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Abstract
We present a novel high fidelity 3-D simulator that
significantly reduces the sim-to-real gap for col-
lision avoidance in dense crowds using Deep Re-
inforcement Learning (DRL). Our simulator mod-
els realistic crowd and pedestrian behaviors, along
with friction, sensor noise and delays in the sim-
ulated robot model. We also describe a tech-
nique to incrementally control the randomness and
complexity of training scenarios to achieve better
convergence and generalization capabilities. We
demonstrate the effectiveness of our simulator by
training a policy that fuses data from multiple per-
ception sensors such as a 2-D lidar and a depth
camera to detect pedestrians and computes smooth,
collision-free velocities. Our novel reward func-
tion and multi-sensor formulation results in smooth
and unobtrusive navigation. We have evaluated the
learned policy on two differential drive robots and
evaluate its performance in new dense crowd sce-
narios, narrow corridors, T and L-junctions, etc.
We observe that our algorithm outperforms prior
dynamic navigation techniques in terms of metrics
such as success rate, trajectory length, mean time
to goal, and smoothness.

1 Introduction
Mobile robots are frequently deployed in indoor and outdoor
environments such as hospitals, hotels, malls, airports, ware-
houses, sidewalks, etc. These robots are used for surveillance,
inspection, delivery, and cleaning, or as social robots. For
such applications, robots must smoothly and reliably navi-
gate in these scenarios by avoiding collisions with obstacles,
including dynamic agents or pedestrians. The crowd density
in these scenarios generally vary between 1-3 pedestrians per
square meter.

In recent years, there has been significant work on
learning-based collision avoidance for mobile robots operat-
ing in such dense scenarios. These include techniques based
on end-to-end deep learning [Kim et al., 2018; Pfeiffer et
al., 2017], generative adversarial imitation learning [Tai et
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Figure 1: Turtlebot and Jackal robot using CrowdSteer to navigate in
scenarios with pedestrians in a narrow corridor and areas with high
occlusion. Our method uses data from multiple sensors such as a 2-
D lidar and a depth camera to generate smooth collision avoidance
maneuvers. We highlight the benefits over prior algorithms, such as
DWA and DRL methods.

al., 2018], and Deep Reinforcement Learning (DRL) [Long
et al., 2017; Fan et al., 2018b]. Specifically, DRL-based
methods [Chen et al., 2017; Everett et al., 2018; Long et al.,
2017] have demonstrated superior collision avoidance rates,
lower time-to-goal, and higher average speed of the agent
when compared to traditional Velocity Obstacle (VO) meth-
ods. These methods typically use a single sensor such as a
lidar, depth camera, or RGB camera for obstacle avoidance.

In practice, the DRL-based methods are trained in a simu-
lator and the trained policy is transferred to a real robot. This
strategy of DRL policy training suffers from the sim-to-real
gap, i.e., the policy’s navigation performance in real-life can
be worse than its performance in the simulator. The main
reasons for the sim-to-real gap are 1) not modeling noisy
sensor data readings, friction and delays in robot hardware
[Neunert et al., 2016] and 2) difficulty in recreating real-life
robot-pedestrian interactions with varying complexity in the
simulator.

In addition to sim-to-real transfer issues, the choice of per-
ception sensors that were used to train the policy also affects
the performance of the navigation methods. For instance,
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algorithms that are trained using a single lidar [Long et al.,
2017] may perform well in dense scenarios but lack the abil-
ity to differentiate between animate and inanimate obstacles.
Methods which use several perception sensors [Chen et al.,
2017; Everett et al., 2018] exhibit good performance in mod-
erately dense crowds but not in high density crowds, and are
susceptible to perception errors. Their trajectories also tend
to be jerky and oscillatory.

Main Results. We present a novel high-fidelity 3-D simula-
tor for training learning-based navigation policies for densely
crowded scenarios. In addition, we use our simulator to train
CrowdSteer, a novel collision avoidance policy that fuses data
from inexpensive perception sensors such as a 2-D lidar and a
depth (RGB-D) camera to sense obstacle features. Our simu-
lator helps the policy implicitly learn different kinds of robot
interactions with the pedestrians, and significantly reduces
the sim-to-real gap. The novel components of our work are:

• A high-fidelity 3-D simulator which accurately models
real-world crowd behavior, sensor noise, frictions and
delays of the robot, to close the sim-to-real gap while
training DRL policies for dense crowd navigation. Our
simulator also allows to incrementally vary the com-
plexity and randomness of the training scenarios. The
robot’s performance in simulation and in real-world sce-
narios matches over 80% of the time, demonstrating our
simulator’s sim-to-real transfer capabilities. Previous
methods perform well in simulations but exhibit oscil-
latory/jerky motions on real hardware.

