
Embedding Conjugate Gradient in Learning Random Walks for
Landscape Connectivity Modeling in Conservation

Pramith Devulapalli1 , Bistra Dilkina2 and Yexiang Xue1

1Purdue University
2University of Southern California

pdevulap@purdue.edu, dilkina@usc.edu, yexiang@purdue.edu

Abstract

Models capturing parameterized random walks
on graphs have been widely adopted in wildlife
conservation to study species dispersal as a
function of landscape features. Learning the
probabilistic model empowers ecologists to
understand animal responses to conservation
strategies. By exploiting the connection between
random walks and simple electric networks, we
show that learning a random walk model can be
reduced to finding the optimal graph Laplacian for
a circuit. We propose a moment matching strategy
that correlates the model’s hitting and commuting
times with those observed empirically. To find
the best Laplacian, we propose a neural network
capable of back-propagating gradients through
the matrix inverse in an end-to-end fashion. We
developed a scalable method called CGInv which
back-propagates the gradients through a neural
network encoding each layer as a conjugate
gradient iteration. To demonstrate its effectiveness,
we apply our computational framework to
applications in landscape connectivity modeling.
Our experiments successfully demonstrate that our
framework effectively and efficiently recovers the
ground-truth configurations.

1 Introduction
With many animal species experiencing a population
decline due to habitat loss and fragmentation, efforts
to conserve wildlife and to protect biodiversity are
forefront challenges for computational sustainability [Gomes,
2009]. The difficulty of the task intensifies with the
necessity to accurately predict the effects of broad-scale
ecological processes from different actions implemented by
conservation efforts [McRae and Beier, 2007].

Towards these set of challenges, artificial intelligence
has been employed to understand the relationship between
environmental variables and animal movement behavior.
Early approaches in this domain were based on maximizing
graph-theoretic notions such as the least-cost paths,
multi-commodity flows, steiner trees, etc. [Sheldon et al.,

2010; Bras et al., 2013; Dilkina et al., 2013] but fall short in
capturing the stochasticity of animal decision-making.

A newer model called the Circuitscape [McRae et al.,
2008] incorporates circuit theory and random walks to model
animals as individual agents who traverse to neighboring land
parcels with probabilities proportional to resistance values,
i.e., the cost of moving. However, existing methods indirectly
learn random walk parameters; these parameters are derived
from separate statistical models that estimate the landscape
cost [Inman et al., 2013; McClure et al., 2016], which can
lead to inaccurate random walk models that may not resemble
true movement dynamics. Moreover, ecologists have stated a
dire need to develop automated procedures to weigh different
environmental factors in constructing Circuitscape models
[Dickson et al., 2019].

We develop a principled computational framework that
learns random walk models directly from data. Our core idea
is a moment matching strategy, which correlates the model’s
statistical properties, such as the hitting and commuting
times, with those observed empirically. By exploiting the
connection of random walks with circuit theory, we show
that learning the probabilistic process can be reduced to
finding the optimal graph Laplacian matching empirical
observations. The graph Laplacian is the central notion that
connects statistical properties of random walks with concepts
of voltages, currents, and resistances. Following a gradient
descent strategy, our forward pass to compute the hitting and
commuting times requires inverting the graph Laplacian. The
backward pass, therefore, requires an efficient computation
scheme to flow the gradients through the matrix inverse.

Computationally, we propose a neural network capable
of back-propagating gradients through the matrix inverse
in an end-to-end fashion. Our first idea, DirectInv, was
developed through the implicit function theorem, motivated
by the work of [Amos and Kolter, 2017; Ling et al., 2019].
Nevertheless, the direct application of the implicit function
theorem leads to a Kronecker computation, which is quartic
in the size of the graph Laplacian. We then developed CGInv,
which back-propagates the gradients through a neural
network encoding each layer as one conjugate gradient
iteration. While the time complexity of full CGInv is lower
than DirectInv, CGInv can be further expedited by initializing
the current execution with the root from the previous one,
which is relatively close to the correct solution. This

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4338



decreases the number of iterations to convergence and further
speeds up the forward and backward computations.

To showcase our computational framework, we designed
two sets of experiments to learn random walk models
from animal movement data. In the first experiment, we
simulated data from Dilkina et al. (2013) and learnt optimal
models from empirical observations. Our second experiment
learned landscape-resistance values by correlating them with
genetic similarities among animal individuals in different
locations via the Mantel test. In both applications, our
approach succeeds in recovering the ground-truth animal
movement patterns. Our contributions can be summarized in
the following way:

1. We formulated an end-to-end computational framework
using a moment matching strategy to learn random
walks from data.

2. We developed an efficient and powerful technique called
CGInv to back-propagate gradients through the matrix
inverse, via embedding each conjugate gradient step as
a neural network layer.

