not make
much progress towards the goal state.

Figure 2 shows how PPO2’s reward evolves during learn-
ing on Mountain Car with continuous actions. We also plot
the results of k-BFWS with BEE as if it was a learning algo-
rithm to ease comparison with PPO2: in fact, k-BFWS ini-

4PPO2 from https://github.com/hill-a/stable-baselines
5https://github.com/openai/gym/tree/master/gym/envs/classic control
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Figure 2: PPO2’s reward evolution compared with k-BFWS-BEE on
Mountain Car (100 runs).

tially spends time to compute a solution plan, represented by
a vertical line on Figure 2, that does not change throughout its
execution, so the mean reward for k-BFWS in Figure 2 flat-
lines. k-BFWS does not support continuous actions, so we
use for it the discrete action formulation of Mountain Car.
The evaluation function used by k-BFWS is f = 〈w〉, so the
open list is ordered in ascending order of novelty measures.

The explanation for the simplistic f above being so ef-
fective on this problem is related to the reward function in
this benchmark, that assigns 0 to every transition but the ones
reaching a goal state, that attain a reward of 100. We could
see, tracing the planner, that it is necessary to extend the
boundaries B+(x) and B−(x) as quickly as possible, in or-
der to have a chance for some state sk, k < T , be a goal state,
and hence, inform the lookahead with positive reward. Fig-
ure 2 shows that k-BFWS can solve Mountain Car in 4.6s on
average. In contrast, PPO2 cannot learn a valid policy after 7
hours.

Figure 3 compares k-BFWS, with the same configuration
as above, and PPO2 over the Acrobot benchmark. The reward
function for Acrobot is such that every transition receives−1,
but those reaching the goal, which attain a reward of 0. Ope-
nAI implementation of the Acrobot environment has a built-in
limit of 500 steps, so any policy achieving an expected reward
of less than −500 is reaching the goal at least once. In this
case, both PPO2 and k-BFWS reach the goal, yet PPO2 finds
a more efficient policy. Indeed, k-BFWS with f = 〈w〉 is not
optimal. We tried a different evaluation function, f ′ = 〈w, g〉,
that takes into account accumulated rewards g, but then run-
time per action became several times bigger than the duration
of the control cycle ∆t. The reason for this is that since the
rewards attained are uniformly equal to −1, no guidance is
provided by incorporating accumulated rewards to f ′. On the
other hand, PPO2 takes about 20 times longer to find a policy
with the same quality as the plan found by k-BFWS.

Figure 3: PPO2’s reward evolution compared with k-BFWS-BEE on
Acrobot (100 runs).

4.2 Stabilization Problems
We discuss now the Cart Pole and Pendulum benchmarks,
where the task is to reach a given pose and maintain it sta-
ble for as long as possible, ideally, all the way to the end of
the simulation. Figure 4 compares PPO2 and k-BFWS on
Cart Pole. OpenAI implementation of the environment limits
episodes to consist of 200 steps. From the Figure, we can see
that k-BFWS is optimal, as it stabilizes the robot through the
entire simulation. Also, compared with the runtime k-BFWS
requires to find a plan, PPO2 takes 3 times more time to learn
a policy with the same quality. This was an unexpected result,
since the BEE features are designed to favor exploration, and
in principle, risky behavior. This seemed to us to be a hand-
icap for this task, since stabilizing the cart pole requires to
avoid dead-ends, the states where the pole is in contact with
the ground. Interestingly, those dead-ends were actually han-
dled as negative goals by k-BFWS that, if discovered quickly,
drive the planner away from selecting dangerous actions. We
also ran RIW, limiting its computational budget on Cart Pole
and selecting the action that leads to the most rewarding state
once the budget is completed. As seen in Figure 5, RIW is
able to stabilize the robot over the entire simulation if the de-
cision time limit is set to 200ms. Since the control cycle for
Cart Pole in OpenAI’s implementation is 200ms, RIW attains
very good performance and selects actions in “real time”, that
is, runtime per call is less than ∆t, the duration of the control
cycle of the simulator. Figure 6 shows how PPO2 compares
with k-BFWS using BEE on the Pendulum benchmark. Pen-

Figure 4: PPO2’s reward evolution compared with k-BFWS-BEE on
CartPole (100 runs).

Figure 5: RIW performance for various decision time limits on Cart-
Pole. Each point averages metric over 100 runs, vertical bars corre-
spond to standard deviation.
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Figure 6: PPO2’s reward evolution compared with k-BFWS-BEE on
Pendulum (50 runs). The legend is the same as in Figure 3.

