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Abstract
Abstraction Sampling (AS) is a recently introduced
enhancement of Importance Sampling that exploits
stratification by using a notion of abstractions:
groupings of similar nodes into abstract states. It
was previously shown that AS performs particu-
larly well when sampling over an AND/OR search
space; however, existing schemes were limited to
“proper” abstractions in order to ensure unbiased-
ness, severely hindering scalability. In this paper,
we introduce AOAS, a new Abstraction Sampling
scheme on AND/OR search spaces that allow more
flexible use of abstractions by circumventing the
properness requirement. We analyze the properties
of this new algorithm and, in an extensive empiri-
cal evaluation on five benchmarks, over 480 prob-
lems, and comparing against other state of the art
algorithms, illustrate AOAS’s properties and show
that it provides a far more powerful and competitive
Abstraction Sampling framework.

1 Introduction
An important task in probabilistic graphical model inference
is estimating the partition function (Z). Monte-Carlo meth-
ods have traditionally been used for generating Z estimates,
with Importance Sampling (IS) being a primary framework
[Rubinstein and Kroese, 2007; Liu et al., 2015; Gogate and
Dechter, 2011]. In IS, samples represent a single full con-
figuration of the variables, with each given an importance
weight. A newly introduced framework, Abstraction Sam-
pling (AS) [Broka et al., 2018], inspired by [Knuth, 1975;
Chen, 1992], expands on IS by allowing each sample to repre-
sent multiple configurations rather than just one. These sam-
ples of multiple configurations are called probes. In Abstrac-
tion Sampling, probes are generated by grouping nodes to-
gether into abstract states based on an abstraction function,
and then picking a representative node from each group to
build a sampled subtree. As such, each probe is a subtree of
the full search tree. Each probe is reweighted based on its
chosen representative nodes and contributes to a Monte Carlo
estimate of the partition function of the full tree.

In particular, Abstraction Sampling smoothly interpolates
between standard IS (where all of a variable’s states are

abstracted into a single abstract state) and standard search
(where only provably equivalent states are abstracted into a
single abstract state in the search tree). As such, Abstrac-
tion Sampling can be considered a generalization of Stratified
Sampling [Rubinstein and Kroese, 2007; Rizzo, 2007] com-
bined with compact search [Dechter and Mateescu, 2007].

[Broka et al., 2018] defined AS over OR and AND/OR
search spaces and provided an analysis of complexity and
conditions for unbiasedness. They introduced abstraction
functions for which AS significantly improved performance
over the baseline of Importance Sampling and was shown to
be highly competitive against two state-of-the-art schemes:
Weighted Mini-Bucket Importance Sampling [Liu et al.,
2015] and IJGP-SampleSearch [Gogate and Dechter, 2011].

However, a serious limitation of the existing AND/OR AS
algorithm is that abstractions need to adhere to a property
called properness to ensure unbiased estimation. This re-
striction (to be described) inhibits the algorithm’s ability to
group nodes into abstract states and thus to limit the size of
its probes, severely hindering scalability.

Contributions. 1. We introduce AOAS, a new Abstrac-
tion Sampling scheme over AND/OR search spaces. This
new scheme lifts the properness restriction altogether, signif-
icantly enhancing the scalability of Abstraction Sampling for
AND/OR spaces. 2. We provide new analysis and extensive
empirical evaluation of all Abstraction Sampling schemes,
and highlight how the new AOAS algorithm empowers for-
mation of abstractions. 3. We compare against a new highly
competitive scheme, Dynamic Importance Sampling (DIS),
and show that AOAS is largely superior. We also strengthen
the empirical results on instances lacking exact answers by
placing the estimates within bounds produced by DIS.

2 Background and Definitions
A graphical model, such as a Bayesian or a Markov network
[Pearl, 1988; Darwiche, 2009; Dechter, 2013], can be defined
by a 3-tupleM= (X,D,Φ), where X = {Xi : i ∈ V } is a
set of variables indexed by a set V and D= {Di : i∈D} is
the set of finite domains of values for each Xi. Each func-
tion ψα ∈ Φ is defined over a subset of the variables called
its scope, Xα, where α ⊆ V are the indices of variables in its
scope andDα denotes the Cartesian product of their domains,
so that ψα : Dα → R≥0. The primal graph G = (V,E)
of a graphical model associates each variable with a node
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Figure 1: Example of an AND/OR search space. (a) A primal graph,
(b) A possible pseudo tree for primal graph a), (c) An AND/OR
search tree guided by pseudo tree b). To calculate the value of an
OR node, we sum the values of its children multiplied by their arc
weights, and for an AND node we multiply the values of it children.
Partition function of the model is the resulting value of the root node.

