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Abstract

In full-knowledge multi-robot adversarial pa-
trolling, a group of robots have to detect an adver-
sary who knows the robots’ strategy. The adver-
sary can easily take advantage of any deterministic
patrolling strategy, which necessitates the employ-
ment of a randomised strategy. While the Markov
decision process has been the dominant methodol-
ogy in computing the penetration detection prob-
abilities, we apply enumerative combinatorics to
characterise the penetration detection probabilities.
It allows us to provide the closed formulae of these
probabilities and facilitates characterising optimal
random defence strategies. Comparing to itera-
tively updating the Markov transition matrices, our
methods significantly reduces the time and space
complexity of solving the problem. We use this
method to tackle four penetration configurations.

1 Introduction

Multi-robot adversarial patrolling is a well-established prob-
lem with numerous security applications including crime pre-
vention [An et al., 2017], stopping piracy, defending critical
infrastructure [Oliva er al., 2019], protecting animals, natural
reserves, or the environment [Basilico et al., 2017]. In these
settings, robots have the benefit of providing a cheaper mobile
assistance in monitoring vast open areas [An er al., 2017]. In
the general problem, a defender has a team of robots to patrol
an area while an adversary tries to penetrate the area. The
problem has many characteristics and has been considered
with different approaches; we focus on the important setting
of finding optimal random strategies for defending polyline
graphs against full-knowledge adversaries.

Random strategies play an important role in adversarial
patrolling since only these are able to guarantee that an ad-
versary with knowledge of the defender’s strategy can be
caught [Sak er al., 2008]. Finding an optimal strategy is a
two-step process [Agmon et al., 2011]: firstly, determining
the probability functions for catching the adversary and, sec-
ondly, solving the functions for an optimal random parame-
ter. The first step depends on the movements and paths the
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robots can perform and walk, respectively. The current ap-
proach is to algorithmically find all paths and calculate the
probability using Markov chain models [Agmon et al., 2011;
Sless et al., 2014; Sless Lin et al., 2019; Talmor and Agmon,
2017]. These black-box algorithms do not allow us to gain
further understanding of the setting or the resulting proba-
bilities, they must be repeated for every combination of the
setting, and they have a polynomial space and time complex-
ity. For example, on a closed polyline with d segments and
k robots the time complexity is O (d*) [Agmon ez al., 2011]
and the space complexity tends towards O (d°/k?). However,
prevailing classes of graphs like polylines allow a succinct
expression of the number of possible paths.

Consequently, this allows to analytically express the prob-
abilities of random strategies. These expressions not only
completely remove the required runtime but allow us to fur-
ther analyse the relationship between the parameters of the
setting. We present a novel approach to model all possible
paths of a robot’s random strategy as lattice paths. A lattice
path is a path along points in an Euclidean space. Lattice
path problems aim to count the number of lattice paths given
start and end point of the paths, the allowed steps, coordi-
nates restricting the paths, and further path features. Lattice
paths have been studied for a long time and are, despite appar-
ent simplicity, powerful. Moreover, they have applications to
many problems including physical systems, encoding, proba-
bility and statistics [Krattenthaler, 2015].

Our main contribution is the modelling of the robots’ paths
as lattice paths. For two movement types, and open/closed
polylines, we describe the characteristics that influence the
robot’s paths and how these are translated into lattice path
characteristics. We use the lattice path representation to count
the number of paths which immediately allow us to explic-
itly state the probability of catching the adversary in different
segments. This removes the first step of calculating the func-
tions, such that the remaining step of solving the system of
equations can be done efficiently. Finally, we highlight con-
nections between the parameter and the resulting probabili-
ties.

1.1 Related Work

Multi-robot patrolling is an ongoing research area with sub-
stantial attention in the past decade [Huang et al., 2019]. The
area’s four main modelling dimensions are: the environment,
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the type of adversary, the objective or evaluation, and the ap-
proach or method. In terms of overall goal, the area is divided
between regular patrolling and adversarial patrolling [Huang
et al., 2019]. In regular patrolling the aim is to optimise a
frequency related goal; for example, minimising travel time
or maximising the visits of important points [Elmaliach et al.,
2009]. In contrast, the aim of adversarial patrolling is to de-
fend against an adversary by detecting [Basilico et al., 2012]
or handling [Sless Lin et al., 2019] penetration events.

