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Abstract

Discriminating pathologic cognitive decline from
the expected decline of normal aging is an impor-
tant research topic for elderly care and health mon-
itoring. However, most cognitive assessment meth-
ods only work when data distributions of the train-
ing set and testing set are consistent. Enabling
existing cognitive assessment models to adapt to
the data in new cognitive assessment tasks is a
significant challenge. In this paper, we propose
a novel domain adaptation method, namely the
Fine-Grained Adaptation Random Forest (FAT), to
bridge the cognitive assessment gap when the data
distribution is changed. FAT is composed of two es-
sential parts 1) information gain based model eval-
vation strategy (IGME) and 2) domain adaptation
tree growing mechanism (DATG). IGME is used to
evaluate every individual tree, and DATG is used
to transfer the source model to the target domain.
To evaluate the performance of FAT, we conduct
experiments in real clinical environments. Experi-
mental results demonstrate that FAT is significant-
ly more accurate and efficient compared with other
state-of-the-art methods.

1 Introduction

According to the lasted statistical data of world health orga-
nization (WHO) in 2019, about 50 million people globally
have some symptoms of dementia, the most common neu-
rodegenerative disease charactered by cognitive decline for
older adults [WHO, 2019]. The incidence of dementia is be-
tween five and eight percent for the elderly population more
than 60 years old. And approximately 10 million new de-
mentia cases will emerge every year. The total number of
people with this kind of syndrome is projected to approach 82

*Corresponding Author
"Corresponding Author

4330

million in 2030, and even more severe 152 million in 2050.
Pathologic cognitive decline liking dementia is one of the ma-
jor causes of dependency and disability among older adults,
bringing severe burden for their carers, families, and society.
In 2015, the total worldwide cost of dementia was about US$
818 billion, which is equivalent to 1.1% of global gross do-
mestic product (GDP).

In response to the challenges of cognitive decline in the
elderly, WHO releases the global action plan on the pub-
lic health response to dementia 2017-2025 in 2017 [Orga-
nization and others, 2017]. This plan emphasizes the im-
portance of diagnosing dementia in the early stage of dis-
ease with innovative health technologies. Also, many re-
searchers aim to assess cognitive status with human activ-
ity recognition, such as gait analysis and gesture recogni-
tion [Montero-Odasso et al., 2009; Garre-Olmo et al., 2017;
Zhang et al., 2020a]. However, practical explorations are usu-
ally limited by the small-sampling problem. There are three
reasons for this challenge. Firstly, recruiting a large number
of older adults with cognitive decline to participate in data
collection is difficult. Secondly, labeling medical data is time-
consuming and complicated with strict expert knowledge re-
quirements. Thirdly, the fees for participants and some data
collection equipment are costly. For example, Magnetic Res-
onance Imaging (MRI), one of the conventional used medi-
cal imaging technologies to analyze cognitive status, is very
costly. Even in some representative cognitive assessment s-
tudies, the sample size is very small. In the study of Chen et
al. that aims to infer cognitive wellness from motor pattern-
s, only eight older adults with cerebral small vessel disease
(SVD) and 14 stroke patients were recruited to participate in
their experiments [Chen et al., 2018]. In another related re-
search, Feng et al. recruit 35 patients with early Parkinson’s
disease to detect the relationship between cognitive disorders
and motor impairment of finger [Tian et al., 2019].

Transfer learning provides a new idea to solve small-
sampling and difficult labeling problems [Zhang et al,
2020b]. Long et al. combine features transfer learning
with deep neural networks together and use it to visual
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domain-adaptation benchmarks [Long et al., 2018]. Wang
et al. [Wang er al., 2018] and Zhang et al. [Zhang er al.,
2020b] have verified the effectiveness of transfer learning in
the gesture recognition problem. Although transfer learning
has achieved great success in computer vision areas, the ex-
plorations of domain adaption in medical data are insufficient.
Different from computer vision datasets, the size of cogni-
tive assessment related dataset is much smaller, usually with
dozens of samples. It is not very easy to construct an itera-
tive transfer model using deep neural networks for the small-
sampling dataset. Besides, interpretability of the assessment
model plays an essential role in discovering significant indi-
cators of health wellness. Therefore, we try to combine ran-
dom forest with domain adaptation, and build an effective and
adaptive cognitive assessment model.

