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Abstract
Several scientific studies have reported the exis-
tence of the income gap among rideshare drivers
based on demographic factors such as gender, age,
race, etc. In this paper, we study the income in-
equality among rideshare drivers due to discrim-
inative cancellations from riders, and the tradeoff
between the income inequality (called fairness ob-
jective) with the system efficiency (called profit ob-
jective). We proposed an online bipartite-matching
model where riders are assumed to arrive sequen-
tially following a distribution known in advance.
The highlight of our model is the concept of accep-
tance rate between any pair of driver-rider types,
where types are defined based on demographic fac-
tors. Specially, we assume each rider can accept or
cancel the driver assigned to her, each occurs with
a certain probability which reflects the acceptance
degree from the rider type towards the driver type.
We construct a bi-objective linear program as a
valid benchmark and propose two LP-based param-
eterized online algorithms. Rigorous online com-
petitive ratio analysis is offered to demonstrate the
flexibility and efficiency of our online algorithms in
balancing the two conflicting goals, promotions of
fairness and profit. Experimental results on a real-
world dataset are provided as well, which confirm
our theoretical predictions.

1 Introduction
Rideshares such as Uber and Lyft have received significant
attention among research communities of computer science,
operations research, and business, to name a few. One main
research topic is the matching policy design of pairing drivers
and riders, see, e.g., [Danassis et al., 2019; Ashlagi et al.,
2019; Bei and Zhang, 2018; Dickerson et al., 2018; Zhao et
al., 2019]. Most of the current work focuses on either the
promotion of system efficiency or that of users’ satisfaction
or both.

In this paper, we study the fairness among rideshare
drivers. There are several reports showing the earning gap
among drivers based on their demographic factors such as
age, gender and race, see, e.g., [Cook et al., 2018; Rosenblat

et al., 2016]. In particular, [Hinchliffe, 2017] has reported
that “Black Uber and Lyft drivers earned $13.96 an hour com-
pared to the $16.08 average for all other drivers” and “Women
drivers reported earning an average of $14.26 per hour, com-
pared to $16.61 for men”. The wage gap among drivers from
different demographic groups is partially due to the discrim-
inative cancellations from riders, which can be well spotted
especially during off-peak hours when the number of riders
is comparable or even less than that of drivers. Note that in
rideshares like Uber and Lyft, after a driver accepts a rider:
(1) all sensitive information of the driver such as name and
photo will be accessible to the rider and (2) riders can can-
cel the driver for the first two minutes free of charge [Dough,
2019]. This makes the discriminative cancellations from rid-
ers technically possible and economically worry-free.

We aim to address the income disparity among drivers due
to discriminative cancellations from riders and its tradeoff
with system efficiency. Note that the two goals, promoting
the group-level income equality among drivers and the sys-
tem efficiency, are somewhat conflicting. Consider the off-
peak hours for example, when riders are kinds of scarce re-
sources. To maximize the system efficiency, rideshares like
Uber should please riders by assigning them to their “fa-
vorite” drivers. This can effectively reduce any possible can-
cellations from riders and thus, minimize the risk of driving
away riders to other rivals like Lyft. This measure, however,
will offer those drivers “popular” among riders much more
chances of getting orders than others and as a result, hurt the
group-level income equality greatly.

In this paper, we propose two parameterized matching poli-
cies, which can smoothly tradeoff the above two goals with
provable performances. We adopt the online-matching based
model to capture the dynamics in rideshare, as commonly
used before [Dickerson et al., 2018; Zhao et al., 2019]. As-
sume a bipartite graph G = (U, V,E) where U and V repre-
sent the sets of types of offline drivers and online requests,
respectively. Each driver type represents a specific demo-
graphic group (defined by gender, age, race, etc.) with a
given location, while each request type represents a specific
demographic group with a given starting and ending location.
There is an edge f = (u, v) if the driver (of type) u is ca-
pable of serving the request (of type) v1 (e.g., the distance

1For simplicity, we refer to a driver of type u and a request of
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between them is below a given threshold). The online phase
consists of T rounds and in each round, a request v ∈ V
arrives dynamically. Upon its arrival an immediate and irre-
vocable decision is required: either reject v or assign it to a
neighboring driver in U . We assume each u has a matching
capacity of Bu ∈ Z+, which captures the number of drivers
belonging to the type u. Additionally, we have the following
key assumptions in the model.

Arrivals of online requests. We consider a finite time hori-
zon T (known to the algorithm). For each time-step or round
t ∈ [T ]

.
= {1, 2, . . . , T}, a request of type v will be sam-

pled (or v arrives) from a known distribution {qv} such that∑
v∈V qv = 1. Note that the sampling process is indepen-

dent and identical across the online T rounds. For each v,
let rv = T · qv , which is called the arrival rate of request
v with

∑
v∈V rv = T . Our arrival assumption is commonly

called the known identical independent distributions (KIID).
This is mainly inspired from the fact that we can often learn
the arrival distribution from historical logs [Yao et al., 2018;
Li et al., 2018]. KIID is widely used in many practical appli-
cations of online matching markets including rideshare and
crowdsourcing [Zhao et al., 2019; Dickerson et al., 2018;
Singer and Mittal, 2013; Singla and Krause, 2013].