3. We successfully demonstrated the effectiveness of
our framework in recovering the ground-truth animal
movement patterns from realistic datasets.

2 Random Walks and Circuit Theory
We describe the behavior of a single animal individual as a
random walker traversing over a predefined landscape. The
landscape is modeled as an undirected graph G = (V,E)
comprised of a node set V representing various locations
and an edge set E representing direct, physical connections
between two locations. The animal individual is fitted with
unique transition probabilities which are species-specific.
The transition probability pu,v from node u to node v is
encoded in edge (u,v) ∈ E through an edge weight.

Circuit Theory. The Circuitscape model builds an
electrical circuit described by the graph G. The edge weights
feature resistance values, ru,v, that reflect the cost to travel
along a given edge (u,v) from u to v. The reciprocal of
resistance, 1/ru,v, yields a conductance value denoted as
cu,v. We connect the Circuitscape model with the random
walk model by letting the transition probability of a random
walker at node u traveling to node v be cu,v/Cu where
Cu = ∑v∈N(u) cu,v represents the sum of edge conductance
values from all the neighboring nodes v ∈ N(u) of node u.

Ohm’s Law. The Ohm’s law relates voltages, currents, and
resistances in the Circuitscape model through a set of linear
equations. Let CG be the conductance matrix, where its u,v-th
entry cu,v represents the conductance value of edge (u,v). Let
DG be a diagonal matrix, where the u-th diagonal entry is
Cu, the sum of the conductance values of the edges incident
to node u. The graph Laplacian of G is defined as LG =
DG−CG. Denote i = (i1, . . . , in)T as the vector of currents,
in which ik is the amount of current that has been injected to
node k1. Denote v = (v1, . . . ,vn)

T as the vector of voltages, in

1Current that flows out of a node is denoted by negative values

which vk is the voltage value of node k2. Then, Ohm’s Law
can be written in the following matrix form:

LG v = i. (1)

An important extension of this principle is used in defining
effective resistance, re f f

u,v , between two nodes u and v. The
re f f

u,v measures the resistance between u and v by injecting 1
ampere of current into node u, extracting 1 ampere from node
v, and measuring V (u)−V (v). Mathematically, let vst be the
voltage vector corresponding to the current vector ist = 1s−1t
with only 1 at the s and t-th entries and 0 elsewhere. Applying
Ohm’s law , the effective resistance re f f

s,t is exactly the voltage
difference between the s-th and the t-th entry of vst , i.e.,

re f f
s,t = (1s−1t)

T L−1
G (1s−1t). (2)

Here L−1
G represents the pseudo-inverse. In this paper, we

assume that graph G is always connected. Therefore LG has
exactly one zero eigenvalue, corresponding to the eigenvector
(1, . . . ,1)T implying LG to be highly ill-conditioned. When
we perform matrix inversions in this paper, we remove the
singularity of LG by grounding a single node in the voltage
vector to 0. Then, we remove the row and column in LG that
corresponds to the grounded node. This reduction yields in a
well-conditioned, invertible matrix that can be handled.

Hitting and Commuting Times. An important notion in
random walks is the hitting time. The hitting time Huv from
u to v represents the expected number of steps for a random
walker on G to reach v starting from u. From the hitting time,
the commuting time Juv is defined as Juv = Huv +Hvu, which
represents the expected number of steps to start from u, travel
to v, and come back at u. The following two theorems connect
effective resistance and Ohm’s Law to the commuting and
hitting times respectively.
Theorem 1. [Chandra et al., 1996] Let F = ∑x,y 1/rx,y =
∑x,y cx,y. The commuting time for a random walk between
node s and t is equal to F re f f

s,t .

Theorem 2. [Chandra et al., 1996] Suppose we inject
∑y∈N(x)

1
rxy

= ∑y∈N(x) cxy amount of current to each node x ∈
V and extract ∑x∈V ∑y∈N(x)

1
rxy

amount of current from node
v, then the voltage difference between node u and node v, Φuv
is exactly the hitting time between u, v, Huv. In mathematical
notation, Huv =(1u−1v)

T L−1
G iuv, where the v-th entry of iuv is

∑x 6=v ∑y∈N(x) cxy, and the x-th entry of iuv (x 6= v) is ∑y∈N(x) cxy.

3 Learning Random Walks
Learning the migration of wild-life animals is crucial towards
designing effective conservation strategies. Maintaining
landscape connectivity allows animals to roam freely,
promoting the dispersal of their gene flows and increasing
the robustness of the species against environmental changes.