• A DRL-based collision avoidance policy trained in our
simulator that fuses inputs from a 2-D lidar and depth
camera for implicitly characterizing the robot’s interac-
tions with pedestrians. The policy smoothly navigates
through complex real-world scenarios.

• Reward function shaping for crowd navigation that leads
to highly smooth robot trajectories which are less obtru-
sive to pedestrian motion. Our ablation study (Table 2)
shows more than 4 times reduction in oscillations.

We evaluate the generalization and sim-to-real capabili-
ties of the trained DRL policy on two real robots, Turtlebot
and ClearPath Jackal in indoor environments such as corri-
dors, L and T-junctions with varying pedestrian density (1-3
humans/m2). We also compare its performance with prior
traditional methods such as the Dynamic Window Approach
(DWA) [Fox et al., 1997] and a state-of-the-art learning-based
crowd navigation algorithm [Long et al., 2017]. We observe
that our approach surpasses these methods in terms of success
rates, smoothness and shows a reduction of up to 68.16% in
time to goal, and 6.12% reduction in trajectory length when
compared to the current state of the art in DRL-based solu-
tions [Long et al., 2017].

2 Related Work
In this section, we give a brief overview of the prior work
on crowd simulation, and traditional and learning-based col-
lision avoidance algorithms.

2.1 Sim-to-Real and Crowd Simulation
Reasons for the sim-to-real gap and methods to mitigate
them [Neunert et al., 2016; Yu et al., 2019] have been dis-
cussed in several works. For training a policy for crowd
navigation in simulation, the crowd’s behavior must mimic
real-world behavior. Works such as [Narang et al., 2015;
Pelechano et al., 2007; Narain et al., 2009; Braun et al., 2003]
discuss several dynamics, physiological and psychological
factors that should be accounted to make crowd simulation
more realistic. [Curtis et al., 2016] demonstrates a modular
structure for developing a crowd simulator. We extend the
concepts from these works for our crowd navigation policy
training.

2.2 Navigation in Dynamic Scenes
There is extensive work on collision avoidance in dynamic
scenes for robots. These include techniques based on
potential-field methods [Tilove, 1990], social-forces [Hel-
bing and Molnar, 1995], velocity obstacles and its exten-
sions [van den Berg et al., 2009; Alonso-Mora et al., 2010;
Bareiss and van den Berg, 2015; Alonso-Mora et al., 2018],
etc. In terms of real-world scenarios, these methods require
accurate sensing of obstacles’ positions and velocities and
parameter tuning that is scenario-dependent. These require-
ments make it difficult to directly apply them for navigation in
dense crowds. The Dynamic Window Approach (DWA) [Fox
et al., 1997] is another widely used method which calcu-
lates reachable dynamically-constrained velocities for colli-
sion avoidance within a short time interval. However, it does
not scale well to large numbers of dynamic obstacles (Section
5.5).

2.3 Learning-based Collision Avoidance
Several works have used a single perception sensor such as
2-D lidar or raw data from a depth camera to train collision
avoidance behaviors in a robot using expert demonstrations
[Pfeiffer et al., 2016] and imitation learning [Tai et al., 2018].
End-to-end methods [Kim et al., 2018], and methods using
deep double-Q networks [Xie et al., 2017] use RGB image
data for training.
DRL-based Methods. A decentralized collision avoid-
ance method was trained with Proximal Policy Optimization
(PPO) [Schulman et al., 2017] using a 2-D lidar in [Long
et al., 2017]. This approach was extended to a hybrid con-
trol architecture [Fan et al., 2018b], which switched between
different policies to optimize the navigation. This approach
works well in open spaces, but exhibits oscillatory and jerky
motions in dense scenarios since the 2-D lidar only senses the
proximity data and fails to sense more complex interactions.
[Chen et al., 2017] presents a decentralized agent-level policy
that utilizes a trained value network that models the coopera-
tive behaviors in multi-agent systems. An LSTM-based strat-
egy that uses observations of arbitrary numbers of neighbor-
ing agents during the training phase is described in [Everett
et al., 2018]. Other methods [Chen et al., 2019] explicitly
model robot-human interactions in a crowd for robot navi-
gation. These algorithms use a 2-D or 3-D lidar along with
several RGB cameras for pedestrian classification and have
been tested in moderately dense crowds.
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These methods use either basic 2.5D simulators or trajec-
tories generated by methods such as ORCA [van den Berg et
al., 2009] for policy training, which may not translate well to
real-world scenarios.

