
DualSMC: Tunneling Differentiable Filtering and Planning under
Continuous POMDPs

Yunbo Wang1∗ , Bo Liu2∗ , Jiajun Wu3 , Yuke Zhu2 , Simon S. Du4 ,
Li Fei-Fei3 and Joshua B. Tenenbaum5

1Tsinghua University
2The University of Texas at Austin

3Stanford University
4Institute for Advanced Study

5Massachusetts Institute of Technology
yunbo.thu@gmail.com, bliu@cs.utexas.edu

Abstract
A major difficulty of solving continuous POMDPs
is to infer the multi-modal distribution of the unob-
served true states and to make the planning algo-
rithm dependent on the perceived uncertainty. We
cast POMDP filtering and planning problems as two
closely related Sequential Monte Carlo (SMC) pro-
cesses, one over the real states and the other over the
future optimal trajectories, and combine the merits
of these two parts in a new model named the Du-
alSMC network. In particular, we first introduce an
adversarial particle filter that leverages the adver-
sarial relationship between its internal components.
Based on the filtering results, we then propose a
planning algorithm that extends the previous SMC
planning approach [Piche et al., 2018] to continu-
ous POMDPs with an uncertainty-dependent policy.
Crucially, not only can DualSMC handle complex
observations such as image input but also it remains
highly interpretable. It is shown to be effective in
three continuous POMDP domains: the floor po-
sitioning domain, the 3D light-dark navigation do-
main, and a modified Reacher domain†.

1 Introduction
Partially Observable Markov Decision Processes (POMDPs)
formulate reinforcement learning problems where the agent’s
instant observation is insufficient for optimal decision mak-
ing [Kaelbling et al., 1998]. Decision making with partial
observations requires taking the history into account, which
brings a high computation cost. It is a known result that find-
ing the optimal policy in finite-horizon POMDPs is PSPACE-
complete [Papadimitriou and Tsitsiklis, 1987], which makes
POMDPs difficult to solve in moderately large discrete spaces,
let alone continuous domains.

Approximate solutions to POMDPs based on deep reinforce-
ment learning can directly encode the history of past obser-
vations with deep models like RNNs [Hausknecht and Stone,
∗Equal contribution
†Code available at https://github.com/Cranial-XIX/DualSMC

2015; Karkus et al., 2017; Zhu et al., 2018; Igl et al., 2018;
Hafner et al., 2019]. Learning is done in an end-to-end fash-
ion and the resulting models can handle complex observations
including visual inputs. However, since conventional POMDP
problems usually present an explicit state formulation, execut-
ing the planning algorithm in a latent space makes it difficult
to adopt any useful prior knowledge. Besides, whenever these
models fail to perform well, it is difficult to analyze which
part causes the failure as they are less interpretable.

In this work, we present a simple but effective model named
Dual Sequential Monte Carlo (DualSMC). It preserves high
interpretability since the state belief is represented by particles
in real state spaces. It is also flexible for solving continuous
POMDPs with complex observations and unknown dynam-
ics. The idea of DualSMC is inspired by the recent successes
on differentiable particle filters [Jonschkowski et al., 2018;
Karkus et al., 2018] and the control as inference frame-
work [Kappen et al., 2012; Levine, 2018; Piche et al., 2018].
In particular, DualSMC solves continuous POMDPs by con-
necting a SMC filter for state estimation with a SMC planner
that samples in the optimal future trajectory space∗.

Since the performance of the planner significantly depends
on that of the filter, we introduce a novel adversarial training
method to enhance the filter. Moreover, to connect the two
parts and reduce the computational burden, we feed the top
candidates of the state particles into the planner as the initial
belief for uncertainty-aware action selection. The planner also
takes as input the mean of the top state particles. To further
improve robustness, we perform the model predictive control
where only the first action of the plan is selected and we re-
plan at each step. Notably, the learned dynamics is efficiently
shared between filtering and model-based planning.

Our contributions to continuous POMDPs with DualSMC
can be summarized as follows:

• It proposes a new differentiable particle filter (DPF) that
leverages the adversarial relationship between the inter-
nals of the original DPF [Jonschkowski et al., 2018].

∗To distinguish the two SMCs, we call the first state estimation
SMC the filter and its particles the state particles, and the second
planning SMC the planner and its particles the trajectory particles.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4190

https://github.com/Cranial-XIX/DualSMC

• It introduces a new POMDP planning algorithm in forms
of neural networks that extends the original sequential
Monte Carlo planning [Piche et al., 2018] from fully
observable scenarios to partially observable ones. The
algorithm ties the transition model between the filter and
the planner, bridges them via particle-based belief states,
and learns the uncertainty-aware policy from the belief.
• It provides new benchmarks for continuous POMDPs:

the floor positioning for explanatory purposes, the 3D
light-dark navigation with rich visual inputs, and a con-
trol task in the Mujoco environment [Todorov et al.,
2012]. DualSMC achieves the best results consistently.

2 Problem Setup
A continuous POMDP can be usually specified as a 7-tuple
(S,A, T ,R,Ω,Z, γ), where S , A and Ω are continuous state,
action and observation spaces. We denote st ∈ S as the
underlying state at time t. When the agent takes an action
at ∈ A according to a policy π(at|o≤t, a<t), the state changes
to st+1 with probability T (st+1|st, at). The agent will then
receive a new observation ot+1 ∼ Z(ot+1|st+1) and a reward
rt ∼ R(st, at). Assuming the episodes are of fixed length
L, the agent’s objective is then to maximize the expected
cumulative future reward G = Eτ∼π

[∑L
t=1 γ

t−1rt
]
, where

τ = (s1, a1, . . . , aL, sL+1) are trajectories induced by π, and
0 ≤ γ < 1 is the discount factor. Since observations generally
do not reveal the full state of the environment, the classical
methods often maintain a belief over possible states, bel(st) ,
p(st|o≤t, a<t), and update the belief according to

bel(st+1) = η

∫
bel(st)Z(ot+1|st+1)T (st+1|st, at)dst, (1)

where η is a normalization factor. In this work, we make
the true states available during training only as a supervised
signal for the filter and keep them unobserved during testing.
The key to solve continuous POMDPs is to perceive the state
uncertainty and make decisions under such uncertainty.