Edge existence probabilities. Each edge f = (u, v) is as-
sociated with an existence probability pf ∈ (0, 1], which cap-
tures the statistical acceptance rate of a request of type v to-
ward a driver of type u. The random process goes as follows.
Once we assign u to v, we observe an immediate random out-
come of the existence, which is present (i.e., v accepts u) with
probability pf and not (v cancels u) otherwise. We assume
that (1) the randomness associated with the edge existence is
independent across all edges; (2) the values {pf} are given as
part of the input. The first assumption is motivated by indi-
vidual choice and the second from the fact that historical logs
can be used to compute such statistics with high precision.

Patience of requests. Each request v is associated with pa-
tience ∆v ∈ Z+, which captures an upper bound of unsuc-
cessful assignments the request v can tolerate before leaving
the platform. Under patience constraints, we can dispatch
each request v to at most ∆v different drives. Observe that
we cannot broadcast v to a set of at most ∆v different drives
simultaneously. Instead, we should assign v to at most ∆v

distinct drives (maybe of the same type though) in a sequen-
tial manner until either v accepts one or v leaves the system
after running out of patience. We refer to this as the online
probing process (OPP). Note that OPP starts immediately af-
ter a request v arrives if v not rejected by the algorithm, and
ends within one single round before the next request arrives.

We say an assignment f = (u, v) is successful if u is as-
signed to v, and v accepts u which occurs with probability
pf . Assume that the platform will gain a profitwf from a suc-
cessful assignment f = (u, v) (we call a match then). For a
given policy ALG, letM be the set of (possibly random) suc-
cessful assignments; we interchangeably use the term match-
ing to denote this set M. Inspired by the work of [Nanda
et al., 2019; Lesmana et al., 2019], we define two objec-

type v directly as a driver u and request v when the context is clear.

tives, namely profit and fairness, which capture the system
efficiency and group-level income equality among drivers, re-
spectively.

Profit: The expected total profit over all matches obtained by
the platform, which is defined as E[

∑
f∈M wf ].

Fairness: Let Mu be the set of edges in M incident to u.
Define the fairness achieved by ALG over all driver
types as minu∈U

E[|Mu|]
Bu

.

1.1 Preliminaries and Main Contributions
Competitive ratio. The competitive ratio is a commonly-
used metric to evaluate the performance of online algorithms.
Consider an online maximization problem for example. Let
ALG(I) = EI∼I [ALG(I)] denote the expected performance
of ALG on an input I, where the expectation is taken over
the random arrival sequence I . Let OPT(I) = E[OPT(I)]
denote the expected offline optimal, where OPT(I) refers to
the optimal value after we observe the full arrival sequence
I . Then, competitive ratio is defined as minI

ALG(I)
OPT(I) . It is a

common technique to use an LP to upper bound the OPT(I)
(called the benchmark LP) and hence get a valid lower bound
on the target competitive ratio. In our paper, we conduct on-
line competitive ratio analysis on both objectives.

Main Contributions
Our contributions can be summarized in the following three
aspects. First, we propose a new online-matching based
model to address the income inequality among drivers from
different demographic groups and its trade-off with the sys-
tem efficiency in rideshare. Second, we present a robust
theoretical analysis for our model. We first construct a
bi-objective linear program (LP-(1) and LP-(2)), which is
proved to offer valid upper bounds for the respective max-
imum profit and fairness in the offline optimal. Then, we
propose LP-based parameterized online algorithms WarmUp
and AttenAlg with provable performances on both objectives.
We say an online algorithm achieves an (α, β)-competitive
ratio if it achieves competitive ratios α and β on the profit
and fairness against benchmarks LP-(1) and LP-(2), respec-
tively. Results in Theorems 2 and 3 suggest that AttenAlg can
achieve a nearly optimal ratio on each single objective either
fairness or profit, though there is some space of improvement
left for the summation of both ratios.
Theorem 1. WarmUp(α, β) achieves a competitive ratio at

least
(
α · 1−1/e2 , β · 1−1/e2

)
simultaneously on the profit and

fairness for any α, β > 0 with α+ β ≤ 1.

Theorem 2. AttenAlg(α, β) achieves a competitive ratio at

least
(
α · e−1e+1 , β ·

e−1
e+1

)
∼ (0.46 ·α, 0.46 · β) simultaneously

on the profit and fairness for any α, β > 0 with α+ β ≤ 1.
Theorem 3. No algorithm can achieve an (α, β)-competitive
ratio simultaneously on the profit and fairness with α + β >
1 or α > 0.51 or β > 0.51 using LP-(1) and LP-(2) as
benchmarks.

