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Abstract
Many real-world domains involve co-evolving re-
lationships between events, such as meals and ex-
ercise, and time-varying random variables, such as
a patient’s blood glucose levels. In this paper, we
propose a general framework for modeling joint
temporal dynamics involving continuous time tran-
sitions of discrete state variables and irregular ar-
rivals of events over the timeline. We show how
conditional Markov processes (as represented by
continuous time Bayesian networks) and multivari-
ate point processes (as represented by graphical
event models) are among various processes that are
covered by the framework. We introduce and com-
pare two simple and interpretable yet practical joint
models within the framework with relevant base-
lines on simulated and real-world datasets, using a
graph search algorithm for learning. The experi-
ments highlight the importance of jointly modeling
event arrivals and state variable transitions to bet-
ter fit joint temporal datasets, and the framework
opens up possibilities for models involving even
more complex dynamics whenever suitable.

1 Introduction & Related Work
Several domains involve an underlying causal mechanism
with co-evolving dynamics where the states of uncertain vari-
ables and their transitions influence arrivals of events, and
vice versa. We make a semantic distinction between two
kinds of variables – event labels and state (or system) vari-
ables. Event labels are categories of events, occurring instan-
taneously and often irregularly on the timeline. In contrast,
state variables are variables which always exist in some state,
with potential state changes observed at irregularly timed
transitions. For instance, meals and exercise could be viewed
as event labels, whereas a patient’s blood glucose level (say
with states for low, medium and high) is a state variable.

There is substantial literature on graphical models for dy-
namic systems. A useful distinction between the various av-
enues of research is based on whether observations are in dis-
crete or continuous time. Dynamic Bayesian networks [Dean
and Kanazawa, 1989; Murphy, 2002] are discrete-time mod-
els that extend Bayesian networks [Pearl, 2014] by jointly

representing a set of discrete variables at regular epochs.
Time series data are continuous valued measurements, typ-
ically also observed at regular epochs, and can be repre-
sented by Granger causal graphs [Eichler, 1999]. A stream
of graphical modeling work for time series however also at-
tempts to handle irregular observations such as through us-
ing additional labels for missing data [Kolar et al., 2010;
Zhou et al., 2010] or through a sampling-rate-agnostic learn-
ing approach [Plis et al., 2015].

There is a vast body of burgeoning research on tempo-
ral processes for modeling multivariate streams of events,
spanning parametric approaches and neural network archi-
tectures [Rajaram et al., 2005; Simma and Jordan, 2010;
Weiss and Page, 2013; Goulding et al., 2016; Du et al., 2016;
Xiao et al., 2017; Gao et al., 2020]. Such models use a
marked point process [Cox and Lewis, 1972] to capture the
continuous-time dynamics in event streams, varying in as-
sumptions and parametrization around the historical depen-
dencies between the various types of events. Graphical event
models (GEM) [Didelez, 2008; Meek, 2014] are a high-
level framework for representing marked point processes in
a graphical form; the framework subsumes a large class of
temporal models for events.

Continuous time Bayesian networks (CTBN) [Nodelman
et al., 2002] are a related model that represent conditional
Markov processes where a joint set of variables make state
transitions in an inter-dependent fashion. Some recent work
on event-driven CTBNs (ECTBN) provides an extension en-
abling the effect of external events on state variables [Bhat-
tacharjya et al., 2019; Bhattacharjya et al., 2020]. However,
this model is limited in handling joint dynamics – it retains
Markovian dependence between state variables and does not
permit them to affect event arrivals, as can be common in nu-
merous applications.

Our main contribution in this paper is a novel unifying
framework that we refer to as a state variable graphical event
model (SVGEM); this family of models jointly captures the
co-evolution of state variables and event label arrivals in con-
tinuous time. The framework extends beyond the Markov as-
sumptions in CTBNs/ECTBNs, and allows for state variables
and event labels to dynamically influence each other, poten-
tially in complex ways. It is therefore capable of representing
a wide variety of process models. We theoretically demon-
strate the generality of the SVGEM framework, showing how
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it encapsulates many models and existing frameworks in-
cluding GEMs. Through experiments on simulated and real-
world benchmark datasets, two specific models from the pro-
posed framework are shown to outperform various baselines,
highlighting the promising modeling power of the high-level
framework.