The adversarial model is mostly concerned about the ad-
versary’s knowledge about the robot’s strategy. This ranges
from no information over the ability to learn to full knowl-
edge [Agmon et al., 2008]. For example, the learning ad-
versary in the work of Sak et al. [2008] collects information
on the robot’s visits and uses this data to predict safe attack
times. In comparison, we assume that the adversary has full
knowledge of the defenders’ strategy which can also be inter-
preted as the adversary has enough time to learn the strategy.
It is well established that a full-knowledge adversary can only
be caught using random strategies [Agmon et al., 2011].

The patrolling environments are generally assumed to be
discrete [Basilico et al., 2017] or the underlying continu-
ous environment is discretised. For example, Elmaliach et
al. [2009] divide a 2D environment into cells. Similarly, the
nodes in Sea et al. [2018] represent coordinates in a plane.
Discrete environments might be general graphs [Chevaleyre,
2004; Basilico et al., 2012], representing important points, or
polylines [Agmon et al., 2011; Elmaliach er al., 2008], repre-
senting a perimeter. Furthermore, Agmon et al. [2011] show
that any continuous fence or perimeter can be represented as
a graph with nodes representing sections of equal travel time.
Hence, we focus on discrete polylines which can be applied
to cover continuous environments as well.

Multi-robot adversarial patrolling also overlaps with the
game-theoretic area of security games [Sless Lin e al., 2019;
Basilico et al., 2012]. This area is dominated by leader-
follower or Stackelberg games [Sless Lin er al., 2019] in
which the leader, in this case the defender, makes a move,
i.e. commits to a strategy, and then the attacker can respond
with a move, i.e. a penetration attempt. The overall goal is to
find equilibria that are good for the defender.

However, general graphs and game-theoretic approaches
are mostly either NP-hard [Jain et al., 2013] or likely to
be NP-hard [Sless Lin et al., 2019]. For example, Cheva-
leyre [2004] and Basilico et al. [2012] prove that, in their
respective cases, the optimal strategy is NP-hard. Conse-
quentially, a great number of works use experimental evalu-
ation of heuristics [Chevaleyre, 2004; Elmaliach et al., 2008;
Basilico et al., 2009; Basilico et al., 2012; Clempner, 2018;
Sea et al., 2018; Huang et al., 2019]. These heuristic ap-
proaches are in contrast to our work of finding specific opti-
mal solutions for specific graphs and movement patterns.

Our work is close to the work of Agmon et al. [2011]) and
subsequent papers addressing different aspects like coordi-
nated attacks [Sless ef al., 2014], sequential attacks [Sless
Lin et al., 2019] and deception [Talmor and Agmon, 2017].
Their general aim is to find optimal polynomial-time patrol
strategies for specific graphs and specific goals maximising
the minimal probability of the adversary being caught. They

use algorithmic approaches, mainly the construction and eval-
uation of Markov transition matrices, to find the probabilities
of the robots catching the adversary [Agmon et al., 2011] or
the number of paths [Sless Lin er al., 2019]. In contrast, we
give explicit terms and functions for the number of paths and
the probability of catching the adversary which removes the
necessity for the respective algorithms.

2 Preliminaries

We are considering multi-robot patrolling in a discrete en-
vironment assuming discrete time. A polyline with d € N
nodes, called segments, shall be defended by k¥ homogeneous
robots against a full-knowledge adversary who tries to pen-
etrate at a target segment 1 < j < d which requires ¢ time
steps. The polyline is defended if a robot detects the adver-
sary by reaching the targeted segment within the ¢ time steps.
We mostly focus on one robot since Agmon et al. [2011]
established that the multi-robot case directly follows from
the single robot case when synchronised robots are placed
equidistant. The polyline can be open or closed to represent
a perimeter or a fence [Agmon et al., 2011], respectively.

1. Perimeter / Circle: A closed polyline.
2. Fence / Line: An open polyline.

The polyline restricts the robot’s movement to two direc-
tions, right and left. We differentiate two movement types
based on if the robot can freely go left and right at any mo-
ment, or if it needs to turn around first [Agmon et al., 2011].

1. Omnidirectional: The robot can freely either walk into
the segment to the left or the right of the current segment
in one time step.

2. Directional: The robot can walk into the segment ahead
of the current segment in one time step but needs to turn
around to change direction which takes 7 > 1 time steps.