2All voltages should be referenced with respect to a given node,
for example, node 0. In other words, we assume that node 0 is
grounded.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4339



To understand landscape connectivity, the Circuitscape
model was developed to use circuit theory and the
concept of effective resistance to accurately represent
landscape-to-resistance costs [McRae, 2006; McRae et al.,
2008]. While circuit-theory based models are powerful, many
approaches in inferring landscape connectivity parameters
rely on expert designed values or subjective methods in
evaluating the contribution of different environmental factors.

To combat these challenges, we developed a principled
framework whose foundation lies in the method of moments
technique to precisely estimate landscape-to-resistance
values from data. We use method of moments approach
to build the appropriate random walk model by finding
resistance values that best mimic animal movement patterns.

We first learn a Circuitscape model representing animals’
dispersal patterns based on partially observed trajectories.
As a second application, we learn landscape features by
modeling gene flow as done in previous work [Cushman et
al., 2006; McRae and Beier, 2007]. We correlate the genetic
distances of animal individuals observed across a landscape
with their migratory patterns using the Circuitscape model.
We show that both applications can be solved with a single
computational framework.

3.1 Learning Random Walks from Partial
Trajectories

As animals disperse across their habitats, they arrive at
different observable locations at different times. Since the
path taken by the animal between two observed locations is
unknown, the time series data represents partial trajectory
data as a sequence of time-location pairs:

{(t1, l1),(t2, l2),(t3, l3), ... ,(tk, lk)}
Here, a single animal individual visits location l1 at time t1,
then visits location l2 at time t2, and repeats this process
until time tk. The behavior learning problem is: how can
we identify the probabilistic model of the random walk given
partial trajectory data listed as above?

We adopt the method of moments technique to learn the
true probability distribution by matching the empirically
observed hitting times with those generated from the
Circuitscape model. From data, we can observe instances of
the hitting time between any two nodes u and v. An instance
of the hitting time represents the number of steps an animal
individual was observed to travel starting from u and arriving
at v for the first time. The following is a more rigorous
definition:

hlu,lv = tu− tv
The time tu represents the animal’s timestamp at location lu
and the time tv represents the animal’s timestamp at location
lv. As the number of observations increase, the true expected
hitting time should be well approximated by the empirically
computed hitting times.

Therefore, the core idea is to match the expected hitting
times computed by the Circuitscape model to the N instances
of the hitting times observed empirically:

L∗G = argmin
LG

N

∑
i=1

(
hli,li+1 −Hli,li+1

)2 (3)

This optimization equation translates into finding the
optimal L∗G that minimizes the sum of the squared differences
for all N instances of the hitting time observed in the data.

3.2 Mantel Coefficient Optimization
A fundamental challenge within ecology and conservation
biology is to use genetic approaches to understand the
dispersal of animal species over long periods of time
[Cushman et al., 2006; McRae and Beier, 2007]. One
approach employed by Cushman et al. (2006) is to manually
find landscape-resistance costs through Mantel tests among
the genetic distances between pairs of animal individuals and
their least-cost paths. Nevertheless, they used a brute-force
approach to consider all combinations of environmental
features. We extend the study by Cushman et al. (2006) by
providing a principled way to find the optimal combination
of environmental features via correlation of the genetic
distances with commuting times inferred from the resistance
surface.

Here, we assume as input a genetic distance matrix that
describes the genetic similarity between all pairs of animal
individuals across a landscape. Similar to Cushman et
al. (2006), we use the Bray-Curtis percentage dissimilarity
measure of genetic distance between individuals where 0
indicates identical composition and 1 indicates completely
different individuals. Then, we compute the commuting
times between all pairs of individuals using the Circuitscape
model and find the LG that maximizes the Mantel correlation
coefficient with the genetic distance matrix [Legendre and
Legendre, 2012]. This translates to finding the graph
Laplacian LG which maximizes the following objective:

L∗G = argmax
LG

1
d−1

n−1

∑
k=1

n

∑
l=k+1

(
Gkl− Ḡ

sG

)(
Jkl− J̄

sJ

)
(4)

Here, Gkl refers to specific indexed locations within the
genetic distance matrix G. Similarly, Jkl refers to specific
matrix elements within the commuting time matrix J. The
mean and standard deviation of the genetic matrix are Ḡ
and sG respectively. The mean and standard deviation of
the commuting time are J̄ and sJ respectively. Since G
and J are symmetric, Equation (4) only operates on the
upper-triangular section of both matrices where d = n(n−
1)/2 is the number of items in the sum.