3 Related Work
Planning under uncertainty. Due to the high computation
cost of POMDPs, many previous approaches used sampling-
based techniques for either belief update or planning, or both.
For instance, a variety of Monte Carlo tree search methods
have shown success in relatively large POMDPs by construct-
ing a search tree of history based on rollout simulations [Silver
and Veness, 2010; Somani et al., 2013; Seiler et al., 2015;
Sunberg and Kochenderfer, 2018]. Later work further im-
proved the efficiency by limiting the search space or reusing
plans [Somani et al., 2013; Kurniawati and Yadav, 2016]. Al-
though considerable progress has been made to enlarge the set
of solvable POMDPs, it remains hard for pure sampling-based
methods to deal with unknown dynamics and complex obser-
vations like visual inputs. Therefore, in this work, we provide
one approach to combine the efficiency and interpretability of
conventional sampling-based methods with the flexibility of
deep learning networks for complex POMDP modeling.

Differentiable particle filter. Ever since its invention [Gor-
don et al., 1993], the Particle Filter (PF), or Sequential Monte
Carlo (SMC), has become a well-suited method for sequential
estimation in complex non-linear scenarios. A large number
of research has made progress on learning a flexible proposal
distribution for SMC†. Gu et al. [2015] was one of the earliest
that use a recurrent neural network to model the proposal dis-
tribution. Naesseth et al. [2018] and Maddison et al. [2017]
further provided a variational framework that learns a good
parameterized proposal distribution by optimizing the log esti-
mator. Recently, Karkus et al. [2018] and Jonschkowski et al.
[2018] introduced differentiable particle filters independently
and applied them to localization problems with rich visual
input. These approaches explicitly treat the proposal distri-
bution as three interleaved neural modules: a proposer that
generates plausible states, a transition model that simulates
dynamics, and an observation model that does Bayesian belief
update. The filter in our model is based on [Jonschkowski et
al., 2018], with an additional adversarial objective. Kempin-
ska and Shawe-Taylor [2017] also proposed an adversarial
training objective for SMC. But their objective is for learning
the proposal distribution, while our method focuses more on
mutually enhancing the proposer and observation model.
Planning as inference. The framework of control as proba-
bilistic inference considers that selecting the optimal action is
equivalent to finding the maximum posterior over actions con-
ditioned on an optimal future [Todorov, 2008; Toussaint, 2009;
Kappen et al., 2012; Levine and Koltun, 2013]. We refer to
[Levine, 2018] as an explanatory review of these methods.
Piche et al. [2018] extended this idea further to planning
problems and propose the sequential Monte Carlo planning
(SMCP), where the inference is done over optimal future tra-
jectories. While most previous work focused on Markov De-
cision Processes (MDP) with full observation, we take one
step further and apply the planning as inference framework to
POMDP problems. On the other hand, compared with the ex-
isting Bayesian reinforcement learning literature on POMDPs
[Ross et al., 2008], our work focuses more on deep reinforce-
ment learning solutions to continuous POMDPs.

4 Dual Sequential Monte Carlo Network
In this section, we first introduce the adversarial particle filter
that aims to mutually enhance the particle proposer model and
the observation model. Then, we illustrate the design choice
of our main algorithm and describe in detail how our method
connects the two SMCs, during which we also introduce an
alternative simpler formulation for SMCP [Piche et al., 2018].

4.1 Adversarial Particle Filtering
A particle filter represents a belief distribution bel(st) of the
true state st with a set of weighted particles {(s(k)t , w

(k)
t)}Kk=1,

where
∑K
k=1 w

(k)
t = 1. To perform Bayesian update when ac-

tion is applied and a new observation comes in, it first transits

†The proposal distribution refers to the posterior distribution over
the latent variables in an SMC. This should not be confused with the
particle proposer model in this paper, which is a separate model that
proposes possible state particles given observations.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4191

Transition Model Observation Model

Particle Proposer

observation

resample

sample top-M
(M=3)

make
N-copies

(N=3)

reweight by optionally
resample

repeat till

output the
that corresponds
to the max

Filtering

Planning

advantage

Figure 1: A schematic drawing of the modules in DualSMC. Here we choose M = 3 and N = 3 for illustration

all particles according to a transition model and then update
corresponding weights according to an observation model:

s
(k)
t+1 ∼ T (·|s(k)t , at) and w

(k)
t+1 ∝ Z(ot+1|s(k)t+1)w

(k)
t . (2)

In practice, when the true dynamics T and Z are not known
a priori, they can be approximated by the parameterized func-
tions Tψ(·) and Zθ(·). Similar to [Jonschkowski et al., 2018],
our differentiable particle filter contains three neural mod-
ules (Figure 1): the proposer Pφ(ot, εP), the transition model
Tψ(s

(k)
t−1, at−1, εT), and the observation model Zθ(ot, s

(k)
t),

where φ, ψ, θ are parameters. εP and εT are the Gaussian
noises for stochastic models. To avoid the particle degeneracy
problem [Doucet and Johansen, 2009], we perform Sequen-
tial Importance Resampling (SIR) together with the proposer
model. Specifically, after the Bayesian update at time t, we
sample K ′ old particles {s(k)old }K

′

k=1 with replacement based on
the updated weight and combine them with (K −K ′) newly
proposed particles {s(k)new}Kk=K′+1, and assign uniform weights
for all particles. Depending on the task, we keep K ′ constant
or make (K −K ′) follow an exponential decay.