In this paper, we propose a cross-tasks domain adapta-
tion method, namely Fine-Grained Adaptation Random For-
est (FAT), which can adapt the given source model to the tar-
get domain relying on only a small training data set from the
target. FAT first employs an information gain based model
evaluation strategy (IGME) to evaluate component trees of
random forest and estimate the adaption level of existing in-
dividual trees to the data distribution of the target domain.
Then, according to the evaluation results, we use the domain
adaptation tree growing mechanism (DATG) to select differ-
ent growing strategies for every tree. To evaluate the effec-
tiveness of FAT, we design a series of cognitive assessment
tasks and conduct extensive experiments in two different sce-
narios. Experimental results show that FAT is able to improve
the assessment accuracy of an existing model using a smal-
I amount of data from the target domain. The contributions
of this paper are three-fold: 1) fine-grained model transfer
strategy for ensemble random forest; 2) three different deci-
sion tree growing mechanisms, able to adapt multi-levels of
not adaptation; 3) two cognitive assessment datasets, which
are collected in real scenarios and composed of 61 subject-
s (including 20 subjects with mild cognitive impairment, 41
healthy controls) and 37 subjects (including 25 subjects with
mild cognitive impairment, 12 healthy controls) respectively.

2 Related Work

Acquiring sufficient high-quality training data is the main
challenge in smart health area. Transfer learning has shown
great potential by leveraging data from a similar domain to
address data deficient in a given domain. Zhang et al. apply
transfer learning to medical diagnosis. Trained on 108312
optical coherence tomography (OCT) images from 4686 pa-
tients, their multi-classification model (three different kinds
of retinal diseases and the normal) achieves an accuracy of
96.6% [Kermany et al., 2018]. Khatami et al. propose a two-
step retrieval system, composed of a convolutional neural net-
work based on transfer learning and a selection pool based on
random forest, to analyze medical images. Experiments on
the public dataset with 14400 X-ray images show that the ac-
curacy of the proposed method is 90.30% [Khatami et al.,
2018]. Yu et al. pre-train two different convolutional neu-
ral networks (i.e., VGGNet, ResNet) with ImageNet dataset,
and fine-tune the existing models on ImageCLEF dataset to
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learn domain-specific features. Evaluated on two classifica-
tion datasets of medical images, accuracies of the proposed
method are 76.87% on ImageCLEF2015 (4532 images) and
87.37% on ImageCLEF2016 (6776 images) respectively [Yu
et al., 2017]. Gao et al. realize a cross-task adaptation frame-
work, which utilizes the data of different tasks from the same
domain, rather than the data of similar tasks from the dif-
ferent domain. By feature transfer, the proposed framework
could improves the classification results by capitalizing on the
features from low pixel-wise prediction. Comparative exper-
iments on breast cancer diagnosis dataset with other state-of-
the-art methods (including eight classification methods, four
detection methods, and three segmentation methods) verify
the effectiveness of the proposed feature transfer learning
framework [Gao et al., 2020]. To deal the small-sampling
challenges and bridge the gap between the high-level infor-
mation perceived by the human evaluator and the low-level
visual information captured by the magnetic resonance image
(MRI) machine, Swati et al. combine transfer learning and
convolutional neural networks together and propose a block-
wise fine-tuning strategy. Experiments on contrast-enhanced
MRI benchmark dataset show that the proposed method can
achieve an average accuracy of 94.82%, which outperform-
s other state-of-the-art methods on this dataset [Swati ef al.,
2019]. Banerjee et al. fine-tune the pre-trained deep convo-
lutional neural network and use the fine-tuned model to di-
agnose the subtypes of rhabdomysarcoma. AlexNet convo-
lutional neural network with five convolution layers is used
as the initial model, and the deep layer features are mostly
adjusted during the fine-tune process. Experimental results
show that the proposed method can achieve an accuracy of
85% with cross validation, reaching fast, efficient and repro-
ducible diagnosis with less human interaction [Banerjee et
al.,2018].