Last, we test our model and algorithms on a real dataset
collected from a large on-demand taxi dispatching platform.
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Experimental results confirm our theoretical predictions and
demonstrate the flexibility of our algorithms in tradeoffing the
two conflicting objectives and their efficiency compared to
natural heuristics.

2 Related Work
Here is a few recent work addressing the fairness issue in
rideshares. [Sühr et al., 2019] proposed two notions of amor-
tized fairness for fair distribution of income among drivers,
one is related to absolute income equality, while the other
is averaged income equality over active time. [Lesmana et
al., 2019] considered nearly the same two objectives as pro-
posed in this paper. Note that both of the aforementioned
work considered an essential offline setting in the way that all
arrivals of online requests are known in advance by consid-
ering a short time window. Additionally, both ignore the po-
tential cancellations from riders, and assume each rider will
accept the assigned driver surely (i.e., all pf = 1). [Nanda
et al., 2019] studied an interesting “dual” setting to us. They
focused on the peak hours and examined the fairness on the
rider side due to discriminative cancellations from drivers.

Our model technically belongs to a more general optimiza-
tion paradigm, called Multi-Objective Optimization. Here
are a few theoretical work which studied the design of ap-
proximation or online algorithms to achieve a bi-criterion ap-
proximation and/or online competitive ratios, see, e.g., [Ravi
et al., 1993; Korula et al., 2013; Aggarwal et al., 2014;
Esfandiari et al., 2016]. The work of [Brubach et al., 2020;
Fata et al., 2019] have the closest setting to us: each edge has
an independent existence probability and each vertex from
the offline and/or online side has a patience constraint on it.
However, all investigated one single objective: maximization
of the total profit over all matched edges.

3 Valid Benchmarks for Profit and Fairness
We first present our benchmark LPs and then an LP-based
parameterized algorithm. For each edge f = (u, v), let xf be
the expected number of probes on edge f (i.e., assignments
of v to u but not necessarily matches) in the offline optimal.
For each u (v), let Eu (Ev) be the set of neighboring edges
incident to u (v). Consider the following bi-objective LP.

max
∑
f wfxfpf (1)

max minu∈U

∑
f∈Eu

xfpf
Bu

(2)

s.t.
∑
f∈Eu

xfpf ≤ Bu ∀u ∈ U (3)∑
f∈Ev

xf ≤ ∆v · rv ∀v ∈ V (4)∑
f∈Ev

xfpf ≤ rv ∀v ∈ V (5)

0 ≤ xf ≤ rv ∀f ∈ Ev (6)

Let LP-(1) and LP-(2) denote the two LPs with the respec-
tive objectives (1) and (2), each with Constraints (3), (4), (5),
(6). Note that we can rewrite Objective (2) as a linear one like
max η with additional linear constraints as η ≤

∑
f∈Eu

xfpf
Bu

for all u ∈ U . For presentation convenience, we keep the cur-
rent compact version. The validity of LP-(1) and LP-(2) as

benchmarks for our two objectives can be seen in the follow-
ing lemma.
Lemma 1. LP-(1) and LP-(2) are valid benchmarks for the
two respective objectives, profit and fairness. In other words,
the optimal values to LP-(1) and LP-(2) are valid upper
bounds for the expected profit and fairness achieved by the
offline optimal, respectively.

Proof. We can verify that objective functions (1) and (2) each
captures the exact expected profit and fairness achieved by
the offline optimal by the linearity of expectation. To prove
the validity of the benchmark for each objective, it suffices
to show the feasibility of all constraints for any given offline
optimal. Recall that for each edge f , xf denotes the expected
number of probes on f (i.e., assignments of u to v but not
necessarily matches) in the offline optimal. Constraint (3)
is valid since each driver u has a matching capacity of Bu.
Note that the expected arrivals of v during the whole online
phase is rv and v can be probed at most ∆v times upon each
online arrival. Thus, the expected number of total probes and
matches over all edges incident to v should be no more than
rv∆v and rv , respectively. This rationalizes Constraints (4)
and (5). The last constraint is valid, since for each edge, the
expected number of probes should be no more than that of
arrivals. Therefore, we justify the feasibility of all constraints
for any given offline optimal.

4 LP-based Parameterized Algorithms
The following lemma suggests that for any online algorithm
ALG, the worst-case scenario (i.e., the instance on which
ALG achieves the lowest competitive ratio) arrives when
each driver type has a unit matching capacity. The proof is
deferred to the full version 2.
Lemma 2. Let ALG be an online algorithm achieving an
(α, β)-competitive ratio on instances with unit matching ca-
pacity (i.e., all Bu=1). We can twist ALG to ALG′ such
that ALG′ achieves at least an (α, β)-competitive ratio on
instances with general integral matching capacities.