Figure 7: Anytime k-BFWS rewards with 10 minutes timeout on
Pendulum. We show the 5 runs, out of 30, with the greatest im-
provement in the quality of plans.

dulum action space is continuous so we used a naive mapping
into 12 different discrete actions. This branching factor is
significantly higher than in other benchmarks, and presents a
significant challenge to k-BFWS. In this experiment we used
f = 〈−d, g〉, where d is the number of steps from s0, break-
ing ties with the accumulated reward g. This effectively turns
k-BFWS into a depth-first search algorithm. We observe that
PPO2 takes 10 times longer than k-BFWS to find a policy
of the same quality. However, a significant fraction of PPO2
runs greatly outperform k-BFWS as we let the clock run.

Figure 7 depicts the behaviour of anytime k-BFWS, us-
ing the same evaluation functions as above. For each run it is
shown the time at which a better plan was found, and we com-
pare it with the quality of the policy found by PPO2 after 10
minutes. We ran k-BFWS 30 times in this fashion, and in 15
occasions k-BFWS found plans superior to the baseline pol-
icy. These two observations suggest to us that warm-starting
PPO2 with the best plan found by k-BFWS for a suitably set
time-out, should be a useful technique to speed up PPO2 con-
vergence to high quality policies.

4.3 Comparison with LQR Controllers
We have constructed two Linear Quadratic Regulator (LQR)
controllers for Acrobot and Cartpole, following the method
described by Perez et al. [2012]. We implemented it using
off-the-shelf the components already available in the Drake
framework [Tedrake and others, 2019]. The LQR controller
obtains an average reward of −384.85 ± 198.4 in Acrobot,
and of 200±0 in Cartpole. While the later performance is the
same as that of k-BFWS, the LQR controller is significantly
worse on Acrobot, due to the perturbation of the initial states,
that the controller cannot stabilise.

4.4 Recursive BEE Features
In our experiments we also considered an extension of the
BEE features, to allow for them to recursively refine bound-

ary extensions up to a given maximum level p. Each of the
boundaries in Definition 3.1 becomes a node in a tree rooted
at xs0 , mapping values of state variables to a tuple of size p
with the indices of the children of each boundary in the tree
visited, as the value of a state variable is tested for inclusion.

We tested with RIW the effectiveness of the recursive BEE
features with p > 1 on the Pendulum benchmark. For each
value of p, ranging from 1 to 20, we ran RIW 10 times, mea-
suring the average and standard deviation of the cost of each
trajectory. We observed that while the average of costs im-
proves for certain values of p greater than 1, the variance
in the results is very high, and it cannot be ruled out that
the actual means are significantly different. Similar results
were obtained on Cart Pole, Mountain Car and Acrobot. This
was a surprising result, and we look forward to develop more
benchmarks in order to rule out the possibility that these ob-
servations are a characteristic specific to these benchmarks.

5 Related Work
A similar issue to the one exposed in Section 1 affects classi-
cal reinforcement learning algorithms too, such as the tabular
form of Q-Learning [Sutton and Barto, 2018]. In response,
a number of so–called tile coding techniques were proposed
and tested on the very same environments we discuss in Sec-
tion 4 [Sutton, 1996], with most tile coding schemes proposed
assuming the number and geometry of tiles to be fixed. We
discuss two proposed schemes where tiles were defined dy-
namically during learning. Whiteson et al. [2007] introduced
a scheme where tiles were split into smaller regular ones, trig-
gered by the value function learning loss plateauing. Heuris-
tics were proposed that tried to optimize splits so as to maxi-
mize the magnitude of the updates of the value function. Lin
and Wright [2010] proposed a more flexible scheme, called
Evolutionary Tile Coding (EvoTC), where tiles are not re-
quired to have regular sizes and are organised hierarchically.
The key difference between our approach and Lin’s is that
the later uses a genetic algorithm, off–line, to optimize the
tile encoding using as fitness the performance of the learning
algorithm.

6 Conclusions & Future Work
We have demonstrated the proposed feature encoding, in con-
junction with the two main width-based search algorithms, to
have performance superior or comparable to state-of-the-art
DRL algorithms and applications of optimal control theory.
We look forward to extend this research by looking at two
possible applications of our planner. One is to provide an
excitation strategy for system identification & model learn-
ing [Mitrovic et al., 2010] more effective than motor bab-
bling or random walks. The other one is to use our planners
to initialize non–linear optimal control solvers with a nomi-
nal trajectory, speeding up convergence to high quality solu-
tions [Nocedal and Wright, 2006].
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