Most of the existing transfer learning methods in health
monitoring areas are designed for medical image datasets,
usually OCT and X-ray images. The size of medical images
datasets is generally not too small. To deal with the incon-
sistent challenge of data distribution, we can take advantage
of current research results in the computer vision area, such
as fine-tune on the target domain or retrain the higher-level
portion of the existing model. However, many other health
monitoring datasets are small-size, usually containing dozens
of subjects. Research on transfer learning for the small-size
medical dataset is absent.

3 Preliminary Definition

Transfer learning. Transfer learning aims to ap-
ply knowledge learned previously (source domain)
to solve new problems (target domain) better.  Usu-

ally, data in source domain are donated as D° =
[(@5,05) ., (25,05 .., (25,55, )}, where ng — [DS] is
the size of source domain. Data in target domain are donated
T T ,T T ,T T ,T
as D = {(‘r17y1)7(x25y2)7"'3(xnsﬁynT)}’ Where
ny = |DT| is the size of target domain. X € RX is feature
space and ) € R¥ is label space. K and £ are the number of
features and classes respectively.
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Figure 1: Adaptability of source domain model on target domain.

Random forest. Random forest aims to learn a classifier

R consisting of M decision trees {hi, ha,...,ha} when
dataset D¥ = {(27,97), (23.95), ... (20 ¥ )}
is given. The output of h; on sample r¥ s

(hj(x?), h3(x?), ..., b5 (xf)), where hl(xP) is the
output of h; on the ) class. To build the jth individual tree,
random forest uses the bootstrap sampling strategy to select
a subset D3, containing ng instances, from DS. For each
split of the jth tree, feature randomization is used to select
k features from the feature space /C, and then the optimal
feature is chosen from the candidate feature set according to
splitting criteria. The output of R is computed by majority

voting: H (2) = Varg max Zf\il wjhé- ().

4 Method

FAT is a model transfer method that transfers the given source
model to the target domain, relying on a relatively small la-
beled training set. It can adapt an existing cognitive assess-
ment model to new evaluation tasks. In [Utgoff, 1989], the
influence factors that hinder the rebuilding of tree models are
summarized as a non-linear function:

Acc(hy) = F (K, P,N) ¢))

where K is the number of features (i.e., || or |27 |), P is
the maximum number of possible values of a feature, and N/
is the number of instances (i.e., nr). The cost of model adap-
tation is indeed proportional to the size of the sample space,
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and the size and diversity of feature space when the source
models are transferred to the target. Specifically:

e The selection of splitting feature influences the structure
of individual trees. When the number of distinguished
features /C increases or the feature set changes, the opti-
mal structures of decision trees transform [Figure 1(b)].

e Suboptimal combination of splitting features causes the
impurity of leaf nodes, which can expand to a full sub-
tree [Figure 1(c)].

e Same problem shares similar tree structure. However,
with the change of possible values of features P, there
is still some thresholds that need to be adjusted [Fig-
ure 1(d)].

41 IGME

Most model transfer learning algorithms assume that individ-
ual learners for similar tasks share some structures or parame-
ters [Pan and Yang, 2010]. According to the evaluation crite-
rion of the individual decision trees [Utgoff, 1989], there are
multi-level of similarities or model inadaptability, i.e., wrong
structure, impurity of leaf nodes and threshold inadaptability.
One of the popular ensemble model adaptation mechanism-
s is by personalizing the growth strategy for each individual
classifier [Hu et al., 2018]. The proposed IGME method be-
longs to this category. The basic idea of IGME is to evaluate
individual learners according to the information gain of split
features. We rank every individual tree, and update its struc-
ture or parameter personalized. In the process of model re-
building, the most crucial challenge is to quantify the level of
inadaptability. In this section, we propose a new scoring rule,
i.e., information gain based model evaluation (IGME) strate-
gy. It jointly reflects both the accuracy and splitting feature
distribution of individual classifiers.

In information theory, the information gain is used to mea-
sure the quality of a split:

IG(D,a) = Ent(D) — Ent(Dla) (2)

where, a is the split feature. Ent(D) = — Zle Dk logs pi is
the information entropy of the dataset D and py, is the propor-
tion of the kth category of samples in dataset D. Ent(D|a) =
Z,‘J/Il %Ent(D”) is the conditional entropy when using
feature a to split D into V' partitions. Information gains of all
features form an information gain set /G (D, X'). To measure
the value of information gain, we sort IG(D, X), and we use
IGR(D, X) to represent the sequence number of every fea-
ture. For example, if IG(D, X) is {2.3,6.7,4.5,1.2}, then
IGR(D,X)is {3,1,2,4}.