(V = X), while arcs e ∈ E connect nodes whose variables
appear in the scope of the same local function. Graphical
models can be used to represent a global function, often a
probability distribution, defined by Pr(X) ∝

∏
α ψα(Xα).

An important task is to compute the normalizing constant,
also known as the partition function, Z =

∑
X

∏
α ψα(Xα).

Search Spaces of Graphical Models
A graphical model can be transformed into a weighted state
space graph. In an OR search space, which is constructed
layer-by-layer relative to a variable ordering, paths from the
root to the leaves represent full configurations - or assign-
ments to all variables - where each successive level corre-
sponds to an assignment of the next variable in the order-
ing. A graphical model can also be transformed into a more
compact AND/OR search space by capturing its conditional
independencies, thus facilitating more effective algorithms
[Dechter and Mateescu, 2007].

An AND/OR search space is defined relative to a pseudo
tree of a primal graph. A pseudo tree T =(V,E′) of a primal
graph G = (V,E) is a directed rooted tree that spans G such
that every arc of G not in E′ is a back-arc in T connecting a
node to one of its ancestors (Figure 1(a),(b)). A variable is a
branching variable if it has multiple children in T .

Given a pseudo tree T of a primal graph G, the AND/OR
search tree TT guided by T has alternating levels of OR
nodes corresponding to variables, and AND nodes corre-
sponding to an assignment from its domain with edge costs
extracted from the original functions [Dechter and Mateescu,
2007]. Let n be an AND node in Tτ , also denoted nX if X is
the last variable of its partial configuration. Each arc into an
AND node n has a cost c(n) defined to be the product of all
factors ψα inM that are instantiated at n but not before.

A solution tree is a subtree of TT satisfying: (1) it con-
tains the root of TT ; (2) if an OR node is in the solution tree,
exactly one of its AND child nodes is in the solution tree;
(3) if an AND node is in the tree then all of its OR children
are in the solution tree. Finally, its leaves are leaves of TT .

The cost of a solution tree is the product of its arc-costs and
is equal to the cost of the corresponding full configuration of
the graphical model [Dechter and Mateescu, 2007].

Value of A Node
The partition function, Z, of a graphical model M can be
obtained by computing the value of the AND/OR search tree
T , V (T ), by summing the costs of all its solution trees. This
can be done recursively from leaves to root [Dechter and Ma-
teescu, 2007] by associating a value function V (n) with ev-
ery node n in the AND/OR search tree. The value of a node,
V (n), is defined as the sum cost of all partial solution-trees
rooted at n. In particular, V (nX) denotes the value of an
AND node nX of variable X . V (YnX

) denotes the value of
an OR node Y that is the child of an AND node nX , Y being
the child of X in the pseudo tree. The value function can be
computed by the following recursive expression:

V (nX) =
∏

Y ∈chT (X)

V (YnX
) (1)

where

V (YnX
) =

∑
nY ∈chY (nX)

c(nY ) · V (nY ) (2)

and where ch() denotes child variables either in the pseudo-
tree or the search tree itself (depending on the context). Here,
chY (nX) are the child AND nodes of Y descended from
AND node nX . Note that V (T ) = V (root), where ”root”
is the root node of TT . It follows that V (root) = ZM, the
partition function of the underlying model (see Figure 1c).

But what is the meaning of V (n) for an arbitrary AND
node n w.r.t the partition function ofM? Let path(n) denote
the configuration of variables on the path from the root to
n in TT , let Z|path(n) be Z conditioned on the assignment
to path(n), and let Out(path(n)) be the set of OR nodes
(corresponding to variables) emanating from path(n), which
are OUTside path(n). Then Z, when restricting to the partial
configuration of path(n), is obtained by multiplying g(n),
the cost of path(n), by V (n) and by all the values from OR
nodes branching out of path(n) (the latter referred to as the
value of the ”ancestor branching”).

It is easy to see that

Lemma 1.