From Lemma 2, we assume unit capacity for all driver
types throughout this paper w.l.o.g. In the following, we
will present a warm-up algorithm (WarmUp) and then an-
other refined algorithm (AttenAlg), which can be viewed as
a polished version of WarmUp with simulation-based atten-
uation techniques. The main idea of AttenAlg is primarily
inspired by the work [Brubach et al., 2020]. Both WarmUp
and AttenAlg invoke the following dependent rounding tech-
niques (denoted by GKPS) introduced by [Gandhi et al.,
2006]. For simplicity, we state a simplified version of GKPS
tailored to star graphs which suffices in our paper.

Recall that Ev is the set of edges incident to v in the com-
patible graph G. GKPS is such a dependent rounding tech-
nique that takes as input a fractional vector z = {zf , f ∈
Ev, zf ∈ [0, 1]} on Ev , and output a random binary vector
Z = {Zf , f ∈ Ev}, which satisfied the following proper-
ties. (1) Marginal distribution: E[Zf ] = zf for all f ∈ Ev;
(2) Degree preservation: Pr[

∑
f∈Ev

Zf ≤
∑
f∈Ev

zf ] = 1;

2https://tinyurl.com/yd9ucv8p
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Algorithm 1 Sub-Routine SR(z)

1 Apply GKPS to the fractional vector z and let Z be the
random binary vector output.

2 Choose a random permutation π over Ev .
3 Follow the order π to process each f = (u, v) ∈ Ev until

v is matched:
4 if Zf = 1 and u is available then
5 Probe the edge f (i.e., assign v to u).
6 else
7 Skip to the next one.

(3) Negative correlation: For any pair of edges f, f ′ ∈ Ev ,
E[Zf = 1|Zf ′ = 1] ≤ zf .

Throughout this section, we assume (1) x∗ = {x∗f} and
y∗ = {y∗f} are optimal solutions to LP-(1) and LP-(2) re-
spectively; (2) (α, β) are two given parameters with 0 ≤
α, β ≤ 1, α+β ≤ 1; (3)Bu = 1 for all u from Lemma 2; (4)
xv = {x∗f/rv, f ∈ Ev} and yv = {y∗f/rv, f ∈ Ev}, which
are scaled solutions from x∗ and y∗ respectively restricted on
Ev . Note that from Constraints (4), (5) and (6), we have that
xv and yv are two fractional solutions on Ev and each has a
total sum at most ∆v .

4.1 The First Algorithm WarmUp(α, β)

Let an online vertex v arrive at t. Our job is to probe at most
∆v edges inEv until v is matched. Let z be a given fractional
solution on Ev . WarmUp(α, β) invokes the following proce-
dures (denoted by SR(z)) as a subroutine during each online
round: it first selects a set Sv of at most ∆v edges from Ev
in a random way guided by a given fractional vector z on Ev
and then follows a random order to process all edges in Sv
one by one. The details of SR are stated in Algorithm 1.

Based on SR, the main idea of WarmUp(α, β) is as simple
as follows: each round when an online vertex v arrives, it in-
vokes SR(xv) and SR(yv) with probabilities α and β respec-
tively. Recall that xv and yv are the scaled optimal solutions
to LP-(1) and LP-(2) restricted to Ev , each has a total sum
at most ∆v . Thus, when we run SR(xv) or SR(yv) after v
arrives online, we will probe at most ∆v edges incident to v
since the final rounded binary vector has at most ∆v ones due
to Property of Degree Preservation in the dependent round-
ing. The details of WarmUp(α, β) are as follows.

We conduct an edge-by-edge analysis. It would suffice to
show that each f is probed with probability at least x∗f · α ·
(1− 1/e)/2 and y∗f ·β · (1− 1/e)/2 in WarmUp(α, β). Then
by linearity of expectation, we can get Theorem 1. Focus on
a given u and a time t ∈ [T ]. Let SFu,t be the event that u is
available at (the beginning of) t.

Lemma 3. For any given u and t ∈ [T ], we have Pr[SFu,t] ≥(
1− 1

T

)t−1
.