The major difference between our filtering approach and
[Jonschkowski et al., 2018] comes in by noticing that Pφ
and Zθ are naturally opposite to yet dependent on each other.
Following this intuition, instead of regressing the output of the
proposer to the true state, we propose the adversarial proposing
strategy. In particular, we train Zθ to differentiate the true
state from all particle states and train Pφ to fool Zθ. Formally,
denote preal(o≤t), preal(s|o≤t) as the real distributions over
observations and the real posterior over s, Zθ and Pφ play the
following two-player minimax game with function F (Zθ, Pφ):

min
φ

max
θ
F (Zθ, Pφ) = Eo1:t∼preal(o≤t)

[
Es∼preal(s|o≤t)

logZθ(ot, s) +

E
s′∼s(k)

old
log(1− Zθ(ot, s′)) +

EεP∼N (0,I) log(1− Zθ(ot, Pφ(ot, εP)))
]
.

(3)

During training, instead of using trajectories sampled from a
random or heuristic policy [Jonschkowski et al., 2018; Karkus

Algorithm 1 Overall DualSMC algorithm

1: {s(k)1 ∼ Priori(s1)}Kk=1, {w(k)
0 = 1}Kk=1

2: for t = 1 : L do
3: // At each filtering and control step
4: {w(k)

t ∝ w(k)
t−1 · Zθ(s

(k)
t , ot)}Kk=1

5: belt =
∑
k w

(k)
t s

(k)
t

6: {s̃(m)
t , w̃

(m)
t }Mm=1 = Top-M({s(k)t , w

(k)
t }Kk=1),w.r.t.{w(k)

t }k
7: at = DualSMC-P(belt, {s̃(m)

t , w̃
(m)
t }Mm=1;πρ, Qω)

8: ot+1, rt ∼ penv(at)
9: if resample then

10: {s(k)t }K
′

k=1 ∼ Multinomial({s(k)t }Kk=1),w.r.t.{w(k)
t }k

11: {s(k)t ∼ Pφ(ot)}Kk=K′+1, {w
(k)
t = 1}Kk=1

12: end if
13: {s(k)t+1 ∼ Tψ(s

(k)
t , at)}Kk=1

14: Add (st, st+1, at, rt, ot, belt, {s̃(m)
t , w̃

(m)
t }Mm=1) to a buffer

15: Sample a batch from the buffer and update (ρ, ω, θ, ψ, φ)
16: end for

et al., 2018], we train the filter in an on-policy way so that it
can take advantage of the gradually more powerful planner.

4.2 DualSMC Planning on Explicit Belief States
A straightforward solution to POMDP planning is to train
the planning module separately from the filtering module. At
inference time, plans are made independently based on each
particle state. We thus name this planning algorithm the
Particle-Independent SMC Planning (PI-SMCP) and use it as
a baseline method. More details on PI-SMCP can be found
in Appendix A. Although PI-SMCP is unbiased, it does not
perform well in practice because it cannot generate policies
based on dynamically varying state uncertainties.

We thus propose the DualSMC algorithm to explicitly con-
sider the belief distribution by planning directly on an ap-
proximated belief representation, i.e., a combination of the
top candidates from the filter (for computation efficiency) as
well as the weighted mean estimate. We show the modules in
DualSMC and how they relate to each other in Figure 1.

The overall algorithmic framework of DualSMC is shown in
Alg 1. At time step t, when a new observation comes, we first
use the observation model Zθ to update the particle weights

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4192

Algorithm 2 DualSMC planner on estimated belief states

Input: belt, {s̃(m)
t , w̃

(m)
t }Mm=1

Output: at
1: {w̃(m)

t }Mm=1 = Normalize({w̃(m)
t }Mm=1)

2:
{
{ŝ(m)(n)
t = s̃

(m)
t }Mm=1, ŵ

(n)
t−1 = 1, bel

(n)
t = belt

}N
n=1

3: for i = t : t+H do
4: // At each planning time step
5:

{
a
(n)
i ∼ πρ({ŝ(m)(n)

i }Mm=1, bel
(n)
i)
}N
n=1

6:
{
ŝ
(m)(n)
i+1 , r

(m)(n)
i ∼ Tψ(ŝ(m)(n)

i , a
(n)
i)
}M,N
m=1,n=1

7:
{

bel
(n)
i+1 =

∑
m w̃

(m)
t ŝ

(m)(n)
i+1

}N
n=1

8:
{
ŵ

(n)
i ∝ ŵ(n)

i−1 · exp
(∑

m w̃
(m)
t A(m)(n)

)}N
n=1

9:
{
x
(n)
i = ({ŝ(m)(n)

i+1 , ŝ
(m)(n)
i }Mm=1, bel

(n)
i+1, a

(n)
i)
}N
n=1

10: if resample then
11:

{
x
(n)
t:i }

N
n=1 ∼ Multinomial({x(n)t:i }

N
n=1),w.r.t.{ŵ(n)

i

}
n

12:
{
ŵ

(n)
i = 1

}N
n=1

13: end if
14: end for
15: at = first action of x(n)t:t+H , where n ∼ Uniform(1, . . . , N)