3 Overview
In this section, we provide a brief overview on the multi-
sensor based navigation policy trained in our simulator.

3.1 Multiple Sensors
To test the capabilities of our simulator, we train a policy that
exploits data from two sensors (2-D lidar and depth camera)
simultaneously. Our simulator is also extendable to other sen-
sor/robot models. The lidar’s raw data does not provide suffi-
cient information to differentiate between animate and inan-
imate obstacles or sudden changes in the orientation of ob-
stacles which makes it difficult to infer the direction in which
obstacles are moving. Therefore, we also use images from a
depth camera to capture such interactions that are useful for a
robot’s navigation.

2-D Lidar. Each scan/frame from a 2-D lidar consists of a
list of distance values on the plane of sight of the lidar (See
left scenario in Fig. 2). With its high accuracy, Field Of
View (FOV), and low dimensional output data, the 2-D lidar
allows us to detect clusters of closest points in the robot’s
surroundings.

Depth Camera. Depth images possess an additional di-
mension over and above a 2-D lidar. Therefore, features such
as obstacle contours and changes in obstacles’ poses are more
prominently recorded even in low resolution images. If we
consider several consecutive frames from the camera, the ap-
proximate positions, orientations and velocities of all obsta-
cles/pedestrians in the frame can be extracted.

3.2 Robot Navigation
The dynamics of the robot we train is formulated using non-
holonomic constraints [Alonso-Mora et al., 2010]. The robot
knows its environment only through local observations, and it
has no global knowledge of the environment, and cannot ac-
cess hidden parameters of pedestrians, such as their goals. At
each time step t, the robot has access to an observation vector
ot which it uses to compute a collision-free action that drives
it towards its goal. We also assume that the pedestrians coop-
erate with the robot to avoid collisions, and that data from the
lidar and depth camera are synchronized.

We split the robot’s observation space into four compo-
nents, ot = [otlid, otcam, otg, otv], where otlid denotes raw noisy
2-D lidar measurements, otcam denotes the raw image data
from a depth camera, otg refers to the relative goal location
with respect to the robot, and otv denotes the current velocity
of the robot.

The action space of the robot is composed of its linear and
angular velocities at = [vt, ωt]. At each instant, the trained
navigation policy πθ selects an action at to drive the robot to-
wards its goal while avoiding collisions with pedestrians and
static obstacles, until a new observation ot+1 is measured.
During training, we optimize the policy πθ to minimize the

arrival time of the robot to its goal. We choose Proximal Pol-
icy Optimization [Schulman et al., 2017], a policy gradient
based method to train our policy in simulation. Since the
current state-of-the-art DRL-based collision avoidance policy
uses PPO, it helps us compare our policy against it.

4 Our Simulation Approach and CrowdSteer
In this section, we discuss the development of our simulator
and our multi-sensor based collision avoidance method that
is trained in it.

4.1 Pedestrian Behavior Modeling
Pedestrian velocities in crowds are dictated by several com-
plex factors such as crowd density, stride length of a per-
son, and need for personal space. The fundamental diagram
[Narang et al., 2015] provides an inverse relationship be-
tween individual pedestrian velocities and the crowd density.
To create realistic crowd navigation training scenarios, we
need to account for the density-dependent behaviors based
on the above said factors.

Each pedestrian in our simulation is modeled as a disk in
2-D plane with the following state space: [r ~p ~vcurr ~vpref ] ∈
R7. Here, r denotes the disc radius. ~p,~vcurrand~vpref rep-
resent the current 2-D position, current velocity and the pre-
ferred velocities of the pedestrians respectively. We relate
a pedestrian’s natural walking velocity (V) with physiologi-
cal (pedestrian’s height and stride length), and psychological
(need for personal space) factors using the following equa-
tion:

V = min

(
||~vpref ||,

(
Sα

H(1+β)

)2)
(1)

where S is the available space in front of the pedestrian, H
(height/1.72) is a height normalization factor, α and β are
constants that account for stride of the pedestrian. Account-
ing for these factors during policy training along with appro-
priate reward function shaping lead to navigation that is more
pedestrian-friendly.