Since the adversary has full knowledge of the robots’ strat-
egy the robot has to act randomly. The random walk of
the robot is a Bernoulli process where in every round the
robot does, for both movement types, one of the two pos-
sibilities with probability p and the other action with prob-
ability 1 — p. The objective is to determine the best ran-
dom walk to catch the adversary. This can be achieved
by maximising the probability of the segment with mini-
mal probability of catching the adversary, i.e. we seek p €
argmax, (o, Minjeq) Pr(j, t, d) where Pr(j,t,d) is the
probability that the adversary is caught in segment j within
the ¢ time steps on a graph of d segments. This is also re-
ferred to as minmax approach [Agmon et al., 2011].

The probability depends on the paths the robots can walk.
In general, a path is a sequence of consecutive segments rep-
resenting the robot’s left, right, forward or turn movements.

Definition 1 (Path / Right Step / Left Step). A path of
length | is a sequence of consecutive segments, i.e. a vector
(51,82, ...,51) € [d] where every pair of segments (s;, s;11)
for 1 < i < [ are neighbours in the graph. For a path a step
to the right or a step to the left is a tuple (s;—1, s;) where the
second segment is right of or left of the first segment, respec-
tively. Accordingly, the robot moves into a segment from the
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left or clockwise if the step into the segment is a right step;
the same applies for moving in from the right.

Since the random walk is a Bernoulli process, describing
the probability of a path is straightforward. The outcome set
Q consists of all paths from a start segment with a length
at most ¢ and the probability measure Py is the obvious
Bernoulli process measure.

Definition 2 (Probability of a Path). The probability of a path
is Py (w) = p¥ - (1 — p)* where X and Y are the number
of actions depending on the movement type.

Catching the adversary means that within the penetration
time ¢ there is a time step in which the robot is in the segment
where the adversary penetrates. This means that if the adver-
sary penetrates segment j € [d] and the robot walks a path
that contains j, the robot will detect the adversary. Hence,
we can define the probability measure of catching the adver-
sary Pr(j,t,d) as the probability of reaching the adversary

Pr(j,t,d) .= P{wlw € QNj € w}) = Zweg;j@) Py (w).

3 Omnidirectional Movement in the Circle

We use the case of omnidirectional movement in the circle
to introduce the general modelling. This encompasses the
different types of paths, devising, based on the different types
of paths, the lattice path setting and the combination to get the
probability functions. For the rest of this section we consider
one robot and a segment j as the specified target. Without
loss of generality the robot is placed in segment 1 since the
segment numbering is arbitrary. Moreover, for several robots
we can shift the segments according to their position.

The probability of catching the adversary depends on the
possible paths and the probability of one path Py = p¥ -
(1 — p)* where X is the number of right or clockwise steps
and Y is the number of left or anticlockwise steps. We deter-
mine the valid paths and their number in five steps. Firstly, for
short penetration times ¢ the adversary can always penetrate
successfully while for large ¢ the robots can always catch the
adversary. Secondly, the symmetry of the circle means that
we only have to consider reaching a segment in one direction
and the other directions follow similarly. Thirdly, by the def-
inition of catching we only need to consider paths that end
in 7 and are at most of length ¢. Fourthly, we determine the
freedom that leads to the different possible paths. Finally, the
major part is modelling the different paths as lattice paths and
counting them. Altogether, this gives us the probabilities of
the robot reaching the different segments.

3.1 Penetration Time Range

Firstly, only a certain range of ¢ makes sense. If the adversary
requires a long penetration time, the robot can always detect
the penetration; if the adversary requires only a short penetra-
tion time, the adversary can always avoid the robot. We omit
the proof since the result is analogous to Agmon et al. [2011].

Lemma 1. The penetration time for the omnidirectional
robot defending a circle is |d/2] <t < d— 2.
3.2 Path Symmetry

Secondly, by virtue of a circle every clockwise path has a
similar anticlockwise path, denoted as mirrored path.

Definition 3 (Mirrored Path). For a path of length | let
(s1,...,81—1) be a sequence of left and right steps, i.e.
s; € {left,right} for i € [l — 1|. The mirrored path is
the path whose left and right step sequence is (s}, ...,s],_;)
with s, = right if and only if s; = left foralli € [l — 1].
From this definition it is obvious that the number of left
and right steps is the other way around in the mirrored path.