(line 4 in Alg 1), and then perform the DualSMC planning
algorithm in Alg 2. We duplicate the top-M particles (for
computation efficiency) and the mean belief state N times as
the root states of N planning trajectories (line 1-2 in Alg 2).
Different from the previous SMCP [Piche et al., 2018] method
under full observations, the policy network πρ perceives the
belief states and predicts an action based on the top-M particle
states as well as the mean belief state (line 5 in Alg 2). We
then perform N actions to M ×N states and use Tψ to predict
the next states and rewards (line 6 in Alg 2). Since future
observations o>t are not available at current time step, inspired
by QMDP [Littman et al., 1995], we assume the uncertainty
disappears at the next step, and thus approximate bel

(n)

i>t using
the top-M transition states as well as a set of fixed filtering
weights (line 7 in Alg 2). We update the planning weight of
each planning trajectory by summarizing the advantages of
each state using the initial M belief weights (line 8 in Alg 2).
Here, we introduce an alternative advantage formulation that
is equivalent to the one used in [Piche et al., 2018]:

TD(m)(n)
i−1 = Qω(ŝ

(m)(n)
i , a

(n)
i)−Qω(ŝ(m)(n)

i−1 , a
(n)
i−1) + r

(m)(n)
i−1 ,

A(m)(n) = TD(m)(n)
i−1 − log πρ(a

(n)
i |{ŝ

(m)(n)
i }Mm=1, bel

(n)
i).

(4)

At time t, Qω(ŝ
(m)(n)
i−1 , a

(n)
i−1) and r(m)(n)

i−1 are set to 0. It is
a benefit, because according to Eq. (3.3) in the SMCP paper
[Piche et al., 2018], the advantage in SMCP depends on bothQ
and the log expectation of V , which can be difficult to estimate
accurately, while our approach only requiresQ, which is much
simpler. We leave the full derivation to Appendix B.

At the end of each planning time step, we may apply re-
sampling when necessary over N planning trajectories‡ (line
11-12 in Alg 2.). When the planning horizon is reached, where
i = t+H , we sample one planning trajectory (line 15 in Alg

‡The resampling steps in both filtering and planning algorithms
may not be performed at every time step (more details in Table 1).

Hyper-parameter A B C

Training episodes 10,000 2,000 5,000
Learning rate 0.001 0.0003 0.0003
Batch size 64 128 256

Filtering particles 100 100 100
- Resampling frequency 8 3 2

Planning trajectories 30 10 10
- Planning time horizon 10 10 1
- Resampling frequency 3 1 1

Table 1: Training hyper-parameters for the (A) floor positioning, (B)
3D dark-light, and (C) modified reacher domains

state = (0.95, 0.3)
obs = (0.95, 1.05, 0.3, 0.2)t=0

t=0

state = (0.95, 0.8)
obs = (0.95, 1.05, 0.3, 0.2)

2nd Floor

1st Floor

Figure 2: An illustration of the floor positioning domain

2) and feed its first action to the environment. We then go back
to the filtering part and update the belief states by resampling,
proposing, and predicting the next-step particle states (line
9-13 in Alg 1). Lastly, we train all modules of DualSMC,
including the policy network, the critic network, and the three
modules of the adversarial particle filter (line 14-15 in Alg 1).

5 Experiment
Our experiments are designed in the following way. First,
we use a 2D Floor Positioning task to illustrate the effec-
tiveness of both the adversarial proposing and that of the
uncertainty-dependent planning. Next, we test the DualSMC
network on a much harder navigation task with both high un-
certainty and visual input. At least, we present a modified
Reacher environment to further test DualSMC’s performance
beyond the navigation domain. All models are trained with
the Adam optimizer [Kingma and Ba, 2015]. The training
hyper-parameters are shown in Table 1. We tuned the number
of filtering particles as it largely determines the quality of be-
lief state estimation, which is the foundation of the subsequent
DualSMC planning algorithm. After many trials, we finally set
it to 100 for a balance between planning results and efficiency.
All experimental results are averaged over 5 runs of training.
Network details can be found in Appendix C.

5.1 Floor Positioning
Suppose there is a robot in a two-floor building as shown in
Figure 2, who doesn’t know which floor it resides on. It can
only distinguish different floors by observation.
• State: It is defined as the robot’s position in world coor-

dinates (sx, sy), i.e., the axes in Figure 2.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4193

ɠ Proposed particles by adversarial PF
were closer to the plausible true state

ɡ The SMCP robot went rightwards, being
unaware of its position until reaching the wall

ɠ Proposed particles by regressive PF
were close to the mean of the particles

ɡ The SMCP robot made very chaotic
decisions upon the filtered belief state

Particle distribution & planning trajectoryMoving trajectory Explaination Legend

Goal

Planning trajectory

Initial states

Resampled particles

True states

Proposed particles

Unobserved

The DualSMC robot made a detour to
reduce uncertainty: by stepping across the
dashed blue line, it localized itself quickly
with converged belief states

Regressive PF + SMCP W �

Adversarial PF + SMCP t=32

DualSMC t=0 t=16

Figure 3: Qualitative results in the floor positioning domain, including the robot’s actual moving trajectories and its planning trajectories

Method Success # Steps

DVRL [Igl et al., 2018] 38.3% 162.0

LSTM filter + SMCP [Piche et al., 2018] 23.5% 149.1
Regressive PF (`2, top-1) + SMCP 25.0% 107.9
Regressive PF (density, top-3) + PI-SMCP 25.0% 107.9

Adversarial PF (top-1) + SMCP 95.0% 73.3
Adversarial PF (top-3) + PI-SMCP 82.7% 86.9

DualSMC with regressive PF (`2) 45.1% 114.9
DualSMC with regressive PF (density) 58.3% 107.0
DualSMC w/o proposer 78.6% 62.1
DualSMC with adversarial PF 99.4% 26.9

Table 2: The success rate and the average number of steps of 1,000
tests in the floor positioning domain (PF is short for particle filter)

• Action: It is defined as a = (∆sx,∆sy) with a maximum
magnitude of 0.05.