Z|path(n) = g(n) · V (n) ·
∏

Y ∈Out(n′∈path(n))

V (Yn′) (3)

where V (Yn′) is as defined in EQ. 2.

Defining the product factor in Eq. 3, which we call ances-
tral branching value as

R(n) =
∏

Y ∈Out(n′∈path(n))

V (Yn′) (4)

we get that Z|path(n) = g(n) · V (n) · R(n), an expression
that will be used in the algorithm for estimating the partition
function at nodes of the search tree.
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Figure 2: An AND/OR search tree and possible probes generated by abstraction sampling. Nodes are abstracted based on having the same
domain value (denoted by having the same color). (a) A full AND/OR tree, representing all 16 solutions, (b) Boxed in green is the ancestor
branching subtree for the path →(B=0)→(C=1), (c) A probe generated by proper abstractions, representing 8 solutions, (d) An invalid
probe generated by improper abstractions with nodes abstracted across different sub-branches under the branching variable B (contains 4
partial configurations, and no full solution), (e) A valid probe generated by AOAS with improper abstractions, representing 4 solutions.

Example 1. An example of expression (3) is given in Figure
2(b). Consider the path to node n = (B=0, C=1) marked
in red. There is only one branching variable ancestor (B)
and, in this case, the only Out(path(n)) node is the A node
emanating from under (B = 0). Thus, Z|path(B=0,C=1)) =
g(B = 0, C = 1) · V (B = 0, C = 1) · V (B = 0, A).

Stratified Importance Sampling.
Abstraction sampling builds on Importance Sampling and
Stratified Sampling. Importance Sampling (IS) is a Monte
Carlo scheme for approximating likelihood queries over
graphical models. Stratified Sampling is a variance reduction
technique for sampling a search space by first dividing it into
disjoint strata. This can be used with importance sampling to
further reduce variance. In Stratified Importance Sampling,
we first divide the sample space into k strata of equal area
under the distribution q, then choose re-weighted represen-
tatives from each strata. In order to maximize reduction in
variance, the variance between strata should be maximized
(see [Rizzo, 2007]).

3 AND/OR Abstraction Sampling
Abstraction Sampling (AS) algorithms [Broka et al., 2018]
emulate Stratified Importance Sampling with the modifica-
tion that stratification and selection of representatives is done
variable-by-variable along a search tree. Guided by an ab-
straction function a that groups nodes of a variable together,
Abstraction Sampling generates a compact representative
subtree of the full search tree TT called a probe. An ab-
straction function, a, is formally defined as a : TT → I+,
where I+ are integers, and it partitions the nodes in TT , layer
by layer. From each partition (i.e. abstraction), a represen-
tative node is stochastically chosen based on a proposal p
and is reweighted accordingly. AS can use any Importance
Sampling proposal. For OR search trees we use p which is
proportional to w(n) · g(n) · h(n), where h(n) is a heuristic
that provides an upper bound on V (n), g(n) is the cost of
path(n), and w(n) is the importance weight. The ORAS al-
gorithm from [Broka et al., 2018], which operates on an OR
search tree, is unbiased for any Importance Sampling pro-
posal. However, it was shown that using a heuristic-based
proposal function can significantly impact convergence based
on its accuracy. When h(n) = h∗ = V (n) the proposal is ex-

act and only one sample is needed, as is the case for general
Importance sampling.

pAOAS
Abstraction sampling algorithms for AND/OR search spaces
operate by expanding and abstracting an AND/OR probe and
can traverse the pseudo-tree T in a depth-first or breadth-
first manner. However, performing these abstractions naively
may leave partial (invalid) configurations within the result-
ing probe (ex. Figure 2(d)), potentially leading to biased esti-
mates. To avoid this issue, [Broka et al., 2018] forced abstrac-
tions to be proper with the scope of abstractions restricted to
nodes descending from the same AND node of the most re-
cent branching variable ancestor. A resulting such probe can
be seen in Figure 2(c). More formally, consider a variable
W whose most recent branching ancestor in T is U . When
performing proper abstractions for W , only the AND nodes
of W that are in the common subtree rooted under the same
AND node of U can be grouped together [Broka et al., 2018].
This ensure expansion to only valid probes. Unfortunately,
properness limits compactness of the sampled AND/OR trees
as it constrains the set of AND nodes that can be abstracted
together. In particular, instead of bounding the size of the
probe by O(nm) AND nodes (as with ORAS), the number of
AND nodes in a probe constructed via proper abstractions is
bounded only byO(n ·mb+1), where n is the number of vari-
ables, b bounds the number of branching variables along any
path and m bounds the maximum number of abstract states
per variable. This means that proper AND/OR abstraction
schemes are not scalable whenever b >> 0, unless m=1, in
effect limiting us to basic Importance Sampling. Various su-
perficial schemes were used in [Broka et al., 2018] to bound
probe sizes in this case.