Proof. Recall that we assume w.l.o.g. that each Bu=1 due to
Lemma 2. For each given ` < t and f = (u, v) ∈ Eu, let
Xf,` indicate if v arrives at time t; Yf,` indicate if f is probed
during round `; Zf,` indicate if f is present when probed.
Note that in each subroutine of SR(xv) and SR(yv) after v

Algorithm 2 WarmUp(α, β)

1 Let v arrive at time t.
2 With probability α, run SR(xv).
3 With probability β, run SR(yv).
4 With probability 1− α− β, reject v.

arrives, f will be probed only when the final rounded vec-
tor has the entry one on f . Thus we claim that E[Yf,`] ≤
αx∗f/rv+βy∗f/rv due to Property of Marginal Distribution in
dependent rounding and statements of WarmUp(α, β). Thus,

Pr[SFu,t] =
∏
`<t Pr

[∑
f∈Eu

Xf,`Yf,`Zf,` = 0
]

=
∏
`<t

(
1− Pr

[∑
f∈Eu

Xf,`Yf,`Zf,` ≥ 1
])

=
∏
`<t

(
1−

∑
f∈Eu

rv
T

(
α
x∗f
rv

+ β
y∗f
rv

)
pf

)
=
∏
`<t

(
1− 1

T

∑
f∈Eu

(
αx∗fpf + βy∗fpf

))
≥
(

1− 1
T

)t−1

Now assume SFu,t occurs (i.e., u is available at t). Con-
sider a given f = (u, v) and let 1f,t indicate f is probed
during round t in WarmUp(α, β). Notice that 1f,t occurs if
(1) v arrives at time t and (2) f is probed either in SR(xv) or
SR(yv).

Lemma 4. Pr[1f,t|SFu,t] ≥
αx∗f
2T ,Pr[1f,t|SFu,t] ≥

βy∗f
2T .

Proof. We focus on the first inequality and try to show that f
is probed at t in SR(xv) with probability at least

αx∗f
2T (includ-

ing the probability of its online arrival). Observe that events
v arrives at time t and WarmUp(α, β) runs the subroutine xv

both happen with probability αrv
T . Let Xv be the rounded bi-

nary vector from xv and we use Xv
f to denote its entry on f .

LetEv,¬f be the set of edges inEv excluding f = (u, v). For
each f ′ ∈ Ev,¬f , let Yf ′ indicate if f ′ falls before f in the
random order π and Zf ′ indicate if f ′ is present when probed.
Thus we have

Pr[1f,t|SFu,t] (7)

≥ αrv
T Pr[Xv

f = 1] Pr
[∑

f ′∈Ev,¬f
Xv
f ′Yf ′Zf ′ = 0|Xv

f = 1
]

(8)

= αrv
T

x∗f
rv

(
1− Pr

[∑
f ′∈Ev,¬f

Xv
f ′Yf ′Zf ′ ≥ 1|Xv

f = 1
])

(9)

≥ αx∗f
T

(
1− E

[∑
f ′∈Ev,¬f

Xv
f ′Yf ′Zf ′ |Xv

f = 1
])

(10)

≥ αx∗f
T

(
1−

∑
f ′∈Ev,¬f

E
[
Xv
f ′Yf ′Zf ′ |Xv

f = 1
])

(11)

≥ αx∗f
T

(
1−

∑
f ′∈Ev,¬f

x∗
f′

rv

pf
2

)
(12)

≥ αx∗f
T

1
2 . (13)

Inequality (10) follows from Markov’s inequality. Inequal-
ity (12) is due to these two observations: (1) E[Xv

f ′ |Xv
f =
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1] ≤ x∗f/rv due to negative correlation in dependent rounding
and (2) E[Yf ′ ] = 1/2, E[Zf ′ ] = pf . Inequality (13) follows
from the fact

∑
f ′∈Ev

x∗f ′pf ′ ≤ rv due to Constraint (5). Fol-
lowing a similar analysis, we can prove the second part.

Now we have all ingredients to prove the main Theorem 1.

Proof. Consider a given f = (u, v) ∈ E, let κxf and κyf be
the expected number of successful probes of f in SR(xv) and
SR(yv) respectively. Here a probe of f = (v, u) is successful
iff u is available when we assign v to u (but no necessarily
means f is present).

κxf ≥
∑T
t=1 Pr[SFu,t] Pr[1f,t|SFu,t]

≥
∑T
t=1

(
1− 1

T

)t−1 αx∗f
2T ∼

αx∗f (1−1/e)
2

The last term is obtained after taking T → ∞. Similarly, we
can show that κyf ≥

βy∗f (1−1/e)
2 .

Let Profit(α, β) be the expected total profit obtained
by WarmUp(α, β). By linearity of expectation, we have
Profit(α, β) ≥ (1−1/e)α

2

∑
f∈E x

∗
fpewe. From Lemma 1,

we know that the expected profit in offline optimal is
upper bounded by

∑
f∈E x

∗
fpewe. Thus we claim that

WarmUp(α, β) achieves a ratio at least α(1 − 1/e)/2 on the
profit. Similarly, we can argue that WarmUp(α, β) achieves
a ratio at least β(1− 1/e)/2 on the fairness.

4.2 The Second Algorithm AttenAlg(α, β)

Inspired by [Brubach et al., 2020], we can improve at least the
theoretical performance of WarmUp with attenuation tech-
niques applied to edges and (offline) vertices. The motivation
behind is very simple. Note that edges in Ev are competing
for each other since we have to stop probing whenever v is
matched. Thus, attenuating those edges which win the higher
chance of probing over others can potentially boost the worst-
case performance.