• Observation: It is defined as the robot’s horizontal dis-
tances to the nearest left/right walls, and the vertical
distances to ceiling/ground ot = (dx−, dx+, dy−, dy+)t.
In the case of Figure 2, it starts with an observation of
(0.95, 1.05, 0.3, 0.2), whatever floor it is on.

• Goal: The robot starts from a random position and is
headed to different regions according to different floors.
If it is on the first floor, the target area is around (2, 0.25)
orange semicircle area); If the robot is on the second
floor, the target area is around (0, 0.75). Only at training
time, a reward of 100 is given at the end of each episode
if the robot reaches the correct target area.

Starting from a gray area, the robot is very uncertain about
its y-axis position. In the case of Figure 2, the estimated state
can be (0.95, 0.3) or (0.95, 0.8). Only when the robot goes
across a dashed blue line, from the gray area to the bright one,
does it become certain about its y-axis position.

step
20 40 60 80 100

R
M

S
E

0

0.1

0.2

0.3
Reg PF + SMCP
Adv PF + SMCP
DualSMC w/o proposer
DualSMC with Adv PF

(a) Different POMDP planners
step

10 20 30 40 50 60

R
M

S
E

0

0.1

0.2

0.3
PF w/o proposer
Regressive PF
Adversarial PF

(b) Different particle filters
Figure 4: The state filtering error with respect to the number of steps
which the robot has taken in the floor positioning domain

(a) Partial observation (b) Full observation

Figure 5: The DualSMC planner generates different polices based on
the uncertainty of the perceived belief state

Learned policies. The first two rows in Figure 3 show the
planning results by applying the SMCP algorithm [Piche et
al., 2018] to the top-1 estimated particle state. Training the
proposer with the mean squared loss is equivalent to regressing
the proposed particles to the mean values of the multi-modal
state distributions under partial observations. Thus, in the first
example, the robot cannot make reasonable decisions due to
incorrect estimation of plausible states. The second row in
Figure 3 shows the moving and planning trajectories by using
an adversarial particle filter (PF), which leads the proposed
particle states closer to plausible states. The robot learns an
interesting policy (along a path marked by red dots): it always
goes rightwards at first, being unaware of its position until it
reaches the wall, and then bouncing back at the wall. How-
ever, this policy is suboptimal, as it does not fully consider

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4194

ObservationTime Particle distribution & planning trajectory

t=0

t=13

t=31

t=54

t=70

The robot planned to move upwards
to reduce uncertainty

It became increasingly convinced
to be in the left half of the world

The uncertainty drastically dropped
when it saw a decal on the wall

The robot kept the converged belief
when it returned to the area with
noisy observation

The robot reached the target area

Explanation Legend

Goal

Area with full observation

Initial state

Current state

Planning trajectory

Particles

Unobserved

Moving trajectory

Trap

Figure 6: A demonstration trajectory from DualSMC with an adversarial filter on the 3D light-dark navigation task

the uncertainty of the belief state. In contrast, DualSMC has
learned to reduce uncertainty by making short detours at first,
as shown by the last row in Figure 3. We have three findings.
First, the robot learns to localize itself quickly and then ap-
proach the target area in fewer steps. Second, the adversarial
PF works well: once the robot steps across the dashed blue line,
the belief states quickly converge to the actual values, and the
observation model maintains its confidence in the converged
belief even when the robot moves back to the middle areas.
Third, DualSMC generates probabilistic planning trajectories
of moving up/down with different advantage values.

Quantitative comparisons. From Table 2, the final Du-
alSMC model takes 26.9 steps to reach the target area,
whilst the baseline model “Adversarial PF + SMCP” uses
as many as 73.3 steps on average. Besides, we can see that
the adversarial PF significantly outperforms other differen-
tiable state estimation approaches, such as (1) the existing
DPFs that perform density estimation [Jonschkowski et al.,
2018], and (2) the deterministic LSTM model that was pre-
viously used as a strong baseline in [Karkus et al., 2018;
Jonschkowski et al., 2018]. Also note that DualSMC models
with regressive proposers are even worse than one without any
proposer, which suggests that an inappropriate proposer may
cause a negative effect on solving continuous POMDPs.

Does the adversarial training improve the DPF? Given
partial observations, an ideal filter should derive a complete
distribution of possible states instead of point estimation. Fig-
ure 4(a) compares the average RMSE between the true states
and the filtered states by different models. The adversarial
PF performs best, while the PF with the regressive proposer
performs even worse than that without a proposer. A natural
question arises: as the filtering error is also related to different
moving trajectories of different models, can we eliminate this
interference? For Figure 4(b), we train different filters without
a planner. All filters follow the same expert trajectories, and
the adversarial PF still achieves the best performance.