2 Model Formulation
2.1 Basic Notation & Terminology
Variables & Data. We distinguish between two kinds of
variables. Event labels are denoted E = {Ej}Jj=1. We as-
sume there is data about events occurring over time, DE =
(tk, ek)NE

k=1, where tk are ordered time stamps between initial
time t0 = 0 to the end time T , and ek belong to the event la-
bel set E . Discrete state variables are denotedX = {Xi}Ii=1.
Let Val(Xi) be the domain of variableXi and Val(X) the do-
main of the set of state variables X. Data about each variable
is of the form of state transitions, DXi = (tk, xk)Ni

k=0 up to
end time T , where the state at time t0 is the initial state and
xk+1 6= xk ∀k, xk ∈ Val(Xi). Data for all state variables
taken together is denoted DX =

⋃
X∈X DX .

Definition 1. An occurrence refers to either an event label
arrival or a state variable transition, i.e. an occurrence is of
the form (tk, zk) where zk is either an event label, ek ∈ E , or
a state of a state variable, xk ∈ Val(X), X ∈ X . Here zk is
the occurrence label.

We use DZ to denote data of all occurrences pertaining to
both kinds of variables in Z, and D = DE,X to denote data
for all occurrences of all model variables.

Historical Dependence. The dynamics of event label ar-
rivals and state variable transitions are driven by historical
dependencies. We use h(·) to denote historical occurrences
of either type of variable, i.e. event arrivals or state vari-
able transitions. Consider variables Z = {ZE ,ZX }, where
ZE and ZX are sets of event labels and state variables re-
spectively. Then hZE (t) = {(tk, ek) ∈ DZE : tk < t}
represents the history of event arrivals in the set ZE ⊂ E
until time t, and hZX (t) = {(tk, xk) ∈ DZX : tk < t}
represents the history of state variable transitions associated
with the set ZX ⊂ X until time t. The combined history is
hZ(t) = hZE (t) ∪ hZX (t). h∗Z(t) refers to the most recent
occurrence label in the history hZ(t).

2.2 The SVGEM Framework
We now have the notation and terminology required to for-
malize the general SVGEM framework:

Definition 2. An SVGEMM includes:

• A directed (possibly cyclic) graph G where:

– Every event label E ∈ E has parents UE =
{UEE ,UXE}, where UEE ⊆ E and UXE ⊆ X are event
label and state variable parents respectively

– Every state variable X ∈ X has parents UX =
{UEX ,UXX}, where UEX ⊆ E and UXX ⊆ {X \ X}
are event label and state variable parents respectively

• An initial distribution P0
X over state variables

• Conditional intensity rate parameters Λ as follows:

– Every event label E ∈ E occurs with rate λE|hUE
(t)

at time t, where hUE
(t) denotes the history of all oc-

currences in parent set UE; each set is denoted ΛE

– Every transition s, s′ for every state variable X ∈ X ,
s, s′ ∈ Val(X); s 6= s′, occurs with rate λs,s

′

X|hUX
(t)

at time t when h∗X(t) = s, and 0 otherwise, where
hUX

(t) denotes the history of all occurrences in par-
ent set UX ; each set is denoted ΛX

An SVGEM captures the joint dynamics of all occurrences
based on an underlying graph that specifies the causal fac-
tors influencing each variable. Fig. 1(a) shows an illustrative
SVGEM graph involving 2 state variables and 3 event labels.
We highlight that the definition imposes an important con-
straint: a state variable cannot transition from state s to s′ if it
is not already in state s. Also, note that an SVGEM is merely
a framework or a family of models, similar to a GEM – for a
fully specified generative model, more details about the gen-
eral historical dependence (denoted by ΛE and ΛX ) need to
be provided, such as what is described next.

2.3 Types of Historical Dependence
We categorize various kinds of historical dependence for ei-
ther type of variable. These are by no means exhaustive but
cover the cases required for this article. All of these are sta-
tionary in the sense that an occurrence’s rate is independent
of the time at which history is considered, given the history.