AOAS
Our solution to the above is, AOAS (Algorithm 1), a new
AND/OR Abstraction Sampling algorithm. We will show the
algorithm to be unbiased and effective far beyond the ear-
lier versions. Given a pseudo tree T of a graphical model
M = (X,D,Φ) that is rooted at a dummy variable D, a
heuristic function h(n) providing upper bound on V (n), and
an abstraction function a, AOAS traverses the pseudo tree T
variable-by-variable in a depth-first manner using the traver-
sal to guide the generation of a partial search tree. The algo-
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Algorithm 1: AOAS.
Input: Graphical modelM = (X,D,Φ), a pseudo tree

T forM rooted at a dummy singleton variable
D, an abstraction function a, heuristic function h.
For any node n, g(n) = its path cost, w(n) = its
importance weight, and V̂ (n) = its estimated
value (initialized to h(n)).

Output: ẐM, an estimate of the partition function ofM
1 Function AOAS(T , h, a)
2 begin
3 PROBE ← nD, g(nD), w(nD), r(nD), V̂ (nD)←1
4 STACK ← push(empty stack, D)
5 while STACK is not empty do
6 X ← top(STACK)
7 if X has unvisited children in T then
8 Y ← the next unvisited child of X
9 foreach nX ∈ PROBE do

10 PROBE ← PROBE expanded from
nX to Y

11 F ′Y ← newly added AND nodes of
Y ∈ PROBE

12 foreach nY ∈ F ′Y do
13 w(nY )← w(nX)
14 g(nY )← g(nX) · c(nY )
15 r(nY )←

r(nX) ·
∏
{S 6=Y ∈chT (X)} V̂ (SnX

)

16 end
17 end
18 A← {Ai |Ai={nY ∈PROBE |a(n)= i}}

19 foreach Ai ∈ A do
20 foreach n ∈ Ai do
21 p(n)← w(n)·g(n)·h(n)·r(n)∑

m∈Ai
w(m)·g(m)·h(m)·r(m)

22 end
23 nYi

∝p Ai ; // randomly select
24 w(nYi

)← w(nYi
)/p(nYi

)

25 V̂ (nYi
)← 1

26 PROBE ← PROBE \Ai ∪ {nYi
}

27 end
28 push(STACK, Y )
29 else
30 pop(STACK), W ← top(STACK)
31 PROBE ← PROBE s.t. all nW without

descendants are pruned
32 foreach nW in PROBE do
33 V̂ (nW )← V̂ (nW ) ·∑

nX←child(nW ) V̂ (nX) ·c(nX) · w(nX)
w(nW )

34 end
35 if X = D then ẐM = V̂ (D);
36 end
37 end
38 return ẐM
39 end

rithm uses a data structure referred to as PROBE to store the
generated subtree of the full search tree TT . As it progresses
forward in the traversal, it expands and abstracts nodes within
PROBE. Expansion is done by adding nodes of the newly
visited variable across the tree in a breadth-first manner. Dur-
ing backtracking, the algorithm prunes nodes and updates val-
ues.

More specifically, in the forward step (lines 8-28),
PROBE is extended from all current leaf AND nodes of
a variable X to the next variable Y (child of X in T ) in a
breadth-first manner. The newly added AND nodes n= nY
are new leaves in PROBE. Each newly generated node n in-
herits the weight of its parent AND node nX and has its path
cost g(n) computed. r(n) is also computed (line 15), where
it estimates R(n) in the expression for Z|path(n) in EQ. (3,
4). Note that r(n) is simply inherited from r(nX) if the par-
ent variable X is not a branching variable. Otherwise, the
r(nX) from its parent is multiplied by the estimated values
contributed by its sibling branches, yielding an r(n) which
bounds the ancestor branching value for n.