How does DualSMC adapt to different uncertainties? In
a fully observable scenario, we suppress the filtering part
of DualSMC and assume DualSMC plans upon a converged
belief on the true state (sx, sy). That is to say, we take the
true state to as the top-M particles (line 7 in Alg 1) before the

Method Success # Steps

PlaNet [Hafner et al., 2019] 30% 34.24
DVRL [Igl et al., 2018] 42% 98.48

LSTM + SMCP [Piche et al., 2018] 59% 85.40
Adversarial PF (top-1) + SMCP 58% 56.11
Adversarial PF (top-3) + PI-SMCP 64% 64.37

DualSMC with regressive PF (`2) 92% 66.88
DualSMC with regressive PF (density) 98% 70.95
DualSMC with adversarial PF 98% 67.49

Table 3: The average result of 100 tests for 3D light-dark navigation

planning part. The robot changes its plan from taking a detour
shown in Figure 5(a) to walking toward the target area directly
shown in Figure 5(b). It performs equally well to the standard
SMCP, with a 100.0% success rate and an averaged 21.3 steps
(v.s. 20.7 steps by SMCP). We may conclude that DualSMC
provides policies based on the distribution of filtered particles.
We may also conclude that DualSMC trained under POMDPs
generalizes well to similar tasks with less uncertainty.

5.2 3D Light-Dark Navigation
We extend the 2D light-dark navigation domain [Platt Jr et al.,
2010] to a visually rich environment simulated by DeepMind
Lab [Beattie et al., 2016]. At the beginning of each episode,
the robot is placed randomly and uniformly on one of the four
platforms at the bottom (see Figure 6). The robot’s goal is
to navigate toward the central cave (marked in orange) while
avoiding any of the four traps (marked by crosses). The maze
is divided into upper and lower parts. Within the lower part,
the robot travels in darkness, receives noisy visual input of a
limited range (up to a fixed depth), and therefore suffers from
high state uncertainty. When the robot gets to the upper part
(the blue area), it has a clear view of the entire maze. We place
decals as visual hints on the top walls of the maze to help the
robot figure out its position. However, it has to be very close
to the upper walls to see clearly what these decals are. The
robot receives a positive reward of 100 when it reaches the
goal and a negative reward of −100 when in a trap. At each
time step, the robot’s observation includes a 64 × 64 RGB
image, its current velocity, and its orientation. We force it to
move forward and only control its continuous orientation.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4195

t=16 t=48

Goal

Proposed
particles

Resampled
particles

t=2 t=8

Figure 7: The modified Reacher environment and examples of the
posterior belief over states given by an adversarial particle filter

()

Adv
Adv

()

Figure 8: Training curves of DualSMC and baseline methods for the
modified Reacher environment (averaged over 5 seeds)

By considering the uncertainty, DualSMC methods out-
perform other baselines in success rate (see Table 3). An
excessively large number of steps indicates that the robot is
easy to get lost while too few steps means that it is easy to
fall into a trap. From Figure 6, DualSMC is the only one that
learned to go up and figure out its position first before going
directly towards the goal.

5.3 Modified Reacher
We further validate our model on a continuous control task
with partial observation, i.e., a modified Reacher environ-
ment from OpenAI Gym [Brockman et al., 2016]. The
original observation of Reacher is a 11-D vector including
(cos θ1, cos θ2, sin θ1 sin θ2, gx, gy, ω1, ω2, rx, ry, rz), where
the first 4 dimensions are cos/sin values of the two joint angles
θ1, θ2, gx, gy the goal position, ω1, ω2 the angular velocities
and rx, ry, rz the relative distance from the end-effector to
the goal. We remove gx, gy, rx, ry, rz from the original obser-
vation and include a single scalar r = ||(rx, ry, rz)||2 + εr,
where εr ∼ N (0, 0.01) is a small noise (r is usually on the
scale of 0.1). The observation is therefore a 7-D vector. The
robot has to simultaneously locate the goal and reach it.

We provide a visualization of one sample run under Du-

alSMC with the adversarial filter in Figure 7. As expected,
initially the proposed particles roughly are in a half-cycle and
as time goes on, the particles gradually concentrate around
the true goal. Since the final performance of various methods
is similar after long enough time of training, we provide the
training curve of these methods in Figure 8, and truncate the
results up to 5,000 episodes since no obvious change in perfor-
mance is observed from thereon. As we can see, the DualSMC
methods not only achieve similar asymptotic performance as
the SMCP method with full observation but also learn faster
to solve the task than baseline methods.

6 Conclusion
In this paper, we provided an end-to-end neural network named
DualSMC to solve continuous POMDPs, which has three
advantages. First, it learns plausible belief states for high-
dimensional POMDPs with an adversarial particle filter. For
simplicity, we use the naı̈ve adversarial training method from
the original GANs [Goodfellow et al., 2014]. One may poten-
tially improve DualSMC with modern techniques to stabilize
training and lessen mode collapse. Second, DualSMC plans
future actions by considering the distributions of the learned
belief states. The filter module and the planning module are
jointly trained and facilitate each other. Third, DualSMC
combines the richness of neural networks as well as the in-
terpretability of classical sequential Monte Carlo methods.
We empirically validated the effectiveness of DualSMC on
different tasks including visual navigation and control.

Acknowledgments
This work is in part supported by ONR MURI N00014-16-1-
2007.

A Particle-Independent SMC Planning
As shown in Alg 3, it takes the top-M particle states (for
computation efficiency) and plans N future trajectories in-
dependently based on each particle state. At the end of the
planning horizon H , it samples a trajectory from M ×N plan-
ning trajectories. Although PI-SMCP is unbiased, it does not
perform well in practice because it cannot generate policies
based on dynamically varying state uncertainties.