Let {γt, µt|t ∈ [T ]} be such a series that is defined as γ1 =
1, µt = 1 − γt/2, γt+1 = γt(1 − µt/T ), and Ev,t be the
set of available edges f = (u, v) ∈ Ev at time t (i.e., u is
available at t). The formal description of AttenAlg is stated
in Algorithm 3. We defer the proofs of Theorems 2 and 3 to
the full version 2.

5 Experiments
5.1 Data Preprocessing
We use the New York City yellow cabs dataset3, which is
collected during the year of 2013. Although the demograph-
ics of the drivers and riders are not recorded in the original
dataset, we synthesize the racial demographics for riders and
drivers in a similar way to [Nanda et al., 2019]. To simplify
the demonstration, we consider a single demographic factor
of the race only, which takes two possible options between
“disadvantaged” (D) or “advantaged” (A). We set the ratio
of D to A to be 1 : 2 among riders, which roughly matches
the racial demographics of NYC [Review, 2019]. Similarly,

3http://www.andresmh.com/nyctaxitrips/

Algorithm 3 AttenAlg(α, β)

1 for t = 1, 2, . . . , T do
2 Apply vertex-attenuation such that each u ∈ U is

available at t with probability equal to γt.
3 Let v arrive at time t.
4 With probability α,
5 Run SR(xv). Apply edge-attenuation such that

each edge f ∈ Ev,t is probed in SR(xv) with
probability equal to µtx∗f/rv .

6 With probability β,
7 Run SR(yv). Apply edge-attenuation such that

each edge f ∈ Ev,t is probed in SR(yv) with
probability equal to µty∗f/rv .

8 With probability 1− α− β, reject v.

we set the ratio of D to A among drivers to be 1 : 2 [Hall
and Krueger, 2017]. The acceptance rates among the four
possible driver-rider pairs (based on race status only), (A,A),
(A,D), (D,A), (D,D), are set to be 0.6, 0.1, 0.1 and 0.3, re-
spectively. These probabilities are then scaled up by a factor
η such that pf = η + (1− η) · pf . In our experiments we set
η = 0.5. Note that we can apply our model straightforwardly
to the case when the real-world distribution of {pf} values is
known or can be learned. We collect records during the off-
peak period when a lot of drivers are on the road while the
requests are relatively lower than peak hours. On January 31,
20, 701 trips were completed in the off-peak hour (4–5 PM),
compared to 35, 109 trips in the peak hour (7–8 PM). We fo-
cus on longitude and latitude ranging from (−73,−75) and
(40.4, 40.95) respectively. We partition the area into 40× 11
grids with equal size.

We construct the compatibility graph G = (U, V,E) as
follows. Each u ∈ U represents a driver type which has at-
tributes of the starting location and race. Each v ∈ V rep-
resents a request type which has attributes of the starting lo-
cation, ending location, and race. We downsample from all
driver and request types such that |U | = 57 and |V | = 134.
For each driver type u, we assign its capacity Bu with a
random value uniformly sampled from [1, B] where we vary
B ∈ {10, 15, 25}. For each request of type v, we sample a
random patience value ∆v uniformly from {1, 2} and a ran-
dom arrival rate rv ∼ N (5, 1) (Normal distribution), and then
set T =

∑
v∈V rv . We add an edge f = (u, v) if the Manhat-

tan distance between starting location of request type v and
the location of driver type u is not larger than 1. The profit
wf for each f is defined as the normalized trip length of the
request type v such that 0 ≤ wf ≤ 1.

Algorithms. We test the WarmUp(α, β) with α + β =
1 against two natural heuristic baselines, namely Greedy-P
(short for Greedy-Profit) and Greedy-F (short for Greedy-
Fairness)4. Suppose a request type of v arrives at time t.
Recall that Ev is the set of neighboring edges incident to v
(i.e., the set of assignments feasible to v). Let E′v ⊆ Ev
be the set of available assignments f = (u, v) such that there

4A future direction is to consider a hybrid version of Greedy-P
and Greedy-F, which optimizes the two objectives simultaneously.
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Figure 1: Competitive ratios for profit and fairness with different values of α and β with α+ β = 1.
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Figure 2: Performance comparisons with Greedy_P and Greedy_F.

exists at least one drive of type u at t. For Greedy-P, it will re-
peat greedily selecting an available assignment f ∈ E′v with
the maximum weight wfpf over E′v (breaking ties arbitrar-
ily) until either v accepts a driver or v runs out of patience.
In contrast, Greedy-F will repeat greedily selecting an avail-
able f = (u∗, v) ∈ E′v with u∗ having the least matching rate
before either v accepts a driver or leaves the system. Note
that we use LP-(1) and LP-(2) as the default benchmarks for
profit and fairness, respectively.