Assume A; is the features set to build the jth individ-
ual tree, IG(D%, A;) is the information gain set for the
source domain and IG(DT, A;) is for the target domain.
IGR(D?, A;) and IGR(DT, A;) are the sequence set. The
following metric is defined to measure each individual tree:

S(hj) = > logi (IGR(D%,a) — IGR(D" ,a)| + 1)
ac€Aj

3)
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Figure 2: Four levels of feature overlapping.

where |IGR(D*,a) — IGR(D”,a)| measures the impor-
tance difference for feature a. Plus one +1 is to prevent the
occurrence of IGR(D®,a) = IGR(DT,a). S(h;) defines
four degrees of coupling (Figure 2):

e Case 1: the value of S(h;) is very small. Almost all
features that used to construct the jth tree have equal
importance in the target domain.

e Case 2: the value of S(h;) increases slightly. Most of
the features to construct the jth tree have equal impor-
tance in the target domain.

e Case 3: only a few features that used to construct the :th
tree have equal importance in the target domain.

e Case 4: the value of S(h;) is very big. Almost no fea-
tures that used to construct the jth tree is important in
the target domain.

Also, testing accuracy of the target domain is also signifi-
cant in evaluating an individual tree. So, we combine initial
S(h;) and testing accuracy of the target domain, and redefine
this metric:

Yuea, 10gic) ([IGR(D%,a) — IGR(D”, a)| + 1)

S(hy) = |4,

A
TAX 2 xnT

“
where sgn(x) is sign function and X is the weight coefficient.
In the first part of Equation 4, IGME regularizes the value of
feature coupling with |A;| to make sure the range of this part
in [0,1/2]. In the last part of Equation 4, the error rate of h;
is also limited to [0,1/2].

4.2 DATG

According to Equation 4, there are four degrees of adaptabil-
ity for individual tree. We need to update the existing model
according to S(h;). Thus, we define three domain adaptation
tree growing (DATG) mechanism for individual tree.

Modify the Subtree
The core issue in Modify The Subtree (MTS) is to determine
the subtrees that should be modified. Assume node v divides
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Algorithm 1 Modify The Subtree (MTS)

Input: Subtree v, labeled samples in target domain S, max
depth of decision tree d,,, current depth d,.
Output: Subtree v

1: function MTS (v, S, d,,, d.)
2 if |.S| == 0 then % no instance arrives
3 set v as leaf node; return v
4 end if
5: if v is leaf node then % leaf node
6: return v
7 end if
8: P = v.substl ft; Q = v.substrgt
9: calculate DI according to Equation 5
10: if DI < thres then
11: v = buildT'ree(S)
12: else
13: v.childl = MTS(v.childl, P,d,,d. + 1)
14: v.childr = MTS(v.childr,Q,dp,,d. + 1)
15: end if
16: return v

17: end function

dataset S into two parts, the left subset P = v.substlft and
the right subset Q = v.substrgt. To evaluate the splitting
ability of the internal nodes, we define distribution divergence
to measure the distribution of the left and the right subset:

DI(P,Q) = i icppar) 4 2 ke ) )
3)
KL(AIB) = 3 A(x)log 222 ©)

ze)y
where d,,, is the maximum depth of decision tree, d.. is current
depth of node v, and M = (P + @)/2. Y is label space of
the target domain. Distribution divergence relies on Jensen-
Shannon divergence and Kullback-Leibler divergence (Equa-
tion 6). We weight the distribution divergence with log,; (d.)
to make sure the shallow nodes have a bigger modification
chance. MTS defines a top-bottom working procedure, and
the pseudo-code of MTS is shown in Algorithm 1.

Split Leaf Nodes

Split Leaf Nodes (SLN) is designed to deal with the impurity
leaf nodes. In some cases, the existing splitting features in
one tree are hard to split all instances in the target domain and
we need to add new features to expand the existing models.
The pseudo-code of SLN is presented in Algorithm 2. The
leaf nodes v will be retrained if the arrived dataset .S satisfies
two conditions: 1) The size of S is greater than predefined
threshold values; 2) Dataset S contains at least two categories
of instances.