Observation 1. For a path with X right steps and Y left
steps, the mirrored path has 'Y right steps and X left steps.

This symmetry means that a set of paths and the set of their
mirrored paths has to have the same cardinality. Hence, we
can focus on one direction and the other direction follows.

Lemma 2. Moving from left into segment j € {2,...,[4/2]}
is mirrored by moving from the right into d — (j — 2) €
{[4/2] +1,...,d} and vice versa.

Proof Sketch. Since the graph is cyclic, considering the mir-
rored path of any path directly implies the result. O

3.3 Restriction of Necessary Paths

Thirdly, we restrict the number of paths we have to consider
since any path passing j is covered by a path that ends in j.
In more detail, any path passing through j can catch the ad-
versary (see Section 2). Moreover, we can divide all paths
into sets of paths which share a common prefix, i.e. the path
from 1 to the first occurrence of j. By a simple probability
argument, summing up all path probabilities of a set is equiv-
alent to the probability of the prefix since the rest sums up to
1. Hence, we can conclude that we only need to consider the
prefixes (paths ending in j).

Observation 2. It suffices to consider the subset of paths
which end in segment j, without having passed it before, and
are at most of length t.

3.4 Freedom of Movement

Fourthly, we consider the robot’s freedom and possible move-
ments towards segment j and away from it. In any case the
robot can walk up to ¢ steps. Within these ¢ steps the robot
needs to reach j at a distance of dist := dist(1,j). This
distance is 7 — 1 for the clockwise direction and d — j + 1
for the anticlockwise direction. By Lemma 1 the robot can
reach every segment within ¢ so we assume that ¢t > dist.
Hence, since the robot needs dist moves to reach j we have
t — dist additional moves. Considering the direct walk as the
starting point, we observe that any step away from j has to be
countered by a step towards j at some point.

Observation 3. The robot may walk up to | (¢ — dist) /2| away
from j which has to be countered by the same number of
moves towards j.

Hence, by Observation 3 and 2, for every length ¢ — dist +
2i with ¢ € {0,1,...|dst/2|} we have a different amount of
steps and their placement determines the robot’s path.

3.5 Modelling as Lattice Paths

In order to determine the number of paths we model the set-
ting as lattice paths. The overall result, the number of paths
for fixed d, j and 4, can be expressed as the following entry
of Catalan’s triangle (see Bailey [1996] and Stanley [2015]).
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Figure 1: The lattice that represents the movement pattern. The x-
axis are steps in anticlockwise direction and the y-axis are steps in
clockwise direction. The start is the bottom left corner and the finish
is the top right corner. The disk (filled circle) and the circle are
the end points of the valid and the invalid paths, respectively. The
thicker grey line is a valid path whereas the solid black path is an
illegal path that touches the line y = « — dists, ;. The dashed path
shows how reflecting every move after the first touch of the path
and the line leads to the circle. Additionally, a NE-turn and a EN-
turn are illustrated on the thicker grey line indicated by NE and EN,
respectively. Finally, the line y = & — disti, end represents the end
of fence boundary in the case of the line.

Theorem 1. The number of paths of exactly length dist + 24
is C(dist — 1 +1,1).

The lattice path setting (see Figure 1) is as follows. The
robot’s initial position corresponds to (0, 0), the bottom left
corner. Starting there, we allow the following lattice paths.

Definition 4 (Lattice Path). A lattice path is a sequence of
horizontal and vertical unit steps beginning at (0, 0) and end-
ing in a specified point.

The horizontal direction represents movement towards the
target and the vertical direction represents movement away
from the target. Hence, point (z,y) corresponds to the robot
being in segment y — x + 1 if x < y or else segment y — x +
d + 1. The fact that we consider only paths that end in j is
incorporated by considering only paths that do not cross the
line y = x — dist.

Finally, while paths that end in j after dist 2 steps corre-
spond to paths that end in (dist + i, %), for technical reasons,
we will consider paths to coordinate (dist — 1 + 4,4). The
number of paths is not affected by this. Logically, every path
that ends in j after dist + 2¢ steps must end in j — 1 after
dist — 141 steps. Graphically, considering Figure 1, the only
way to reach (dist+1i,1) is by going through (dist — 141, 1).