4.2 Scenario and Robot Model Development
An important challenge when designing a simulator and sce-
nario for training navigation policies is to strike a balance
between: (i) the generality of the scenario such that overfit-
ting is avoided, (ii) maintaining the complexity of the training
scenarios such that the policy converges. We achieve this by
training the policy starting from simple to complex scenarios.
We vary each scenario’s complexity and randomness by us-
ing a complexity factor (c) for the different scenarios, and by
correlating it with a certain attribute of the scenario.

We classify our scenarios into 3 broad categories and ex-
plain the complexity factor for each category.

Static Scenario. This category of scenarios contains only
static obstacles in an enclosed space of constant area and the
policy learns goal-reaching and static obstacle avoidance be-
haviors in these scenarios. The complexity factor c controls
the number of obstacles in the scenario. As c is increased,
obstacles are randomly placed in the scenario, which reduces
the free space available for the robot to traverse through.
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Random Static and Dynamic Obstacles. In this category
of scenarios, c controls the number of static obstacles, and
the magnitude of velocity of dynamic pedestrians. The sim-
ulated pedestrians use the velocity directions computed as
mentioned in Section 4.1. As (c) is increased, the train-
ing scenario has more randomly placed static obstacles (less
traversible space for the robot) and robot needs to handle dy-
namic pedestrians.

Scenario with Occluded Obstacles. In this category of
scenarios, the robot learns to perform several sharp turns and
avoid pedestrians who can only be observed in close prox-
imity. This trains the robot to perform quick maneuvers in
real-world scenarios. Here c is correlated with the occlusion
% in the environment, and the number of dynamic obstacles.
Depending on the FOV of the depth-camera, the occlusion
% is defined as

(
Angle not visible
Camera’s FOV

)
× 100%. As c increases, the

occlusions become more severe and the robot faces more dy-
namic obstacles in random intervals.

The complexity factor c gives more control on incremen-
tally changing the randomness and complexity of the scenar-
ios. This aids in training convergence, and since all scenarios
include some randomness, overfitting is prevented.

Robot Model. We use the model of a Turtlebot in simula-
tion for training. We compare the velocities of a real Turtle-
bot mounted with a laptop and sensors with a simulated robot,
and use system identification techniques to deduce additional
motor friction and inertia parameters that the simulated robot
model must include. We also add Gaussian noiseN (0, 0.2) to
the depth images, and the goal location in the simulation and
increased the delay in subscribing to current velocity observa-
tions. The mounting position of the depth camera is also var-
ied during training to improve generalization. These modifi-
cations help more accurately recreate hardware phenomenon
in simulation.

4.3 Reward Function Shaping
To train the basic objectives of navigation, the robot is re-
warded for heading towards and reaching its goal, and penal-
ized for moving too close or colliding with an obstacle. In
addition, the robot is penalized for oscillatory velocities, and
rewarded for reaching intermediate waypoints (rwp) provided
relative to the robot. No global information is available.

Formally, the total reward collected by a robot i in the sim-
ulation at time instant t can be given as:

rti = (rg)
t
i + (rc)

t
i + (rosc)

t
i + (rsafedist)

t
i (2)

where the reward for reaching the goal (rg)ti or an intermedi-
ate waypoint is given as:

(rg)
t
i =


rwp if ||pti − pwp|| < 0.1,

rgoal if ||pti − gi|| < 0.1,

2.5(||pt−1
i − gi|| − ||pti − gi||) otherwise.

(3)
Here, pti and pwp denotes the position of the ith robot at time
t and the relative position of its next waypoint respectively,

and gi denotes its final goal location. The collision penalty
(rc)

t
i is given as:

(rc)
t
i =

{
rcollision if ||pti − pobs|| < 0.3,

0 otherwise.
(4)

The oscillatory behaviors (choosing sudden large angular ve-
locities ωti ) are penalized as:

(rosc)
t
i = −0.1|ωti | if |ωti | > 0.3. (5)

Although the penalty for collision teaches the robot not to
collide, it does not specifically result in the robot maintaining
a safe distance from pedestrians. The penalty for moving too
close to an obstacle is given by:{
(rsafedist)

t = −0.1|dthresh − drob| if dthresh > drob
(rsafedist)

t
i = −0.1||S − drob|| if S > drob

(6)
where dthresh and drob denote the threshold distance that the
robot needs to maintain from an inanimate obstacle at any
time, and the actual distance that the robot maintains from
an obstacle. S is the space needed for a pedestrian to walk
without changing his/her velocity, calculated from equation 1
for a given V, α and β. This reward term is dynamic, as the
value of S varies for different pedestrians. This novel addi-
tion trains the policy to navigate among humans while caus-
ing minimum disturbance to them, which previous methods
have not accounted for in their training.