• A historical dependence is Markov w.r.t set Z if the rate
at any time t depends only on h∗Z(t), i.e. the most recent
occurrence label in the history hZ(t).
• A historical dependence is piece-wise constant (PC) w.r.t

set Z if there is a fully specified mapping from the his-
tory hZ(t) at any time t into some discrete state space Σ
[Gunawardana et al., 2011]. Such a mapping induces the
conditional intensity rate for a variable to be piece-wise
constant over the timeline for any dataset. Fig. 2 (Top)
illustrates this by displaying the conditional intensity rate
profile for an event label on an example dataset.

• A historical dependence is proximal w.r.t event label set
ZE if the rate at any time t depends only on whether or not
each node in ZE has occurred in a preceding time window
before t [Bhattacharjya et al., 2018]. Proximality w.r.t state
variables ZX needs further clarification, and is deferred to
later in the article. We note that this is a special but impor-
tant case of PC historical dependence.

• A historical dependence is restricted by a subset W of set
Z if the rate at any time t is 0 when the most recent occur-
rence label h∗Z(t) belongs to W. Thus, if the most recent
occurrence is from W, the occurrence under consideration
is impossible.

2.4 Equivalent GEM for an SVGEM
We define an expanded GEM, where each state variable tran-
sition is treated as an event, that can represent the dynamic
process for an underlying SVGEM. Recall that nodes E ∈ E
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Figure 1: (a) An illustrative SVGEM; (b) The eqv. (expanded) GEM for the SVGEM in (a) where each state variable transition is represented
as an event label. Each box indicates a fully connected graph where all incoming and outgoing arcs visit all nodes within the box.

Figure 2: Bottom: Stream of E1 (square), E2 (circle) and E3 (tri-
angle) events, and transitions for state variable X1 (marked by an
asterisk); Top: Illustrative conditional intensity rate over time for
event label E1 in Fig. 1(a), assumed to be Markov w.r.t X1 and
proximal w.r.t E2 over a time window of 5 days.

and X ∈ X in the original SVGEM have parents UE =
{UEE ,UXE} and UX = {UEX ,UXX} respectively. The ex-
panded GEM that is constructed only includes event labels,
and the parents for a node E in this GEM are denoted U′E .
Definition 3. The equivalent GEM for an SVGEM includes:
• A directed (possibly cyclic) graph with:

– A node Ei for every event label Ei ∈ E and a node
Es,s′

j for every possible state transition s, s′ of every
state variable Xj ∈ X in the SVGEM

– Directed arcs as follows: (i) for all Ei, retain arcs
in UEEi

and add arcs emanating from all Es,s′

j corre-

sponding to Xj ∈ UXEi
; (ii) for all Es,s′

j correspond-

ing to Xj , add arcs from all UEXj
, all Es,s′

k corre-

sponding to Xk ∈ UXXj
, and all Es,s′

j corresponding
to Xj (including the self loop).

• Conditional intensity rate parameters as follows:
– For all Ei, the intensity rate remains the same and is

determined by historical arrivals of all parent event
labels in the GEM, λEi|hU′

Ei

(t) = λEi|hUEi
(t)

– For all Es,s′

j corresponding to Xj , historical depen-

dence is restricted by the set of nodes {Es0,s′′

j } where
s′′ 6= s, otherwise it is equal to the corresponding rate
in the SVGEM, λ

Es,s′
j |hU′

E
s,s′
j

(t)
= λs,s

′

Xj |hUXj
(t)

Theorem 4. The dynamic process represented by an SVGEM
is identical to that of its equivalent GEM.

Proof. (Outline) The proof follows from the construction of
the eqv. GEM. Event arrivals in both the SVGEM and the
eqv. GEM follow the same process since the label set and cor-
responding intensity rates are identical. For state variables,
there is a new set of event labels in the eqv. GEM, rates for
which are restricted based on the constraint around state tran-
sitions. This ensures that transition events in the eqv. GEM
process occur at the same rate as the SVGEM process only
when it is feasible for the transition to happen.

An equivalent GEM for an SVGEM replaces state variables
with an event label for every possible state variable transi-
tion. Def. 3 formalizes the graph construction and determina-
tion of the conditional intensity rates in the equivalent GEM.
Fig. 1(b) shows the equivalent GEM for the SVGEM in (a).
Since it is necessary to add several arcs to correctly capture
the temporal dynamics, we avoid diagram clutter by keeping
these arcs implicit using boxes over the new event labels.