5.2 Results and Discussions
Figure 1 shows the results of competitive ratios for the pro-
posed algorithm with different values of α with (β = 1− α).
We can observe that the profit and fairness competitive ratios
of WarmUp always stay above the theoretical lower bounds
(in dotted lines), as predicted in Theorem 1. The gaps be-
tween performances and lower bounds suggest that theoreti-
cal worst scenarios occur rarely in the real world. Note that
when B = 25 and α = 1 as shown in Figure 1(c), the lower
bound is tight and matches the fairness performance.

Figure 2 shows the profit and fairness performances of
WarmUp compared to Greedy-P and Greedy-F. Here are a
few interesting observations. (1) As for profit, Greedy-P can
always beat Greedy-F but not necessarily for WarmUp. The
advantage of Greedy-P over WarmUp becomes more appar-
ent whenB is large and less whenB is small. Note that in our
experiment, the expected total number of arrivals of riders is
fixed and therefore, B directly controls the degree of imbal-
ance between drivers and riders. When B is larger, we have
more available drivers compared to riders and thus, Greedy-P
will outperform all the rest for profit. When B is small, how-

ever, we really need to carefully design the policy to boost
profit. That’s why WarmUp becomes dominant. (2) As for
fairness, Greedy-F seemingly can always dominate the rest,
though WarmUp shows high flexibility in the fairness perfor-
mance. WarmUp shows a relatively low sensitivity toward
the first parameter α for profit while high sensitivity toward
the second parameter β for fairness: the latter becomes par-
ticularly obvious when B is large.

6 Conclusion
In this paper, we present a flexible approach for matching re-
quests to drivers to balance the two conflicting goals, maxi-
mizations of income equality among all rideshare drivers and
the total revenue earned by the system. Our proposed ap-
proach allows the policy designer to specify how fair and how
profitable they want the system to be via two separate parame-
ters. Extensive experimental results on the real-world dataset
show that our proposed approaches not only are far above the
theoretical lower bounds but also can smoothly tradeoff the
two objectives between the two natural heuristics. Our work
opens a few directions for future research. The most direct
one is to shorten the gap between the sum of ratios of profit
and fairness achieved by AttenAlg (which is 0.46). It will be
interesting to give a tighter online analysis than what are pre-
sented here or offer a sharper hardness result which suggests
the sum of the two ratios should be much lower than 1.

Acknowledgments
Pan Xu was partially supported by NSF CRII Award IIS-
1948157. The authors would like to thank the anonymous
reviewers for their helpful feedback.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4204



References
[Aggarwal et al., 2014] Gagan Aggarwal, Yang Cai,

Aranyak Mehta, and George Pierrakos. Biobjective online
bipartite matching. In International Conference on Web
and Internet Economics, pages 218–231. Springer, 2014.

[Ashlagi et al., 2019] Itai Ashlagi, Maximilien Burq, Chin-
moy Dutta, Patrick Jaillet, Chris Sholley, and Amin Saberi.
Edge weighted online windowed matching. In ACM
EC’19, pages 729–742, 2019.

[Bei and Zhang, 2018] Xiaohui Bei and Shengyu Zhang. Al-
gorithms for trip-vehicle assignment in ride-sharing. In
AAAI ’18, pages 3–9, 2018.

[Brubach et al., 2020] Brian Brubach, Karthik Sankarara-
man, Aravind Srinivasan, and Pan Xu. Attenuate lo-
cally, win globally: Attenuation-based frameworks for
online stochastic matching with timeouts. Algorithmica,
82(1):64–87, 2020.

[Cook et al., 2018] Cody Cook, Rebecca Diamond, Jonathan
Hall, John List, and Paul Oyer. The gender earnings gap in
the gig economy: Evidence from over a million rideshare
drivers. Technical report, National Bureau of Economic
Research, 2018.

[Danassis et al., 2019] Panayiotis Danassis, Marija Sakota,
Aris Filos-Ratsikas, and Boi Faltings. Putting rideshar-
ing to the test: Efficient and scalable solutions and the
power of dynamic vehicle relocation. arXiv preprint
arXiv:1912.08066, 2019.

[Dickerson et al., 2018] John Dickerson, Karthik Abinav
Sankararaman, Aravind Srinivasan, and Pan Xu. Assign-
ing tasks to workers based on historical data: Online task
assignment with two-sided arrivals. In AAMAS ’18, pages
318–326, 2018.

[Dough, 2019] Dough. Uber fees: How to
avoid the cancellation fee, cleaning fee, and
more. https://www.ridesharingdriver.com/
uber-fees-cancellation-booking-cleaning-fees/, 2019.
Accessed: 2019-12-27.

[Esfandiari et al., 2016] Hossein Esfandiari, Nitish Korula,
and Vahab Mirrokni. Bi-objective online matching and
submodular allocations. In Advances in Neural Informa-
tion Processing Systems, pages 2739–2747, 2016.