4.4 Network Architecture
The network architecture used for training our DRL policy is
shown in Fig.3. The network has 4 branches to process each
observation of the robot. We use a deeper branch with several
2-D convolutional layers to process depth images.

5 Results and Evaluations
In this section, we describe our implementation and highlight
its performance in different scenarios, compare it with prior
methods and perform ablation studies to highlight the bene-
fits of our simulator, using multiple sensors and our reward
function.

5.1 Implementation
We train our model in simulations that were created using
ROS Kinetic and Gazebo 8.6 on a workstation with an Intel
Xeon 3.6GHz processor and an Nvidia GeForce RTX 2080Ti
GPU. We use Tensorflow, Keras and Tensorlayer for imple-
menting our network. We use models of the Hokuyo 2-D li-
dar and the Orbbec Astra depth camera in Gazebo to simulate
sensor data during training and evaluation. We mount these
sensors on a Turtlebot 2 and a Clearpath Jackal robot to test
our policy in real-world scenarios such as crowded corridors
and occluded scenes.

5.2 Training Convergence and Data Efficiency
The convergence of our reward function versus the number
of iterations for different training scenarios is shown in Fig.4.
We gradually increase the complexity factor of the training
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Figure 2: Left to right: Some of the training scenarios created in our simulator. Left: Corridor with dynamic pedestrians. Middle: Scenario
with high occlusions, and static and dynamic obstacles. Right: Scenario with random number of standing and walking pedestrians.

Figure 3: Architecture of our multi-sensor based navigation network
with four branches for different observations. The input layer is
marked in blue, the hidden layers are marked in orange. Fully con-
nected layers in the network are marked as FCn. The second branch
extracts features from three consecutive image frames, which are
fused with features extracted from three frames of the lidar in FC2
layer. The three values underneath each hidden layer denote the ker-
nel size, number of filters, and stride length respectively.

scenarios and the training starts to converge at 100 iterations,
and stabilizes at 200 iterations. The total process completes
in six days. This increase in training time when compared
with previous methods is due to the complexity and number
of scenarios, and the dimensionality of the 3-D depth data
used during training. However, the training time does not
affect our run-time performance, which can be observed from
our real-world tests.

5.3 Testing Scenario
We consider five different test scenarios that have narrower
or different sections, as compared to our training scenarios.
The scenarios demand tight maneuvers from the robot to
reach the goal and are more challenging than existing simula-
tion benchmarks and help to better test CrowdSteer’s sim-to-
real, and generalization capabilities. We define Least Passage
Space (LPS) as the minimum space available to the robot in-
between obstacles when moving towards the goal. The sce-
narios we consider are:
• Narrow-Static: Scenario with only static obstacles

where the LPS is < 0.7 meters.
• Narrow-Ped: Scenario with 8 pedestrians walking in

Figure 4: Convergence of the total reward earned per episode vs the
number of iterations (training episodes) for different training scenar-
ios. Each iteration consists of utmost 500 training steps. Training in
all scenarios converges within 200 iterations. This shows the bene-
fits of our training scenario design.

Figure 5: Testing the generalization of our training in a scenario with
four agents (in blue) moving towards antipodal points on a circle (in
yellow).

the opposite direction to the robot’s motion in a narrow
corridor, with an LPS of < 1.5 meters.
• Occluded-Ped: Scenario with sharp turns with static ob-

stacles and pedestrians that are occluded by walls. The
LPS is < 1 meter.
• Dense-Ped: Scenario with 18 pedestrians in a corridor

of width 6 meters. Pedestrians may walk together as
pairs, which require a robot to make sharp turns in the
presence of multiple dynamic obstacles. The LPS is < 1
meter.
• Circle: To test the generalization of our method for

multi-robot collision avoidance, we make 4 robots move
towards antipodal positions on a circle. The trajectories
of the 4 robots is shown in Fig. 5.
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Metrics Method Narrow-Static Narrow-Ped Occluded-Ped Dense-Ped