Once nodes are expanded, we perform abstractions (lines
18-27). Nodes are partitioned into abstract states according to
an abstraction function a, and for each abstract state, propos-
als are generated from which a representative node is stochas-
tically selected. The proposal function at node n is propor-
tional to the quantity w(n) ·g(n) ·h(n) · r(n). The portion
g(n)· h(n)·r(n) estimates Z|path(n) (EQ. 3, 4), where V (n)
is approximated by h(n) and R(n) is estimated by r(n). We
multiply by w(n) to account for all the mass n represents.

When backtracking to a variable W from variable X (lines
30-35), we prune any nW that has no descendant nX , thus
preventing the creation of invalid probes (line 31). For the
surviving nodes, we back up the values from their children
from which we have backtracked (line 33). Once the algo-
rithm backtracks to the dummy node, it will have backed up
the estimated value of the full model, which is returned.

AOAS Trace
Figure 3 shows a step-by-step trace of AOAS. We follow a
DFS traversal of the pseudo-tree T from Figure 1(b) and sam-
ple from the corresponding AND/OR search tree TT (Figure
2(a)). The abstraction function we use groups nodes that have
the same domain value, depicted by the color of the nodes.
When performing abstractions, we box nodes that are being
abstracted in gray. A red ”X” marks a pruned subtree.

Starting with variable B (Figure 3(a)), each node belongs
to a different abstraction and is therefore kept. Next, we ex-
pand to A and abstract across its nodes (Figure 3(b)). Not re-
stricted to proper abstractions, we partition across all nodes
of A, regardless of whether they fall under B=0 or B=1.
We see two nodes in each abstract state (denoted by the red
and blue coloring). Next we calculate their respective propos-
als (line 21). Note that the proposal of each node n relies on
r(n) (line 15), which captures the values of the nodes in its
Out(path(n)), in this case nodes of C. Since the nodes of
C have not been expanded yet, we use their heuristic values
as an approximation of their values. We then stochastically
choose a representative from each abstract state (line 23).
Suppose that both red and blue representatives are stochas-
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Figure 3: A sample trace of AOAS based on the AND/OR tree in
Figure 2(a). Nodes with the same domain values are abstracted (also
indicated by node color). A red ”X” indicates pruning. Transparent
nodes indicate portions of the tree not pruned and yet to be explored.

tically chosen from under B=0 (Figure 3(c)). Since A has no
descendant, we backtrack to B, updating its node values (line
33) and performing a pruning step (line 31). In pruning, we
remove AND nodes of B that do not extend to AND nodes
of A, and thus prune B=1 (denoted by the red ”X” in Figure
3(c)), in order to ensure formation of proper AND/OR probes.
Finally, we expand and abstract C and D (Figures 3(d)-3(f)).
The r(n) for D’s nodes is inherited from the r(nC) of its
respective nC parent. We backtrack from D to the root up-
dating values (no further pruning was necessary). The re-
sult is a valid probe (Figure 3(f)) containing four solutions:
(B=0, A=0, C =0, D=0), (B=0, A=0, C =1, D=1),
(B=0, A=1, C=0, D=0), and (B=0, A=1, C=1, D=1). We
estimate the partition function by computing V̂ (B).

Properties of AOAS
Algorithm AOAS does away with the properness requirement
of pAOAS while ensuring unbiasedness. The proof is based
on the fact that there is always a corresponding equivalent