Update Feature Threshold

Update Feature Threshold (UFT) is inspired by the fact that
decision trees exhibit structural similarity in similar problem-
s [Segev et al., 2017]. For example, if we design a touch-
screen based cognitive assessment task, and run this task on t-
wo devices with different sizes of touchscreen. Data acquired
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Algorithm 2 Split Leaf Nodes (SLN)

Algorithm 4 Fine-Grained Adaptation Random Forest (FAT)

Input: Subtree v, labeled samples in target domain S
QOutput: Subtree v
1: function SLN(v, S)
if | S| == thres |l categoryNum(S) > 1 then

2

3 return v

4: end if

5: if v.isLeaf then

6: v = buildTree(S)

7 else

8: v.childl = SLN (v.childl,v.substl ft)
9: v.childr = SLN (v.childr,v.substrgt)
10: end if

11: return v

12: end function

Algorithm 3 Update Feature Threshold (UFT)

Input: Subtree v, labeled samples in target domain S
QOutput: Subtree v
1: function UFT(v, S)

2 if | S| == 0 then

3: div) =0

4: return v

5: end if

6: if d(v) == 0 then

7: y(v) + argmax [{(-,y) € S}|
Yy

8: return v

9: end if

10 v < upadateT hresholds(v, S)

11: if d(v) == 0 then

12: return v

13: end if

14: v.childleft = UFT(v.childle ft,v.subsetle ft)

15: v.childright = UFT(v.childright, v.subsetright)
16: return v

17: end function

with both devices share many features and dependencies (e.g.,
times and velocity). However, the scale of features differs be-
tween different devices. Thus, the thresholds of splitting fea-
tures also differ between different domains. UFT updates the
threshold of every splitting feature top-down, and the pseudo-
code of UFT is presented in Algorithm 3. For internal nodes
with the non-empty arriving dataset, UFT recalculates the op-
timal threshold according to information gain.

4.3 Fine-Grained Adaptation Random Forest

Algorithm 4 presents the pseudo-code of FAT. Existing en-
semble model for source domain R and the information gain
of source domain IG(D?, X) are used as the input of FAT.
Firstly, FAT calculates information gain of the target domain
and predicts the classification result of the existing model on
DT, Then, all individual classifiers are measured by S(h;)
metric. Finally, AFA adapts each decision tree with different
strategies to realize fine-grained domain adaptation.

Input: Ensemble classifier R, source domain DT, coeffi-
cient )\, information gain of source domain IG(D?, X),
max depth of decision tree d,,, update threshold §; <
0o < 03

Output: Classifier R

1: function FAT(R, DT)

2 calculate IG(DT', X) for target domain

3 calculate IGR(D®, X) and IGR(DT, X)
4 for each individual tree h; € R do

5: Aj = splitFeature(h;) % calculate feature set

6 for each instances (z!,y!) € DT do

7 hi(xl) = predict(hj, zT)

8

: end for

9: calculate S(h;) according to Equation 4
10: if S(hj) < 61 then

11: h; = buildTree(S™); continue

12: end if

13: if S(h]) < 0o then

14: hj = MTS(h;, ST, maxD,1); continue
15: end if

16: if S(h]) < 03 then

17: hj = SLN(h;,ST); continue

18: end if

19: if S(h]) > (53 then
20: h; = UFT(h;,ST); continue
21: end if
22: end for

23: return R
24: end function

5 Experiments and Analysis

In this section, we evaluate the performance of FAT via ex-
tensive experiments on the cognitive assessment dataset.

5.1 Datasets and Preprocessing

Cognitive Assessment Tasks

We use a touchscreen based cognitive assessment test (based
on the Box and Block test [Mathiowetz et al., 1985]) to e-
valuate the cognitive state of older adults, which includes
four different kinds of single-tasks and 12 different kind-
s of dual-tasks. Four single-tasks are single-task I (move
block from start area to target area one by one, Figure 3(a)),
single-task IT (move block from start area to specific target ar-
eas, Figure 3(b)), single-task III (move block from start area
to target areas sequentially, Figure 3(c)), and single-task IV
(move block from start area to fixed target area, Figure 3(d)).
Twelve dual-tasks are combinations of four single-tasks and
three language ability related tasks, i.e., speaking while do-
ing single-task, including dual-task BI, CI, DI, BII, CII, DII,
BIII, CIII, DI, BIV, CIV, DIV. These three language ability
related tasks are series 1s (A: counting backward from 100),
animal names (B: enumerating animal names), series 7s (C:
subtracting seven from 100).
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(b) (d