Success Rate (higher is better)

DWA 1.00 0.10 0.50 0.00
Depth Camera 0.85 0.55 0.20 0.20
Long et al. 1.00 0.00 0.00 0.00
CrowdSteer 1.00 1.00 0.90 0.67

Avg Trajectory Length (lower is better)

DWA 6.33 14.86 27.20 7.46
Depth Camera 6.18 16.30 25.70 14.95
Long et al. 6.86 6.16 13.63 9.17
CrowdSteer 6.44 15.51 27.18 16.58

Mean Time (lower is better)

DWA 20.90 44.10 60.40 25.72
Depth Camera 58.70 43.60 78.20 90.73
Long et al. 106.93 13.76 28.02 38.05
CrowdSteer 34.04 41.48 70.54 64.90

Avg Velocity (higher is better)

DWA 0.30 0.34 0.45 0.29
Depth Camera 0.11 0.37 0.33 0.16
Long et al. 0.06 0.44 0.48 0.23
CrowdSteer 0.20 0.37 0.39 0.26

Table 1: We compare the relative performance of CrowdSteer that uses multiple sensors (depth camera + lidar) with other learning methods
that use a single sensor, and a traditional method DWA in challenging scenarios. Note: The numbers in grey are values recorded until the
robot collided or started oscillating indefinitely and represent poor performance. These results clearly highlight the benefit of our novel deep
reinforcement learning algorithm (CrowdSteer) that uses multiple sensors over prior methods.

5.4 Performance Benchmarks and Metrics
We compare the benefits of our multi-sensor policy with three
prior algorithms: (i) Dynamic Window Approach [Fox et al.,
1997] along with a global planner which requires a map of the
environment.(ii) An implementation that uses a single depth
camera that was trained using PPO and our reward functions;
(iii) Long et al. [Long et al., 2017], the current state-of-the-art
DRL-based collision avoidance policy for dense crowd navi-
gation, trained in a 2.5D simulator. Its real-world implemen-
tation is shown in [Fan et al., 2018a]. We use the following
metrics to evaluate the performance of different navigation
algorithms:

• Success Rate - The number of times that the robot
reached its goal without colliding with an obstacle over
the total number of attempts.
• Average Trajectory Length - The trajectory length tra-

versed by the robot until the goal is reached, averaged
over the total number of attempts. In cases where the
robot never reached the goal, we report the trajectory
length until it collided or started oscillating indefinitely.
• Mean Time - Average time taken to reach the goal over

all attempts. If the goal is never reached in all attempts,
we report the mean time until a collision or indefinite
oscillation.
• Average Velocity - The average velocity of the robot

until a collision occurs or the goal is reached over all
attempts.

The values for the trajectory length, mean time and velocity
reported when Long et al’s method always failed, are until a
collision or indefinite oscillation to give a sense of how much
the robot traversed towards the goal before failing.

5.5 Analysis and Comparison
The results of our experiments and our ablation study to
check the benefits of using multiple sensors (both lidar and
depth camera) versus using one sensor (only depth camera)
are shown in Table 1.

Comparisons with DWA and [Long et al., 2017]. All
methods perform well in static scenarios. However, as the
number and density of dynamic agents increases, both DWA
and Long et al’s method’s performances drop considerably.
This is mainly due to the high replanning time in DWA and
the robot freezing problem and oscillations in the case of
Long at al. DWA performs well in occluded areas due to it
using a global map, while CrowdSteer has comparable per-
formance using only local knowledge. Apart from having
a much better success rate, CrowdSteer has similar perfor-
mance as prior methods in terms of average velocities, bet-
ter trajectory lengths and mean time to Long et al.’s method.
Therefore, our method outperforms the current state-of-the-
art in dense and occluded scenarios. This is a testament to the
benefits of our training scenarios, reward function and use of
multiple sensors.

Comparing Smoothness. We observe that CrowdSteer has
significantly less oscillations (sudden changes in the angu-
lar velocity of the robot) than Long et al’s method [Long et
al., 2017] resulting in smoother robot trajectories. Crowd-
Steer’s novel reward structure trains the policy to maintain
a safe and comfortable distance from pedestrians and avoids
oscillations.