We argue that an SVGEM is typically a better represen-
tation than its equivalent GEM for communicating with the
user (or decision maker) because:

1. An SVGEM makes the semantic difference between the
two types of variables self-evident.

2. An SVGEM can be much more compact, particularly if
there are several possible state variable transitions – with
a reduction from

∑
i (|Val(Xi)| ∗ |Val(Xi)− 1|) to |X |

additional nodes in the graph – and therefore easier to
interpret (see Fig. 1).

3. Incorporating the constraint regarding state variables is
trickier and more difficult to identify in the equivalent
GEM as compared to the SVGEM (see Def. 3).

The notion of the equivalent GEM is still however a useful
tool for computational reasons. For instance, this equivalence
can be used to compute the log likelihood while learning spe-
cific parametric SVGEMs using temporal datasets.

2.5 Generality of SVGEMs
The following theorem formalizes the generality of the
SVGEM framework by specifying some important model
families in the literature.

Theorem 5. (i) A GEM [Didelez, 2008; Gunawardana and
Meek, 2016] is an SVGEM without state variable nodes. (ii)
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A CTBN [Nodelman et al., 2002] is an SVGEM without event
label nodes and where state variables are Markov w.r.t their
(state variable) parents. (iii) An ECTBN [Bhattacharjya et
al., 2020] is an SVGEM with no arcs from state variables to
event labels and where state variables are Markov w.r.t their
state variable parents.

Proof. (Outline) An SVGEM without state variables only has
nodesE with intensity rates λE|h

UE
E
(t); this is how GEMs are

defined. Removing event labels entirely instead and assuming
Markov historical dependence results in a conditional Markov
process. Incorporating the labels back but disabling arcs from
state variables to events results in a set of conditional Markov
processes that depend on historical event occurrences; thus
the CTBN and ECTBN models are covered by the SVGEM
framework as specified.

The following result makes a connection between Markov
historical dependence in CTBNs (as well as ECTBNs) and
piece-wise constant historical dependence.

Theorem 6. A CTBN and its extension ECTBN with proximal
dependence w.r.t event label parents both involve PC histori-
cal dependencies for every node.

Proof. (Outline) In the specified ECTBN, state variables are
Markov w.r.t their state variable parents and proximal w.r.t
their event label parents. The transition rates therefore change
from a constant to another when either the parent condition
is modified due to a boundary window condition including
an arrival of a parent label, or a transition of a state variable
parent. A CTBN only has state variable parents and therefore
only changes parameters at parent transitions. Event labels
are proximal w.r.t each other in an ECTBN.

2.6 Two Specific SVGEMs
In the previous sub-section, we cast various models from the
literature as special cases within the SVGEM framework. A
case that is notably missing is where event labels are also
affected by state variables, along with other event labels. This
is common in numerous domains, for instance, a hospital is
likely to be visited by patients with chronic conditions more
often, and a manufacturing plant operating in varying modes
exhibits different event trajectories.

We introduce two specific parametric models that simulta-
neously allow for influences in both directions. They are sim-
ple but practical models, and as we explain in the next section,
easily learned from data. For model naming convention, as-
sumptions about historical dependence for state variables are
listed before event labels. Thus, the first ‘MP’ in ‘MP MP’
signifies that state variable nodes are Markov w.r.t their state
variable parents and proximal w.r.t their event label parents,
and the second ‘MP’ signifies the same for event label nodes.

SVGEM MP MP. In this SVGEM, a node is always
Markov w.r.t its state variable parents and proximal w.r.t
its event label parents. This is a natural generalization of
ECTBN where in addition to state variable dynamics that de-
pend on events in a proximal manner, an event’s arrival rate
depends on the current state of its state variable parents.

SVGEM MP PP. Here, state variable dynamics stay the
same but now an event label node is proximal (not Markov)
w.r.t its state variable parents. This is a unique view of depen-
dence on state variables, where the historical occurrence time
of a parent state variable transition within a recent window,
as well as the nature of the transition, determine an event’s
arrival rate. In this fashion, historic state transitions are ef-
fectively treated as event labels, like in an equivalent GEM of
an SVGEM. We consider the following 4 ways to categorize
transitions into what are effectively new labels:
• all: all transitions are considered equivalent.
• each: each type of transition is a unique label.
• in: transitions going into a state are equivalent.
• out: transitions going out of a state are equivalent.