3.6 Counting the Lattice Paths

The described lattice path setting allows us to show that the
number of lattice paths from (0, 0) to (dist —1+1i, ) amounts
to the number of paths stated in Theorem 1. We do this by
counting all lattice paths from the origin to the end point and
subtract all paths that touch or cross the line y = x — dist.
Lemma 3. The number of lattice paths from (0,0) to (dist —
1 +1,14) not crossing line y = x — dist is C(dist — 1 +4,1).

Proof. The number of unrestricted lattice paths, not restricted
by a line, from (0,0) to (a,b) is (“‘gb) (see Theorem 10.3.1
in Lattice Path Enumeration [Krattenthaler, 2015]).

For the restricted paths, we can use André’s reflection prin-
ciple [Krattenthaler, 2015] to count them. According to the
reflection principle, we can change any paths that touches or
crosses the line so that horizontal steps become vertical steps
and vice versa (see Figure 1) which reflects the endpoint of
these paths to (dist + 4,7 — 1). Hence, the total number of
paths, using above binomial coefficient for the legal and il-
legal paths, is (dzst;1+21) _ (dzsti:11+27,) — %(dzsti:lfr?z)

which is C'(dist — 1 + 4,1). O
The number of the robot’s paths follows immediately.

Proof of Theorem 1. By the correspondence between the
robot’s paths and the lattice paths (see Section 3.5), Lemma 3
directly implies the claim. O

3.7 Probability of Catching the Adversary

Finally, having the number of paths, we can immediately state
the probability that a robot in segment 1 reaches segment j in
at most t steps given Bernoulli parameter p.

Theorem 2. The probability of an omnidirectional robot

catching an adversary in segment j of a perimeter of size d is

fodti-1 - .

Pr(1,j,t) = }jLO == C(d—j+i,i)-ptTi=itl(1-p)!
|_t—j+1

wx e 2wy (1 -y,

Proof. The probability function follows by combining the
statements. Firstly, Observation 1 and Lemma 2 imply that
the results hold for both directions. As stated in Section 3.4,
by the Observations 2 and 3 we can sum over all prefixes to
get all paths. Finally, Theorem 1 gives the number of paths
and Definition 2 gives the probability of a single path. O

4 Remaining Settings

In the previous section we presented the general modelling
technique and how to count the number of paths. Similarly,
the other three cases can be determined by counting lattice
paths of different features. Due to the space limitations, we
focus on the important differences. We present them for the
cases of the directional movement in the circle and the om-
nidirectional movement on the line while omitting the direc-
tional movement on the line which requires no further ideas
and approaches on top of the other three cases.

4.1 Directional Movement in the Circle

For the directional movement we have a path probability of
Py = pX - (1 — p)¥ where, in this case, X is the number
of steps and Y is the number of turns. Like before, the robot
needs dist moves to reach j. However, in comparison to the
previous case, X and Y do not directly correspond to the left
and right steps which means we need a different approach
of counting the paths. Moreover, we separate the additional
moves into additional steps, similar to the previous case, steps
besides those required to reach the target segment, and two
types of changes in direction called turn and spin.

Definition 5 (Turn / Spin). A turn is a change of direction
followed by a step into the new direction and a spin are two
consecutive changes of direction.
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Overall, we have the following result for the number of
paths for one combination which we prove in this section.

Lemma 4. The number of paths from (0,0) to (dist — 1 +
k, k) with 2i turns and spins, from which 2m are turns, 2k
additional steps, and not crossing line y = x — dist is

(dzst+2ik_+wzl m 1) . ((dzstmlJrk) (71:1) _ (dzs;:rk) (kml))‘

In more detail, similar to the omnidirectional case we have
t — dist time for the robot to perform movements other than
reaching the target. The time is divided between additional
steps, turns requiring 7 + 1 (the change of direction and the
following step) and spins requiring just 7. Like before, all
of them come in pairs, since moving or turning away from
the target has to be reversed at some point. The division into
turns and spins is for technical reasons. In the lattice, as it
is presented in Section 3.5, we can represent turns since they
require an additional step after it. In comparison, a spin does
not change the segment of the robot and cannot be integrated
into the path. Nevertheless, spins can be performed at any
time during a path. This allows us to split the counting into
two steps. The first step is to count all paths considering only
additional steps and turns and the second step is to multiply
this by the number of possible spins. Turns can be represented
as a feature of the lattice paths since they appear as either a
north east turn or a east north turn (see Figure 1).