Ablation Study for Multi-Sensor Fusion. We compare the
effects of using fused data from two sensors (CrowdSteer)
versus a policy which uses one sensor (Depth Camera) trained
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Figure 6: Trajectories generated by Long et al.’s method (left) and
CrowdSteer (right) in the Occluded-ped scenario. Our realistic sce-
narios and reward function have led to much fewer oscillations.

Scenario Without Penalty With Penalty

Empty world 9.8 2.0
Static obstacle 9.0 2.0

Table 2: Ablation Study for smoothness: The average number of
oscillations in two scenarios for two models trained without and with
the oscillations penalty term (Section 4.3). We see a reduction of up
to 4 times in the number of oscillations in our model that is trained
with the penalty.

with our training scenarios and reward function. Due to lim-
ited depth camera FOV, the depth camera model does not have
a 100% success rate in any scenario. This also reflects in
the drop in success rate in the Occluded-Ped and Dense-Ped
benchmarks. However, it still manages to succeed in the dy-
namic testing scenarios due to our realistic training scenarios
and reward function. CrowdSteer takes advantage of both the
high accuracy of the lidar and the complex features extracted
from the depth images and demonstrates significantly better
success rates, lower mean time, and higher average velocities.

Ablation Study for Smoothness. We study the effect of
our reward function on the robot’s trajectory smoothness. We
trained two policies, one including the penalty for oscillations
in the reward function (Eqn. 5), and the other without it. The
average number of oscillations in the robot’s trajectory are
summarized in Table 2. The models are evaluated in two
scenarios: (i) Scenario without any obstacles, and the robot
moves in a straight line for 10 meters towards the goal, (ii)
Scenario where the robot must maneuver to avoid a static ob-
stacle before reaching the goal. Empty/sparse scenarios are
used so that turns during dynamic obstacle avoidance do not
affect the number of oscillations. We observe that there is a
significant reduction in the number of oscillations when the
penalty is included.

Real-World Scenarios. We use CrowdSteer to navigate a
Turtlebot and a Clearpath Jackal robot in crowds with varying
densities (1-3 person/m2), as shown in the video.1 The robots
face high randomness in terms of the direction and velocities
of pedestrians, which was not encountered during training.
We compare the motion of CrowdSteer with Long et al.[Long
et al., 2017] method in similar scenarios. Compared to Long
et al., we observe that CrowdSteer has smoother trajectories
in both robots and avoids all collisions with the obstacles.
In occluded spaces such as corridors, CrowdSteer was able

1https://www.youtube.com/watch?v=3NrhuQDsAoc

to avoid sudden obstacles which appear in places such as T
and L junctions. These tests again highlight the benefits of
our extensive training in occluded places, and implicit sensor
fusion. Our real-world tests also demonstrate our simulator’s
strong sim-to-real and generalization capabilities.

Failure Cases. CrowdSteer may not work well certain
cases. It might fail in highly acute angled turns and in envi-
ronments with reflective or transparent surfaces, and high in-
terference from infrared light in the surroundings. In crowds
with density > 4 people/m2 or scenarios with very mini-
mal or narrow space for navigation, the robot may not find
a collision-free path.

5.6 Improved Sim-to-Real Transfer
We compared the linear and angular velocities between a sim-
ulated and real robot when both are made to navigate in the
similar scenarios with static obstacles. We observed that the
velocity changes in both robots correlated over 80 % of the
times. This demonstrates the accurate modeling of real-world
interactions, and hardware parameters such as friction, inertia
and delays. Previous DRL policies, when implemented in real
hardware exhibit unnatural oscillatory behaviors since their
training could not model such phenomenon due to the sim-
plicity of their simulators and datasets. We also note that the
simulator can be used to extensively collect trajectory/sensing
datasets.

6 Conclusion, Limitations and Future Work
We present a novel 3-D, high-fidelity simulator for training
learning-based collision avoidance policies, with systemati-
cally increased complexity. We trained CrowdSteer, a policy
that simultaneously uses multiple sensors such as 2-D lidars
and cameras. In practice, our approach works well in com-
plex, occluded scenarios and results in smoother trajectories.
Our approach has some limitations and failure cases. It is sus-
ceptible to freezing robot problem in very dense settings and
the computed trajectories are not globally optimal. Further-
more, the current sensors may not accurately handle glass or
non-planar surfaces. These are avenues for future work. In
addition to overcoming these limitations, we need to evaluate
its performance in other scenarios and outdoor settings.
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