We show later through experiments that this particular non-
Markovian dependence of event arrivals on historical state
transitions can often be a suitable fit for real-world data.
Theorem 7. SVGEM MP MP and SVGEM MP PP both in-
volve PC historical dependencies for every node.

Proof. (Outline) State variables in both models have histor-
ical dependence similar to ECTBN, so the relevant part of
Thm. 6 applies. In SVGEM MP MP, event labels are prox-
imal w.r.t event label parents and Markov w.r.t state variable
parents. Intensity rates therefore change from a constant to
another when either the parent condition is modified due to a
boundary window condition including a parent event arrival,
or transition of a state variable parent. In SVGEM MP PP,
event labels are proximal w.r.t an expanded label set and are
piece-wise constant w.r.t the new change points.

Fig. 2 (Top) illustrates a piece-wise constant profile for
the conditional intensity rate for label E1, modeled using
SVGEM MP MP: it is Markov w.r.t X1 and proximal w.r.t
E2. The figure indicates points on the timeline where the
conditional intensity rate changes. Later we show that the
above result is useful computationally during learning, since
a piece-wise constant model simplifies the computation of pa-
rameters given the graph and other hyper-parameters.

3 Learning SVGEMs
G, P0

X and Λ for an SVGEM can all be learned from data.
Similar to models in the GEMs family, the parents for every
node in an SVGEM can be learned separately and then com-
bined to form the overall graph G. For the graph search proce-
dure, we take a hill climbing score-based approach using the
Bayesian information criterion (BIC) score, which is used to
measure model fit performance in terms of the log likelihood
of the model on a given dataset as well as the model complex-
ity; since this approach is standard in the literature [Nodel-
man et al., 2003], here we focus primarily on the issue of
learning parameters Λ given a graph.

If the parents of each node are known, then one can use the
equivalent GEM notion of an SVGEM and ascertain that the
log likelihood of a model with parameters Λ = {ΛX}, {ΛE}
on an event dataset can be factorized as follows:

L(D|ΛX ,ΛE) =

 ∏
X∈X

L(DX |ΛX , DUX
)

 ∏
E∈E

L(DE |ΛE , DUE
)


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Dataset |X | |E|
∑

iNi NE

Synthetic 5 5 ∼[35-45.8]K ∼[15.1-16.9]K
Eastman 16 18 ∼[84-102.3]K ∼[22.6-25.4]K
Diabetes 1 11 ∼6.2K ∼14K
Bitcoin 2 6 0 ∼66.4K

Table 1: Dataset information: # of state variables (|X |), event la-
bels (|E|), state transitions (

∑
i Ni) and events (NE). Ranges are

provided for the multiple synthetic and Eastman datasets.

The computation of individual node log likelihoods is de-
termined by the model parametrization, which depends on
the assumptions about historical dependence. We summarize
these below for our two proposed parametric SVGEMs. We
use the following notation to represent an instantiation of par-
ent sets: for a general node Z of either type, we introduce
vector uZ = uXZ × uEZ , where uXZ is a joint instantiation of
Z’s state variable parents, i.e. from Val(UXZ ), and uEZ is a
binary vector of indicators of Z’s event label parents, each
depending on whether it is present in some recent window.

SVGEM MP MP. The parameters in this model are Λ =
{λE|uE

, QX|uX
} ∀E,X , which includes intensity rates for

event labels E for each parent instantiation uE and a set of
conditional matrices for state variables X , one for each par-
ent instantiation uX . From Thm. 7, this parametrization re-
sults in piece-wise constant historical dependence. One can
therefore learn estimates for intensity rates through summary
statistics on an event dataset [Gunawardana et al., 2011].

For example, for parent instantiation uE1
= {uX1

E1
=

low, uE2

E1
= 0} of label E1, the maximum likelihood esti-

mate computed on the event dataset in Figure 2 (Bottom) for
λ̂E1|uE1

is 1/2. This is the rate at which E1 occurs given
that X1 is in state ‘low’ and that E2 has not happened within
the last 5 days. It is obtained by counting the number of oc-
currences of E1 under the condition uE1

and dividing by the
duration over the timeline when the condition is true.