OR sampling algorithm, (e.g., using a DFS ordering of the
pseudo-tree), such that there is a one-to-one correspondence
between AND nodes in AND/OR sampling and equivalent
OR sampling, and ensuring also that the proposal for the
matching nodes is the same, implying that the two algorithms
produce the same estimate. Since ORAS is known to be un-
biased for any proposal, our claim follows. A key to this is
that our choice of proposal, which includes r(n), captures
the estimated Ẑ of the full configuration in the same way that
would be done in the equivalent OR case. In other words we
can show the following:
THEOREM 1 (simulation of AOAS with ORAS). Given a
graphical model M = (X,D,Φ), pseudo-tree TAO of M,
an abstraction aAO, and a proposal function p, then there ex-
ists a variable ordering d defining a chain-like pseudo-tree
TOR ofM, and an abstraction function aOR defined on TOR
such that for every execution trace of AOAS on TAO using
aAO and proposal p · r and producing a corresponding ẐM
estimate, there is an execution trace of ORAS on TOR using
aOR and proposal p producing the same ẐM estimate.
THEOREM 2 (unbiasedness). Given a graphical modelM =
(X,D,Φ), algorithm AOAS provides an unbiased estimate
for the partition function ofM.
Complexity. It is easy to see that, like for ORAS, probe
sizes for AOAS will not be larger than O(m · n), where n is
the number of variables and m bounds the number of abstract
states per variable. Note that theorem 1 does not imply that
AOAS on T is the same as ORAS on the DFS ordering of T
with the same a. In fact, the former can lead to more informed
probes that express more solutions as we show next.
Contrasting Scalability. Figures 4(b), 4(c), and 4(d) show
probes generated by ORAS, pAOAS, and AOAS, respectively,
sampling over a search tree guided by the pseudo tree in Fig-
ure 4(a). ORAS ends up expanding 26 nodes, 8 of which are
retained in the final probe constituting only two solutions:
(X,Y, Z, T,R, L=0,M=0) and (X,Y, Z, T,R, L=0,M=1).
pAOAS inevitably expands and keeps the entire AND/OR
search tree of 42 nodes! However, since it samples a com-
pact AND/OR search space, this nevertheless corresponds to
a relatively many captured solutions (128 in this this case).
AOAS only expands 20 nodes (fewer than both of the other
schemes), and results in a probe size of 11 (comparable to
ORAS). Further more, its final probe corresponds to 16 solu-
tions, far more than that by ORAS. Thus, we see that AOAS
is much more equipped than pAOAS to limit its probe size
whilst able to take advantage of an AND/OR search space.
Cutset Sampling. An improvement to any IS sampling
scheme can be made by sampling over a subset of the
variables using cutset decomposition called cutset sampling
[Dechter, 2013; Bidyuk and Dechter, 2007]. Using the
weighted mini-bucket heuristic it is possible to identify when
we reach a node for which the heuristic is exact (i.e. h(n)=
h∗(n) = V (n)). When this occurs, there is no longer a
need to sample below the node as the value of the subtree is
known. Utilizing this method, the number of variables sam-
pled is bounded by what is known as the i-cutset, which in
turn bounds the size of the probes. Consequently, this leads
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Figure 4: Contrasting Scalability. AS probes sampled from a search
space corresponding to the pseudo tree in (a). Nodes are abstracted
based on having the same domain value. White nodes were dis-
carded through the abstraction process. Light-yellow nodes are se-
lected representatives that are later pruned. Pruning is depicted by a
red ”X”. Dark-yellow nodes constitute the final probe. (b) a probe
by ORAS; (c) a probe by pAOAS; (d) a probe by AOAS

to a greater number of samples and improves accuracy, as we
reference in our empirical analysis.

4 Empirical Evaluation
Algorithms. Experiments were run on three classes of AS
algorithms: AOAS, pAOAS, and ORAS (using a depth-first
ordering of the pseudo tree). The AS algorithms were also
tested against high performing state-of-the-art Dynamic Im-
portance Sampling (DIS) [Lou et al., 2019] using an ”equal-
time” policy. All algorithms were implemented in C++. All
experiments were run for 1 hr on a 2.66 GHz processor with
8 GB of memory (24 GB for the Linkage-Type4 benchmark).

Abstraction Functions. We design abstractions to reduce
variance within abstract states by using the notion of a vari-
able’s context. Formally, the context of a variable X identi-
fies a subset C(X) of its ancestor in a pseudo-tree T whose
assignment uniquely determines the AND/OR subtree below
it [Dechter and Mateescu, 2007]. Intuitively, the context of a
variable is its ancestors that directly affect its value. Thus, ab-
stractions based on a subset of the context aim to group nodes