B A Simpler Formulation of SMC Planning

At time t, we set Qω(ŝ
(m)(n)
i−1 , a

(n)
i−1) and r(m)(n)

i−1 in Eq. (4) to
0. We emphasize that our formulation is much simpler than the
original SMCP [Piche et al., 2018]. Because it only requires a
learned Q function and more importantly, it prevents us from
estimating the expectation of the value function V . To prove
this, we depict the Hidden Markov Model of our planning
algorithm for ease of notation. Figure 9 is borrowed from
[Piche et al., 2018]. Ot is a convenience binary variable here
for the sake of modeling, denoting the “optimality” (optimal
policy) of a pair (st, at) at time t [Levine, 2018]. Then we
present the derivation of line 8 Alg 2 as follows. Comparing
with [Piche et al., 2018], our update of the planning particle
weights depends only on the learned Q and πρ.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4196

Module Layers (floor positioning) # Channels Layers (3D dark-light) # Channels Filter Stride

Zθ 3-layer MLP 256× 2, 16 Conv2d×2, MaxPool(2) 16, 32 (3, 3) 2
Conv2d, Dropout(0.2) (*) 64 (3, 3) 2
Fully connected 64

2-layer LSTM 128× 2 2-layer LSTM 64× 2
Concat: state, orientation 67

3-layer MLP 256× 2, 1 4-layer MLP 128× 3, 1
Pφ 3-layer MLP 256× 2, 64 Same as Zθ up to (*) 64 (3, 3) 2

Fully connected 64
Concat: z(64) ∼ N (0, 1) 128 Concat: z(64) ∼ N (0, 1), orientation 129
4-layer MLP 256× 3, 2 3-layer MLP 128× 3, 2

Tψ 4-layer MLP 256× 3, 4 Action noise ∼ N (0, 1) 1
3-layer MLP: encode action noise to e 128× 2, 1
Concat: (state, action + e) 6
3-layer MLP, then add to state 128× 3, 5

Qω 3-layer MLP 256× 2, 1 3-layer MLP 128× 2, 1
πρ 3-layer MLP 256× 2, 4 3-layer MLP 128× 2, 1

Table 4: Network details of each module in DualSMC

C Network Details
Table 4 shows the network details for the floor positioning
domain and the 3D dark-light domain.

Algorithm 3 Particle-Independent SMC Planning

Input: {s̃(m)
t , w̃

(m)
t }Mm=1

Output: at
1: {ŝ(m×n)t = s̃

(m)
t , ŵ

(m×n)
t = w̃

(m)
t }M,N

m=1,n=1

2: {ŵ(n)
t }MN

n=1 = Normalize({ŵ(n)
t }MN

n=1)

3: for i = t : t+H do
4: // Predict actions based on individual particle states
5: {a(n)i ∼ πρ(ŝ(n)i)}MN

n=1

6: {ŝ(n)i+1, r
(n)
i ∼ Tψ(ŝ

(n)
i , a

(n)
i)}MN

n=1

7: {ŵ(n)
i+1 ∝ ŵ

(n)
i · exp(A(ŝ

(n)
i , a

(n)
i , ŝ

(n)
i+1))}MN

n=1

8: {x(n)i = (ŝ
(n)
i+1, a

(n)
i , ŝ

(n)
i)}MN

n=1

9: if resample then
10: {x(n)t:i }MN

n=1 ∼ Multinomial({x(n)t:i }MN
n=1),w.r.t.{ŵ(n)

i+1}n
11: {ŵ(n)

i+1 = 1}MN
n=1

12: end if
13: end for
14: at = first action of x(n)t:t+H , n ∼ Uniform(1, . . . ,MN)

a1 a2 a3 at

s1 s2 s3 st

O1 O2 O3 Ot

. . .

Figure 9: Ot is the observed optimality variable with probability
p(Ot|st, at) = exp(r(st, at)), where r(s, a) is the reward function

wt =
p(x1:t|O1:T)

q(x1:t)

=
p(x1:t−1|O1:T)

q(x1:t−1)

p(xt|x1:t−1,O1:T)

q(xt|x1:t−1)

= wt−1
p(xt|x1:t−1,O1:T)

q(xt|x1:t−1)

=
wt−1

q(xt|x1:t−1)

p(x1:t|O1:T)

p(x1:t−1|O1:T)

=
wt−1

q(xt|x1:t−1)

p(O1:T |x1:t)p(x1:t)
p(O1:T |x1:t−1)p(x1:t−1)

=
wt−1

q(xt|x1:t−1)

p(O1:t−1|x1:t−1)p(x1:t)p(Ot:T |xt)
p(O1:t−2|x1:t−2)p(x1:t−1)p(Ot−1:T |xt−1)

=
wt−1

q(xt|x1:t−1)
p(xt|xt−1)p(Ot−1|xt−1)

exp
(
Q(st, at)−Q(st−1, at−1)

)
= wt−1

p(xt|xt−1)

q(xt|xt−1)
exp

(
Q(st, at)−Q(st−1, at−1) + rt−1

)
= wt−1

penv(st|st−1, at−1)

pmodel(st|st−1, at−1)

exp
(
Q(st, at)−Q(st−1, at−1) + rt−1 − log πρ(at|st)

)
.
(5)

References
[Beattie et al., 2016] Charles Beattie, Joel Z Leibo, Denis

Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Küttler, Andrew Lefrancq, Simon Green, Vı́ctor Valdés,
Amir Sadik, et al. DeepMind Lab. arXiv preprint
arXiv:1612.03801, 2016.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung, Lud-
wig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

[Doucet and Johansen, 2009] Arnaud Doucet and Adam M
Johansen. A tutorial on particle filtering and smoothing: Fif-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4197

teen years later. Handbook of Nonlinear Filtering, 12(656-
704):3, 2009.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In NeurIPS, pages 2672–2680, 2014.

[Gordon et al., 1993] Neil J Gordon, David J Salmond, and
Adrian FM Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE Proceedings F
(Radar and Signal Processing), pages 107–113, 1993.