SVGEM MP PP. In this SVGEM, there is an effective ex-
panded label set E ′ ⊃ E , some of which are parents for event
labels. Since event labels are proximal w.r.t parent state vari-
able transitions, which are treated as events in various ways
(all/in/out/each), they have a new effective event label parent
setU∗E . Note that the parent set forE in the ‘each’ variation is
identical to that in the equivalent GEM for an SVGEM, where
each transition is a separate event label.

Suppose u∗E is a binary vector of indicators specifying
which event label parents have occurred in some recent win-
dow. The parameters in this model are Λ = {λE|u∗E , QX|uX

}
∀E,X . Again from Thm. 7, the historical dependence in this
model is piecewise-constant and one can use summary statis-
tics to obtain maximum likelihood estimates of the parame-
ters from an event dataset.

4 Experiments
We test the two parametric SVGEMs by evaluating how well
they fit simulated and real-world joint temporal datasets. We
consider datasets that have been simulated or processed from

publicly available sources; experimental details around pro-
cessing and hyper-parameter choices are omitted here due to
space restrictions but will be available on the arXiv version.

4.1 Datasets
Table 1 summarizes information about all datasets.
Synthetic. We generate synthetic joint temporal datasets
with known graph and parameters from an underlying
SVGEM MP MP process. We dynamically generate both
state variable transitions and event label arrivals based on
historical occurrences, with modifications to the procedures
outlined in Nodelman et al. [2003] and Bhattacharjya et
al. [2018] respectively. The main adjustment is to also jointly
account for the current states of parent state variables and the
current conditions of parent event labels at any time, and to
have occurrences of both types compete with each other dur-
ing generation.

For these experiments, we consider 3 datasets, each with 5
state variables and 5 event labels, with different graphs and
parameters; the parental set for each node is randomly cho-
sen with a limit of parental size up to 5 for event label parents
and 3 for state variable parents. Each dataset includes 10 in-
dependent streams generated up to time horizon T = 5000.
Tennessee Eastman (TE) Process. TE is a well known
process in the control literature, involving two irreversible
chemical reactions that produce two liquid products from four
gaseous reactants. There are multiple interacting processing
units such as a reactor, condenser, compressor, etc., as well
as multiple feedback controllers that seek to maintain pro-
duction rate, quality and safety set points [Downs and Vogel,
1993]. We use a MATLAB simulator1 of this process to sim-
ulate several process and control variables in the presence of
numerous distinct process faults and Gaussian process noise.

We generate 2 data sets that each involve a random num-
ber of process faults with random start and end times over
a horizon of 50 hours, with simulated data generated every
0.6 minutes. We focus attention on 9 controls and 16 process
variables, discretizing their simulated trajectories into 3 bins
each. Each control variable transition across bins is treated as
one of two event types, namely control-up and control-down,
depending on whether the control transition is to a higher or
lower value. This leads to a system with 16 state variables
with 3 states each and 18 event labels (2 for each control vari-
able), mimicking a real-world system with coupled dynamics
between process state variables and control events.
Diabetes. We consider a dataset with information pertain-
ing to 70 diabetic patients [Frank and Asuncion, 2010]:
events include insulin dosage, eating and exercise related ac-
tivities, and the blood glucose level is modeled as the sole
state variable; data for the latter is formed from discretization
of raw measurements into 3 states.
Bitcoin. This dataset from the SNAP library [Leskovec and
Krevl, 2014] involves ratings between users on a Bitcoin ex-
change. We process the data from the perspective of each
user, associating them with 6 event labels depending on

1http://depts.washington.edu/control/LARRY/TE/download.
html
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Dataset SVGEM-MP-MP SVGEM-MP-PP CTBN+PGEM CTBN+PCIM PGEM-each

Synth#1 -15846 -16441 (each/in/out) -16507 -16499 -17985
Synth#2 -19868 -20201 (each) -20961 -20957 -23602
Synth#3 -15959 -16377 (each/in/out) -16439 -16447 -17991

Eastman#1 -1420 -1236 (in) -1432 -1560 -3183
Eastman#2 -836 -684 (out) -1034 -1352 -1255