[Fata et al., 2019] Elaheh Fata, Will Ma, and David Simchi-
Levi. Multi-stage and multi-customer assortment opti-
mization with inventory constraints. Available at SSRN
3443109, 2019.

[Gandhi et al., 2006] Rajiv Gandhi, Samir Khuller, Srini-
vasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms.
Journal of the ACM (JACM), 53(3):324–360, 2006.

[Hall and Krueger, 2017] Jonathan Hall and Alan Krueger.
An analysis of the labor market for uber’s driver-partners
in the united states. Ilr Review, 2017.

[Hinchliffe, 2017] Emma Hinchliffe. Yes, there’s a
wage gap for uber and lyft drivers based on age,

gender and race. https://mashable.com/2017/01/18/
uber-lyft-wage-gap-rideshare/, 2017. Accessed: 2019-12-
27.

[Korula et al., 2013] Nitish Korula, Vahab Mirrokni, and
Morteza Zadimoghaddam. Bicriteria online matching:
Maximizing weight and cardinality. In International con-
ference on web and internet economics, pages 305–318.
Springer, 2013.

[Lesmana et al., 2019] Nixie Lesmana, Xuan Zhang, and Xi-
aohui Bei. Balancing efficiency and fairness in on-demand
ridesourcing. In Advances in Neural Information Process-
ing Systems, pages 5310–5320, 2019.

[Li et al., 2018] Yaguang Li, Kun Fu, Zheng Wang, Cyrus
Shahabi, Jieping Ye, and Yan Liu. Multi-task representa-
tion learning for travel time estimation. KDD ’18, pages
1695–1704, 2018.

[Nanda et al., 2019] Vedant Nanda, Pan Xu, Karthik Abi-
nav Sankararaman, John P Dickerson, and Aravind Srini-
vasan. Balancing the tradeoff between profit and fairness
in rideshare platforms during high-demand hours. arXiv
preprint arXiv:1912.08388, 2019.

[Ravi et al., 1993] Ramamoorthi Ravi, Madhav Marathe,
Sekharipuram Ravi, Daniel Rosenkrantz, and Harry Hunt.
Many birds with one stone: Multi-objective approximation
algorithms. In STOC ’93, pages 438–447. Citeseer, 1993.

[Review, 2019] World Population Review. New york city
population. http://worldpopulationreview.com/us-cities/
new-york-city-population/, 2019. Accessed: 2020-01-12.

[Rosenblat et al., 2016] Alex Rosenblat, Karen Levy, Solon
Barocas, and Tim Hwang. Discriminating tastes: Cus-
tomer ratings as vehicles for bias. Available at SSRN
2858946, 2016.

[Singer and Mittal, 2013] Yaron Singer and Manas Mittal.
Pricing mechanisms for crowdsourcing markets. In WWW
’13, pages 1157–1166, 2013.

[Singla and Krause, 2013] Adish Singla and Andreas
Krause. Truthful incentives in crowdsourcing tasks using
regret minimization mechanisms. In WWW ’13, pages
1167–1178, 2013.

[Sühr et al., 2019] Tom Sühr, Asia Biega, Meike Zehlike,
Krishna Gummadi, and Abhijnan Chakraborty. Two-sided
fairness for repeated matchings in two-sided markets: A
case study of a ride-hailing platform. In KDD ’19, pages
3082–3092, New York, NY, USA, 2019. ACM.

[Yao et al., 2018] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng
Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and
Zhenhui Li. Deep multi-view spatial-temporal network for
taxi demand prediction. In AAAI ’18, pages 2588–2595,
2018.

[Zhao et al., 2019] Boming Zhao, Pan Xu, Yexuan Shi,
Yongxin Tong, Zimu Zhou, and Yuxiang Zeng.
Preference-aware task assignment in on-demand taxi
dispatching: An online stable matching approach. In
AAAI ’19, pages 2245–2252, 2019.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4205

https://www.ridesharingdriver.com/uber-fees-cancellation-booking-cleaning-fees/
https://www.ridesharingdriver.com/uber-fees-cancellation-booking-cleaning-fees/
https://mashable.com/2017/01/18/uber-lyft-wage-gap-rideshare/
https://mashable.com/2017/01/18/uber-lyft-wage-gap-rideshare/
http://worldpopulationreview.com/us-cities/new-york-city-population/
http://worldpopulationreview.com/us-cities/new-york-city-population/

	Introduction
	Preliminaries and Main Contributions
	Main Contributions


	Related Work
	Valid Benchmarks for Profit and Fairness
	LP-based Parameterized Algorithms
	The First Algorithm WarmUp (,)
	The Second Algorithm AttenAlg (,)

	Experiments
	Data Preprocessing
	Results and Discussions

	Conclusion