[Gu et al., 2015] Shixiang Shane Gu, Zoubin Ghahramani,
and Richard E Turner. Neural adaptive sequential Monte
Carlo. In NeurIPS, pages 2629–2637, 2015.

[Hafner et al., 2019] Danijar Hafner, Timothy Lillicrap, Ian
Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning
from pixels. In ICML, pages 2555–2565, 2019.

[Hausknecht and Stone, 2015] Matthew Hausknecht and Pe-
ter Stone. Deep recurrent Q-learning for partially observ-
able MDPs. In 2015 AAAI Fall Symposium Series, 2015.

[Igl et al., 2018] Maximilian Igl, Luisa Zintgraf, Tuan Anh
Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for POMDPs. In ICML, pages 2117–
2126, 2018.

[Jonschkowski et al., 2018] Rico Jonschkowski, Divyam
Rastogi, and Oliver Brock. Differentiable particle filters:
End-to-end learning with algorithmic priors. In RSS, 2018.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L
Littman, and Anthony R Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial
Intelligence, 101(1-2):99–134, 1998.

[Kappen et al., 2012] Hilbert J Kappen, Vicenç Gómez, and
Manfred Opper. Optimal control as a graphical model
inference problem. Machine Learning, 87(2):159–182,
2012.

[Karkus et al., 2017] Peter Karkus, David Hsu, and Wee Sun
Lee. QMDP-net: Deep learning for planning under partial
observability. In NeurIPS, pages 4694–4704, 2017.

[Karkus et al., 2018] Peter Karkus, David Hsu, and Wee Sun
Lee. Particle filter networks with application to visual
localization. In CoRL, 2018.

[Kempinska and Shawe-Taylor, 2017] Kira Kempinska and
John Shawe-Taylor. Adversarial sequential Monte Carlo.
In Bayesian Deep Learning (NeurIPS Workshop), 2017.

[Kingma and Ba, 2015] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
2015.

[Kurniawati and Yadav, 2016] Hanna Kurniawati and Vinay
Yadav. An online POMDP solver for uncertainty planning
in dynamic environment. In Robotics Research, pages 611–
629. 2016.

[Levine and Koltun, 2013] Sergey Levine and Vladlen
Koltun. Variational policy search via trajectory optimiza-
tion. In NeurIPS, pages 207–215, 2013.

[Levine, 2018] Sergey Levine. Reinforcement learning and
control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[Littman et al., 1995] Michael L Littman, Anthony R Cas-
sandra, and Leslie Pack Kaelbling. Learning policies for
partially observable environments: Scaling up. In ICML,
1995.

[Maddison et al., 2017] Chris J Maddison, John Lawson,
George Tucker, Nicolas Heess, Mohammad Norouzi, An-
driy Mnih, Arnaud Doucet, and Yee Teh. Filtering varia-
tional objectives. In NeurIPS, pages 6573–6583, 2017.

[Naesseth et al., 2018] Christian A Naesseth, Scott W Linder-
man, Rajesh Ranganath, and David M Blei. Variational
sequential Monte Carlo. In AISTATS, 2018.

[Papadimitriou and Tsitsiklis, 1987] Christos H Papadim-
itriou and John N Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research,
12(3):441–450, 1987.

[Piche et al., 2018] Alexandre Piche, Valentin Thomas, Cyril
Ibrahim, Yoshua Bengio, and Chris Pal. Probabilistic plan-
ning with sequential Monte Carlo methods. In ICLR, 2018.

[Platt Jr et al., 2010] Robert Platt Jr, Russ Tedrake, Leslie
Kaelbling, and Tomas Lozano-Perez. Belief space planning
assuming maximum likelihood observations. In RSS, 2010.

[Ross et al., 2008] Stephane Ross, Brahim Chaib-draa, and
Joelle Pineau. Bayes-adaptive POMDPs. In NeurIPS, pages
1225–1232, 2008.

[Seiler et al., 2015] Konstantin M Seiler, Hanna Kurniawati,
and Surya PN Singh. An online and approximate solver
for POMDPs with continuous action space. In ICRA, pages
2290–2297, 2015.

[Silver and Veness, 2010] David Silver and Joel Veness.
Monte-Carlo planning in large POMDPs. In NeurIPS,
pages 2164–2172, 2010.

[Somani et al., 2013] Adhiraj Somani, Nan Ye, David Hsu,
and Wee Sun Lee. DESPOT: Online POMDP planning
with regularization. In NeurIPS, pages 1772–1780, 2013.

[Sunberg and Kochenderfer, 2018] Zachary N Sunberg and
Mykel J Kochenderfer. Online algorithms for POMDPs
with continuous state, action, and observation spaces. In
ICAPS, 2018.

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-
val Tassa. MuJoCo: A physics engine for model-based
control. In IROS, pages 5026–5033, 2012.

[Todorov, 2008] Emanuel Todorov. General duality between
optimal control and estimation. In CDC, pages 4286–4292,
2008.

[Toussaint, 2009] Marc Toussaint. Robot trajectory optimiza-
tion using approximate inference. In ICML, pages 1049–
1056, 2009.

[Zhu et al., 2018] Pengfei Zhu, Xin Li, Pascal Poupart, and
Guanghui Miao. On improving deep reinforcement learning
for POMDPs. arXiv preprint arXiv:1804.06309, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4198

	Introduction
	Problem Setup
	Related Work
	Dual Sequential Monte Carlo Network
	Adversarial Particle Filtering
	DualSMC Planning on Explicit Belief States

	Experiment
	Floor Positioning
	3D Light-Dark Navigation
	Modified Reacher

	Conclusion
	Particle-Independent SMC Planning
	A Simpler Formulation of SMC Planning
	Network Details