Diabetes -3223 -2456 (all) -3740 -3556 -3708
Bitcoin -45298 N/A -45612 -42321 N/A

Table 2: Log likelihood (LL) for the models on the test sets. For SVGEM MP PP, the best performing variations are noted. For Bitcoin, state
variables play no role in the LL computation (no transitions), thus the 3rd and 4th columns are really events-only PGEM and PCIM.

whether they sent or received a rating, and whether the rat-
ing was positive, neutral or negative, as determined by dis-
cretizing ratings between -10 and 10. The method proposed
in Kumar et al. [2016] is used to measure the ‘Goodness’ and
‘Fairness’ for each user; these are the state variables, assumed
to be constant for each user throughout the time horizon. Note
that state variables never transition in this dataset.

4.2 Baselines
As far as we are aware, this is the first work to propose a
joint bi-directional graphical modeling framework for tem-
poral datasets including state variable transitions and event
arrivals. We consider the following baselines:
• CTBN + PGEM: In this baseline, state variables and event

labels are modeled independently; specifically, state vari-
able transitions are learned using a CTBN [Nodelman et
al., 2003] and event label arrivals are learned using a
PGEM [Bhattacharjya et al., 2018].
• CTBN + PCIM: This is as above, but here event label

arrivals are modeled using a piece-wise constant intensity
model learner [Parikh et al., 2012].

• PGEM-each: In this model, every state transition in the
dataset is modeled as separate types of events, and then the
PGEM learner is run to fit the new dataset. Note that this is
slightly different from the equivalent GEM (whose process
is equivalent to the corresponding SVGEM) since there is
no explicit accounting for any constraints between events.
We also considered a model involving an additional state

variable with as many states as event labels, where transitions
occur at event arrival epochs. However, since the additional
variable would contain all event labels, this model cannot ex-
plicitly determine the subset of event labels that affect an-
other, defeating the entire purpose of the SVGEM framework;
hence, this was not considered to be a suitable baseline.

4.3 Results
We split each dataset three-ways by event stream into train
(70%), dev (15%) and test (15%) sets, optimize each model’s
hyper-parameters from a grid using the train/dev sets, and
then learn the final model on the train set. A model’s per-
formance is evaluated based on how well it fits the held-out
test set using log likelihood.

Table 2 shows the performance of the proposed models in
comparison with the baselines across all data sets:

• The SVGEM MP MP is indeed the best performer for the
synthetic datasets, as expected, since the data was gener-
ated from the associated underlying process.

• TE process data entails sequential dependency between
controls and the ensuing dynamic response in the pro-
cess state variables, which in turn excites the feedback
controllers for subsequent control actions. The proposed
SVGEM framework is well suited for unveiling such co-
evolving causal dynamics. In particular, the ‘in’ and
‘out’ variations of the SVGEM MP PP model fit the cou-
pled process best since control events occur due to recent
changes in the state of the process state variables.

• The ability of SVGEM MP PP to capture physical pro-
cesses is amplified by its performance on Diabetes.

• The Bitcoin dataset is special in that it involves no transi-
tions; as a result, some models are not applicable (shown
as N/A) and log likelihood is computed only for the
event labels. State variables simply serve here to further
distinguish various event label conditional intensities in
SVGEM MP MP. We observe that while there are benefits
of incorporating state variables on top of the events-only
PGEM model (compare columns one and three), these are
overtaken in this dataset by the more general PCIM repre-
sentation. We note however that the SVGEM framework is
general and allows for embedding a PCIM to capture de-
pendencies b/w event labels. We expect that such a state-
variable augmented PCIM may prove to be the best per-
former for certain data sets.

5 Conclusions
We have introduced a general unifying framework that ex-
pands the family of graphical event models to allow for state
variable effects, enabling models where they co-evolve to-
gether with event arrivals. We have theoretically shown how
the proposed framework incorporates many existing models
for continuous-time processes and provides a more compact
representation with fewer parameters. A representation that
learns the dynamic relationships between event labels and
state variables can be useful in numerous applications, no-
tably those that involve variables exhibiting stochastic transi-
tions among a set of finite states in the co-existing presence
of events; this was demonstrated in the empirical evaluations.
Future work in this area may find it beneficial to study models
with more complex historical dependencies.
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