Figure 3: Interface of four single-tasks. (a) single-task I; (b) single-task II; (c) single-task III; (d) single-task IV.
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I v 494+.0le  .5204+.0le  .530+.00e  .699+.00e  .652+.0le  .685+.0le .7254.00e .698+.0le  .696+.0le  .776+.00

All I .539+.00e  .516+.00e  .536+.00e  .623+.00e  .544+.00e  .609+.00e .696+.00e .5724.00e .633+£.0le  .763+.00
All I 4431+.00e  4691+.00e  .5461+.00e  .6701+.00e  .6094.00e  .650+.00e .700=£.00e .592+.0le  7324+.0le  .855+.00
AIl I 4924+.00e  .5251+.00e  .458+.00e  .597+.0le  .575+.0le  .649+.0le  .6504.00e .618+.00e  .630+.00e  .7344.00
5424+.00e  5174+.00e  .6011+.00e  .691+.00e  .654+.0le  .713+.00e  .7504.00e 7514+.01e  .7024.00e  .800+.00
BII I .508+.00e  .440+.00e  .441+.00e  .640+.0le  .513£.00e  .637+.00e .693+.000 582+.0le  .636+.00e  .7834.00
BII I 468+.0le  .353+.0le  .3231+.00e  .654+.0le  .540+£.00e  .664+.00e .704+.00e 671£.01e .690+£.0le  .843+.00
BII I .529+.0le  .550+.0le  .4294+.00e  .580+.00e  .5931+.00e  .6554.00e .6624.00e .6231+.00e  .658+.0le  .7444.00
BII v 469+.0le  .4851+.00e  .5261+.00e  .654+.0le  .6194+.00e  .690+.00e  .706+.0le 719+.0le  .723+.0le  .786+.00
ClI I 509+.0le  .4841+.00e  .5941+.00e  .623+.0le  .5504.00e  .6524.00e .6614.00e .6124+.0le  .6374+.0le  .7714.00
CII I 521+.0le  491+.0le  .5791+.00e  .682+.0le  .575+.0le  .667+.0le .682+.000 .689+.00e  .716+.00e  .8641.00
(@1 it A481+.0le  .529+.0le  .6371+.00e  .613+.0le  .581+£.00e  .689+.00e .650+.00e .626+.01e .661+.000  .747+.00
CIl v .548+.0le  .586+.00e  .6861.00e  .7244+.00e  .6551+.00e  .689+.0le .6934.00e .697+.0le  .6774+.00e  .793+.00
i AIl .634+.0le  .542+.0l¢  .539+.00e  .672+.0le¢  .783+.00e  .820+.00e .740£.00e .673£.00e .699+.00e  .928+.00

I BII  .581+.0le  .600+.0le  .539+.00e  .586+.0le  .707+.0le  .782+.00e  .689+.00e S571+.02e  .674+.0le  .846+.00

I CII  .527+.00e  .466+.0le  .493+.00e  .604+.0le  .615+.00e  .737+.0le  .694+.0le .6324+.0le  .706+.0le  .884+.00