Definition 6 (NE-turn / EN-turn). A point is a north east turn
(NE-turn) if it is the end point of a vertical step and the start-
ing point of a horizontal step. Similarly, a point is a east
north turn (EN-turn) if it is the end point of a horizontal step
and the starting point of a vertical step.

We count the number of turn pairs m by the number of
NE-turns since those represent the total number of turns.

Lemma 5. A path with 2m turns is a path with m NE-turns.

Proof. With two exceptions every turn of the robot shows up
as a NE-turn or an EN-turn (see the thick grey path in Figure
1 with two turns of either type). The exceptions are walking
vertically from (0, 0) which is a turn of direction (equivalent
to EN-turn) and walking vertically into the target segment.
The latter of walking into the target segment is not possible
in our setting (compare Observation 2). Consequentially, the
paths with m NE-turns represent all path with 2m turns. [

This lemma and further results from combinatorics gives
us Lemma 4; only sketched here due to space limitations.

Proof Sketch of Lemma 4. The term is comprised of two fac-
tors from the two steps. Firstly, counting all paths with m
NE-turns can be done using known lattice path results (see
Equation 10.120 in Section 10.14 of Krattenthaler [2015]).
Similar to the previous case, illegal paths can be deducted us-
ing the reflection principal. Together, by Lemma 5, this gives
the number of legal paths given the number of steps and turns.

The spins can happen on any part of the path. Hence, dis-
tributing the ¢ — m spins over the paths of length dist —
1+ 2k + 2m + 1 is like distributing indistinguishable balls
(spins) into distinguishable boxes (the points on the lattice
path). This number is an elementary result in enumerative
combinatorics (see e.g. Stanley [2011]). O

Finally, the probabilities are simply a combination of 7, m
and k similar to Theorem 2 (omitted due to space constraints).

4.2 Omnidirectional Movement On the Line

In comparison to the circle, the line’s defined ends break the
previous symmetry. This affects the paths’ probabilities since
the robot turns around with probability 1. In general, the
movement is now split into X right steps with probability
(1 — p), Y left steps with probability p and Z steps turning
around in the end segments; implying the probability mea-
sure Py (w) = p¥ - (1 — p)X - 12, This is not reflected in
the lattice described above since in the circle the robot had
no restriction, except the available steps, for walking away.
Hence, the crucial part of this setting is to reflect the paths’
restrictions by restrictions of the lattice paths. This can be
done by introducing a second line y = x + dist(j’, 1) which
represents the end of the line (see Figure 1). However, since
reaching the end of the line affects the probability, we have to
consider not only paths of a certain freedom of movement but
how often a path reaches the end of the line. While this num-
ber depends on the number of available steps, in general, we
have to determine the number of paths given that the end is
reached k times, i.e. the number of lattice path that touch the
introduced line k times. We enable this by adapting a bijec-
tion used by Spivey [2012]. We describe a bijection between
the lattice paths that touch the line k£ times and the lattice
paths that touches the line once.

Lemma 6. There is an explicit bijection between paths from
(0,0) to (a, b) touching the line y = x+ s exactly k times and
paths from (0,0) to (a,b — k) touching the line exactly once.

Proof. We can transform a path from the first group to a path
in the second group by taking any path from the first group
and removing, beginning with the last touch, any vertical step
that ends on the line until only one touch is left.

For the reverse, we take any path from the second group.
We start from the last point where the path touches or inter-
sects y = z+s—1 and add into the path one vertical step. We
repeat this until the path ends in (a, b). This procedure will al-
ways produce a path in the first group since at least one touch
is guaranteed, by the one touch of line y = x + s, and shifting
the path up by one vertical step results in an intersection of
the path and y = x+ s — 1. By always choosing the last touch
or intersection this procedure reverses the mapping. O

We can directly use this result to count the relevant paths.

Lemma 7. The number of paths from (0,0) to (a, b) touching
the line y = x + s exactly k times is

Eb—k—(g‘(070)_>(m’m+s)|.|(m7m+s)—>(a,b—k)

m=0
where |(u,v) — (x,y)| denotes the number of paths from
(u,v) 10 (2,y).