Problem Size Total ∈Bnds AOAS≥ AOAS>

DBN small 66 62 57 47
large 48 40 38 35

Grids small 8 5 5 2
large 19 7 7 6

Linkage1 large 82 82 82 82

Pedigree small 24 24 24 19

Promedas small 65 58 49 29
large 173 165 141 113

Table 1: How often AOAS estimates: fall within DIS probabilistic
bounds (∈Bnds), were comparable/better than DIS’s (AOAS ≥),
and were strictly better than DIS’s (AOAS >)

based on having similar values. AOAS and ORAS utilize re-
laxed context-based (RelCB) and randomized context-based
(RandCB) abstractions as in [Broka et al., 2018]. RelCB is
parametrized by a level j, selecting the closest j−1 variables
from a variable’s context (ie. its relaxed context) plus itself. It
abstracts nodes of the same domain value that also share the
same assignment to the relaxed context. This yields kj ab-
stract states at each level, assuming domain size of k. RelCB-
0 vacuously groups all nodes of a variable into a single ab-
stract state and is referred to as a Knuth Abstraction. The
randomized scheme, RandCB, is parameterized by a level d
determining the number of abstractions per level, leading to
a varying number of nodes in each abstract state. pAOAS
utilizes a variant of RelCB that maintains properness. It is
parameterized by levels j and k resulting in a j-level abstrac-
tion for nodes having no more than k branching variables in
the path to the root and 0-level abstractions below it.

Heuristics. To inform the sampling proposal, Weighted
Mini-Bucket Elimination (WMBE) [Dechter and Rish, 2003;
Liu and Ihler, 2011] is used as a heuristic. The i-bound
parameter controls the strength of WMBE, where higher i-
bounds generally lead to stronger heuristics and, thus, better
proposals at the expense of higher computation and memory.
We standardize our experiments by using i-bound 10.

Benchmarks. We perform high-throughput experiments on
over 480 problems from five well known benchmarks: DBN,
Grids, Linkage-Type4, Pedigree, and Promedas. For brevity,
we show detailed aggregated statistics on only large problem
instances, thus excluding Pedigree, whose problems were all
small and results relatively uniform across all algorithms. Av-
erage statistics for the benchmarks can be found in Figure 5.

Performance Measure. To evaluate the performance of the
various algorithms, we calculate error as: error = log10Ẑ −
log10Z

∗, where Z is the partition function, log10Ẑ is the
log10 of the experimentally obtained Z estimate, and log10Z∗
is the reference log10Z value. When the exact Z value is
unknown, an empirical estimate based on an average over
100 × 1hr of abstraction sampling is used as the reference.
We verified that 98% of these estimates fell within the 95%
probabilistic bounds determined by DIS.
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(a) DBN (b) Grids

(c) Linkage-Type4 (d) Promedas

Figure 5: Aggregated statistics. Displayed are the number of problems solved (n*), average log10Z error (log(err)), count of problems solved
within an error threshold (error distr.), average number of probes (#probes), and average size of a probe (#nodes/probe). Color bars visually
show the magnitude of the values, and darker colors show greater values. Red n* cells indicate an algorithm’s inability to solve relatively
many problems. Lines in bold indicate the best performing algorithms. Each benchmark also displays the average number of nodes (n),
domain size (d), tree width (w), and AND/OR and OR search tree height (h) of its problems.

4.1 Results
For extended results, please view the full paper1.

Aggregation Tables. Data from experiments on the same
benchmark using a specific AS scheme and abstraction level
are combined in the aggregation tables (Figure 5). Impor-
tance Sampling corresponds to RelCB-0. At the top of each
table (in red) we also report the average log10Z error for DIS.
To help the reader identify AS algorithm configurations that
performed particularly well, rows are bolded where (1) a rel-
atively large number of problems are solved and (2) the error
is within a factor of 0.2 of the minimum error within the set
of algorithms solving the greatest number of problems.

Representative Plots. Figure 6 provides a representative
plot from the Grids benchmark. The legend includes probe
statistics and log10Z error values for each algorithm. A

1https://www.ics.uci.edu/∼dechter/publications.html

DIS plot is also overlaid onto each subplot for comparison.
Although plots vary between benchmarks and problem in-
stances, here we attempt to show a plot that captures the main
trend of our data. In the majority of plots, we noticed AOAS
converged towards the reference Z value faster, and had over-
all better performance than both ORAS-DFS and pAOAS.
This was also true compared to DIS in many cases. We can
also see the anytime nature of the algorithms as they continue
to converge towards the reference Z value over time.