AIL I .615+.0le  .668+.0le  .741+.00e  .670+.0le  .7974+.00e  .8174.00e 787+.01e 718+.0le  .785+.0le  .9134+.00
All BII  .559+.0le  573+.0le  .657+.00e  .655+.0le¢  .638+.00e  .753+.00e .670£.00e .668+.01e .665+£.0le  .863+.00
484+.0le  .534+.0le  431+.00e  .623+.0le  .612+.00e  .750+.0le .664+.01e .666+.0le  .635+.0le  .875+.00
BII I A81+.02¢  .550+.0le  .7074+.00e  .667+.0le  .6551+.00e  .6724+.00e  .6814.00e 7244+.02¢  7124+.0le  .8544.00
BII Al .532+.0le  .530+.00e  .516+.00e  .628+.0le  .617+.00e  .650+.00e  .653+.0le 7224+.0le  .675+.0le  .8124.00
BII CII  .574+.00e  .558+.00e  .614+.00e  .613+.00e  .703£.00e  .768+4.00e .726+£.00e .806+.00e  .741£.00e  .8854.00
CI I 494+.02¢  515+.0le  .495+.00e  .617+.0le  .611£.00e  .628+.00e .661+.01e .688+.01e 739+.0le  .797+.00
CII Al .510+£.00e  .525+.00e  .660+.00e .736+.00 .678+.00e  .6254.00e .6574.00e .685+.00e  .6824.00e  .746+.00
CII.  BII  .565+.00e  .544+.00e  .592+.00e  .598+.00e  .648+.00e  .711+.00e  .687+.00e .6444+.00e  7734+.00e  .8254.00
I 1T .5504+.00e  .5791+.00e  .5774+.00e  .660+.0le  .584+.00e  .678+.00e  .669+4.00e .688+.0le  .680+.0le  .839+.00

I 11 5314+.00e  .5651+.00e  .533+.00e  .6274+.0le  .560+.00e  .6744.00e  .669+4.00e .615+.0le  .6464.00e  .7624.00

I v AT77+.00e  5561+.00e  .5414+.00e  .650+.0le  .591+.0le  .6954+.00e  .7074.00e .653+.0le  .663+.00e  .798+.00

I I 490+.00e  .548+.00e  .567+.00e  .618+.0le  .514+.00e  .6194.00e 7124.00e .629+.00e .670+£.01e  .823+.00

1§ I 464+.00e  .528+.00e  .597+.00e  .657+.0le  .578+.00e  .677+.00e .696+.00e .606+.00e .652+.01e  .771£.00

A453+.0le  .5074+.00e  .6191+.00e  .672+.0le  .581+.0le  .7144+.00e  .6974.00e .676+.0le  7114+.00e  .810+.00
111 I 551+.0le  .5974+.00e  .610+.00e  .613+.0le  .5514+.00e  .6594+.00e  .6934.00e .6244+.00e  .681+.00e  .801+.00
I I 492+.0le  .535+.00e  .6224+.00e  .6791+.00e  .568+.00e  .6814+.00e  .7024.00e .696+.0le  .689+.00e  .8561.00
il v A473+.00e  .621+.00e  .7071+.00e  .737+.00e  .642+.0le  .700+.00e 701£.01e .684+.01e .689+.0le  .836+.00
v I .389+.00e  .588+.00e  .4651+.00e  .663+.0le  .5651+.00e  .6514.00e .694+.01e .669+.00e  .668+.00e  .811+.00
v 1T 466+.000  .6081+.00e  .628+.00e  .667+.0le  .5641+.00e  .7114+.00e  .6734.00e .624+.0le  .656+.0le  .8144.00
v 111 4931+.00e  .5871+.00e  .6971+.00e  .6374+.0le  .6294+.00e  .7214+.00e  .668+.00e .6174+.00e  .6324+.00e  .7774.00

TL—VS
a

VS—TL
2
2

VS—VS
2
e

TL—TL
2

Table 1: Experimental result (mean4std.) of FAT and nine comparing methods in terms of classification accuracy, where e indicates whether
FAT is significantly superior to the comparing methods at the significance level of 0.05. S: source domain, T: target domain.
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Data Collection

The prototype cognitive assessment tasks are implemented
with the Android Studio platform 2.2.2. We collect data in
two scenarios.

e In the first scenario (denoted by TL), the prototype
system is run on Huawei M5 tablet with 10.1 inch-
es, 1920 x 1200 pixels touchscreen. 61 subjects, in-
cluding 20 subjects with mild cognitive decline (age:
68.25+6.15, eight males and 12 females) and 41 healthy
controls (age: 67.36 £ 4.76, 21 males and 20 females),
are recruited to participate in data collection. All sub-
jects perform four single tasks (single-task I, II, III, I'V).

e In the second scenario (denoted by VS), the prototype
system is run on the NanoPi M4 board with 21.5 inches,
1920 x 1200 pixels touchscreen. 37 subjects, including
25 subjects with mild cognitive decline (age: 65.08 +
9.68, 16 males and nine females) and 12 healthy controls
(age: 39.44 4+ 2.31, seven males and five females), are
recruited to participate in data collection. All subjects
perform one single-task (single-task II) and three dual-
tasks (dual-task All, BII, CII).