>

Proof Sketch. By Lemma 6 any relevant path can be counted
with one of the sets of paths from the origin to one point on
the line and ending in (a,b — k). We can count one of these
sets by multiplying the numbers of paths to the point on the
line and the number of paths from the point on the line to the
endpoint. Finally, summing up over all possible points on the
line gives the statement. O
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Figure 2: The probabilities of the robot
reaching the segments for p ranging from 0
to 1 in a circle with 8 segments (d = 8) and
a penetration time of 6 (t = 6).

The explicit number of paths can be obtained by count-
ing the number of paths between two lines. This can be ob-
tained using standard lattice path results (e.g. Theorem 10.3.4
in Lattice Path Enumeration [Krattenthaler, 2015]). Finally,
again, combining these results yields the probability func-
tions; omitted due to space limitations.

5 Examples

In this section we illustrate that our approach allows to gain
further insight in the relationship between the optimal p and
different values of d and ¢. Moreover, we illustrate the run-
time as well as the removed runtime.

Firstly, the analytic probability functions allow us to plot
the curves. Figure 2 illustrates the 7 probabilities of reaching
the segments 2 — 8 from segment 1 in a circle with 8 segments
and a penetration time of 6. Two different groups of segments
are apparent from the figure. The first group are segments 2
and 8 where the penetration time does not allow the robot
to reach the segment from both directions. Hence, the curves
decrease or increase for reaching segment 2 clockwise or seg-
ment 8 anticlockwise, respectively. The other segments are
reachable from both directions and make the second group.
The graph shows three local maxima on the lower envelope,
one in the centre at p = 0.5 and two equidistant to 0.5 near
0.225 and 0.775. The general observations of this example
appear to hold for all values of d and . We conjecture, based
on numerous combinations, that the grouping and the mono-
tonic behaviour is the same for the different values.

For our analysis, we implemented an algorithm similar to
FINDP of Agmon et al. [2011] in Python using Mathemat-
ica for efficient and accurate root-finding. The algorithm ob-
serves their results that the optimal value is a local maximum
or an intersection of two functions on the lower envelope of
the probabilities and that robots need to be synchronised and
placed equidistant for optimality. Finally, the mathematically
undefined edge cases of the functions above are covered by
taking the limit of the functions which is always defined.

We observe that the highest possible probability of catch-
ing the adversary is 0.5 and the probability decreases expo-
nentially for increasing d and increases for increasing ¢. This
is in line with previous research which is why, due to space
limitations, we have omitted further illustrating figures. As
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Figure 3: The optimal p for a circle of size
d = 34 for all possible penetration times ¢
(17 < t < 32). The solid and the dashed line
show the one or two optimal p values.

Figure 4: The runtime for finding an optimal
pfor 1,2 and 3 robots (2nd step) and the addi-
tional Markov matrix approach runtime (1st
step, finding the probability functions).

expected, the calculation time increases polynomially with d.
However, we save the equally polynomial time of finding the
probability functions which has to be added on top of finding
the optimal p for previous approaches (see Figure 4).

For further insights, Figure 3 visualises a general pattern
the optimal p exhibits for all d and increasing ¢. An analysis
of a larger range of d values shows that for every d the optimal
p tends towards 0.5 until d — 2 — Ll—dlj for increasing ¢. For

smaller ¢ values, every other optimal p, beginning with %],
is 0.5. This suggests that for smaller penetration times the
randomness is important, whereas for large ¢ the best value
tends towards the robot mostly walking in one direction.

6 Conclusions

We use lattice path techniques to determine the number of
possible paths and the probability of catching the adver-
sary for optimal random multi-robot adversarial patrolling
strategies on a perimeter/fence with two different movement
patterns. The probabilities were previously determined us-
ing Markov chain based polynomial-time black-box algo-
rithms [Agmon et al., 2011]. Moreover, we illustrate an un-
derlying structure of the probability functions and the change
of the optimal parameter depending on the penetration time.

The techniques and results invite future work by showing
how calculations can be simplified and further insight can
be gained. The techniques have the potential to simplify
the calculation in all similar scenarios [Sless et al., 2014;
Sless Lin et al., 2019]. Furthermore, it would be interesting to
apply the techniques to other structures and longer histories.
Finally, more specific to the setting in this work, while high
degree polynomials allow no general algebraic solution [Neri,
20161, it would be interesting to analyse further patterns like
monotonicity, as well as trying to reduce the system of equa-
tions via the apparent structure of the optimal values.
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