AOAS vs DIS Table. Table 1 compares AOAS RandCB-
256 and DIS. For each benchmark (partitioned into small and
large instances), we tally how often AOAS’s Z estimates: (i)
fall within DIS probabilistic bounds, (ii) were comparable or
better than DIS’s2, or (iii) were strictly better than DIS’s.
Note that in order to compare Abstraction Sampling to DIS

2comparable means falling within ±0.1 or ±0.5 of the DIS
log10Z value, for small and large problems respectively
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Figure 6: Plots of AS and DIS on a representative large Grid problem. The dashed line marks the reference log10Z value. The legend marks
the algorithm and abstraction level, number of probes (#p), size of a probe (#n/p), and log10Z error (est. error).

fairly, we selected only a single set of Abstraction Sampling
parameters (AOAS RandCB-256).

4.2 Analysis
AOAS Performance. The aggregation tables (Figure 5)
show that for each benchmark (except Promedas) AOAS al-
gorithms are among the top performers. Furthermore, AOAS
stands out as the only best performing algorithm when solv-
ing both large Grids and Linkage-Type4 problems. Note that,
for Linkage-Type4 (Figure 5(c)), AOAS with RelCB-8 is able
to produce estimates for 41 problems, where the best of any
other scheme, ORAS-DFS, is only able to produce estimates
for 16 problems.

AOAS vs. pAOAS. A noticeable empirical difference be-
tween AOAS and pAOAS is their respective abilities to con-
trol their probe sizes with more refined abstractions. For ex-
ample, within the Grids aggregation table (Figure 5(b)) both
AOAS and pAOAS RelCB-0 have average probe size of 3326,
however, upon increasing the abstraction level of each indi-
vidually, probe sizes for pAOAS explode. This is a crucial
difference as being able to temper the growth of probe sizes
is instrumental to the scalability of the algorithms with in-
creasing abstraction levels.

AOAS vs. ORAS-DFS. Despite the relationship stated in
Theorem 1, AOAS regularly outperforms ORAS-DFS across
the same abstraction level (see Figure 5). We believe that this
is due to the smaller probe size of AOAS as compared with
ORAS-DFS (for the same abstraction schema), which we be-
lieve is impacted significantly by the cutset effect [Mateescu
and Dechter, 2005]. Namely, the number of i-cutset variables
in the AND/OR space is smaller than that of the correspond-
ing the OR space and, as noted earlier, since the heuristic is
exact below the cutset, only the cutset variables are sampled
by the abstraction sampling schemes.

Comparing with Non Abstraction Sampling Schemes.
[Broka et al., 2018] already showed that earlier versions of
AS are highly competitive against Weighted Mini-Bucket Im-
portance Sampling [Liu et al., 2015] and IJGP-SampleSearch

[Gogate and Dechter, 2011]. By superseding the performance
of the earlier AS algorithms, we also further solidify superi-
ority over these non-AS state-of-the-art schemes. In addi-
tion, we also test against a new competitive sampling scheme,
Dynamic Importance Sampling (DIS) [Lou et al., 2017;
Lou et al., 2019], which produces probabilistic bounds as
well as estimates in an anytime manner. Through Table 1 we
see that not only do AOAS estimates fall within the bounds
produced by DIS in most cases, but also that the estimates
are comparable or better than that of DIS. This is particularly
true of hard problems. We also note that unlike AS algorithms
(AOAS in particular), DIS was unable to generate estimates
for Linkage-Type4 problems. Furthermore, the aggregated
errors for AS are often smaller than that of DIS’s (Table 5).

5 Summary and Conclusion
The paper presents a new algorithm for abstraction sampling
over AND/OR search spaces that can accommodate any ab-
straction function. In particular it freed AND/OR abstraction
sampling from its earlier handicapping restriction of proper-
ness and opens up the horizon for far more scalable and effec-
tive performance. We provided analysis and extensive empir-
ical evaluation over 5 benchmarks with large and hard prob-
lems showing clearly that the new AOAS algorithm is overall
superior to some of the most competitive state-of-the-art IS
schemes and to previous AS schemes. We illustrated that, like
previous AND/OR AS schemes, AOAS maintains the ability
to exploit the decomposition expressed in AND/OR search
spaces, yet it also has far better control of probe-size thus
making it uniquely scalable. This gives AOAS the power to
more smoothly interpolate between (stochastic) sampling and
(systematic) search [Broka et al., 2018]. With our findings,
we can now turn our attention to advancing the scheme along
its central components including the development of good ab-
straction functions beyond context-based abstractions, under-
standing the desired strengths of a heuristic function and how
it should be balanced with the strength of abstractions, and
finally, how we should fit an abstraction level to a problem
instance.
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