Feature Extraction

Five categories of features are extracted from raw data, in-
cluding number-based features (€ R'?), time-based features
(€ RY), velocity-based features (€ R'3%), angle-based fea-
tures (€ R%%), drop point distribution-based features (€ R7°).

5.2 Comparison Methods and Parameters Details

We use SrcOnly (Src), TarOnly (Tar), ComOnly (Com) as the
first three benchmarks. They are three trivial approaches that
do not involve transfer learning, where we create comparative
models with source data, part of target data, and the mixture
of source data and part of target data respectively. Besides,
FAT is compared with six state-of-the-art transfer learning
methods, i.e., Structure Expansion/Reduction (SER), Struc-
ture Transfer (Struct), mix of SER and Struct (Mix) [Segev
et al., 2017], Stratified Transfer Learning (STL) [Wang et
al., 2018], Transfer Component Analysis (TCA) [Pan et al.,
2011], and Geodesic Flow Kernel (GFK) [Gong et al., 2012].
Where, SER, Struct and Mix are model transfer methods
based on random forest. TCA, STL and GFK are representa-
tive feature transfer methods, which transfer both source do-
main and target domain into unified feature space to reduce
their distribution differences.

We conduct experiments on Lenovo ThinkStation desk-
top computer (Intel Core 17-6700/16GB DDR3) with Matlab
R2018b platform. All nine comparison methods and FAT use
random forest as the basic classifier. We set the number of
trees in random forest M = 30. The number of candidate
features for each node is set as \/E, IC is the total number
of features. The minimum instance size for splitting a node
is set as 2. The maximum depth for individual tress is set as
maxD = 10. In addition, three transfer methods for feature
knowledge (i.e., STL, TCA and GFK) require dimension re-
duction. Therefore, we set the dimension of feature as 30.
01,02, 03 in FAT are set to 0.6, 0.7, and 0.8 respectively.
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5.3 Experimental Result

To compare FAT with other comparing methods, we use da-
ta collected in the first and the second scenario interchange-
ably as the source domain and the target domain. In each ex-
periment, 30% of data in the target domain are used to fine-
tune the existing source domain model, and the other 70%
are used as the testing data. Since two scenarios each con-
tain four tasks, there are a total of 56 combinations. Table 1
shows the diagnosis accuracy of FAT and nine other methods.
The paired t-test at the significance level of 0.05 is used to
measure whether FAT is statically superior to the comparing
methods, where statical superiority is indicated with e and the
best performance is marked with boldface. Some conclusions
can be drawn from Table 1:

e FAT reaches competitive results with a maximum accu-
racy of 92.8% and a minimum accuracy of 73.4%, prov-
ing the effectiveness of the proposed method;

o FAT ranks Ist among all ten methods on 55/56 transfer
tasks. When transferring from TL single-task IV to VS
single-task II, the accuracy of FAT is inferior to the ac-
curacy of Struct;

e FAT is significantly superior to all other comparing
methods on 54/56 transfer tasks at the confidence level
of 0.05. FAT does not achieve statically superior results
only on two transfer tasks.

6 Conclusion

Cognitive health plays an important role for the well-being
of older adults. However, limited by the mildness of early
signs of cognitive decline and the small-sampling problem in
detection model building, it is not easy to realize high accura-
cy diagnosis of cognitive impairment. In this paper, we pro-
pose a fine-grained domain adaptation method, namely FAT,
to bridge the cross-tasks gap for cognitive assessment. FAT is
a random forest based model transfer method, which trans-
fers each individual classifier with different strategy to re-
alize high-accuracy adaptation. The advantages of FAT are
three-fold: 1) FAT updates the existing model with a small
amount of samples in the target domain, alleviating the small-
sampling challenge; 2) FAT is a random forest based transfer
learning method, satisfied the interpretability need of diagno-
sis model; 3) FAT transfers each individual classifier with dif-
ferent strategy, which can realize high-accuracy model adap-
tation. Also, to evaluate the accuracy of FAT, we design 16
different cognitive assessment tasks and recruit healthy and
MCI subjects to participate the evaluation experiments.
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