3.3 Training via Stochastic Gradient Descent
Analytically solving the optimization problems in Equations
(3) and (4) is infeasible due to over-constrained linear
systems. Gradient-based learning offers a lucrative alternative
that yields a straightforward methodology. In both scenarios,
the gradients from the optimization equations need to
propagate back to the physical resistance values to perform
stochastic gradient descent. We can see that the hitting times
Hli,li+1 from Equation (3) and commuting time terms Jkl ,
J̄, and sJ from Equation (4) both rely on the L−1

G from
Theorems (2) and (1) respectively. We must propagate one
step further to the LG to reach the conductance values, which
are reciprocals of resistance. By finding the gradients through
LG, we can then implement a stochastic gradient descent
framework to perform updates on the resistance values.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4340



Figure 1: (Left, orange and blue box) The conjugate gradient iteration to find the root for Ax = b. Every operation in one iteration is fully
differentiable. One conjugate gradient iteration takes the input of rk, pk and xk, and computes rk+1, pk+1 and xk+1 as the output for the
next iteration. After n iterations, xn+1 is guaranteed to be the root of Ax = b. (Right, red dashed box) Back-propagate gradient through one
conjugate gradient iteration. Here, we assume having access to the partial derivative of the loss function w.r.t. the output rk+1, pk+1 and xk+1,

∂ l
∂ rk+1

, ∂ l
∂ pk+1

and ∂ l
∂xk+1

. We compute ∂ l
∂ rk

, ∂ l
∂ pk

and ∂ l
∂xk

w.r.t. the input. The computation is dominated by matrix vector multiplication, which

scales O(n2). The last line shows ∂ l
∂A can be computed via ∂ l

∂ rk
and ∂ l

∂αk
.

4 Propagating Gradients through the Matrix
Inverse Efficiently

Since hitting and commuting times rely on inverting LG in
Ohm’s Law in Equation (1), a key ingredient in the stochastic
gradient descent framework is to compute the following
partial derivative:

∂L−1
G

∂LG

In our machine learning framework, successfully
computing this quantity dictates the efficiency of the
gradient descent methodology. We attacked this problem
from two different angles. We initially started our approach,
DirectInv, by using the implicit function theorem to derive
a gradient rule. We iterated upon this idea to develop our
second approach, CGInv, which inverts the process of
conjugate gradient. The following two sections detail both
approaches.

4.1 DirectInv using Implicit Function Theorem
To compute the ∂A−1

∂A , we reformulate the matrix A and A−1

into vectors:

vec(A) = (k1,1, ...,k1,n,k2,1, ...,k2,n, ...,kn,1, ...,kn,n)
T ,

vec(A−1) = (l1,1, ..., l1,n, l2,1, ..., l2,n, ..., ln,1, ...ln,n)
T .

Here, ki, j is the i, j-th entry of the matrix A and li, j is the
i, j-th entry of A−1. We define ∂A−1/∂A as a n2-by-n2 matrix,

in which the (r,s)-th entry is ∂vec(A−1)r
∂vec(A)s

. In other words, the

((i− 1)n+ j,(u− 1)n+ v)-th entry of the matrix ∂A−1/∂A
is ∂A−1

u,v/∂Ai, j. We can derive ∂A−1/∂A in a closed form,
reflected by the following theorem:
Theorem 3. Suppose matrix A is full rank, then

∂A−1

∂A
=−A−1⊗ (A−1)T . (5)

Here, ⊗ means the Kronecker product. Our derivation is
based on the following implicit function theorem:
Theorem 4. Let f : Rn+m → Rm be a continuously
differentiable function, and let Rn+m have coordinates (x,y).
Fix a point (a,b) = (a1, . . . ,an,b1, . . . ,bm) with f (a,b) = 0,
where 0 ∈ Rm is the zero vector. If the Jacobian matrix
J f ,y(a,b) is invertible, then there exists an open set U of
Rn containing a such that there exists a unique continuously
differentiable function g : U → Rm such that

g(a) = b,

and
f (x,g(x)) = 0 for all x ∈U.

Moreover, the partial derivatives of g in U are given by

∂g(x)
∂x

=−J−1
f ,y(x,y) J f ,x(x,y).

Here, ∂g(x)
∂x is a matrix in which the (i, j)-th entry is ∂gi(x)

∂x j
.

Through this derivation, we can see that the ∂L−1
G /∂LG =

−L−1
G ⊗

(
L−1

G

)T
can be computed through the Kronecker

product. DirectInv produces a gradient computation that
requires O(n4) multiplication operations to compute the
Kronecker product. Due to its large time complexity,
DirectInv is limited to application on small-scale instances.

4.2 CGInv: Inverting Conjugate Gradient
Our second approach, CGInv, relies on back-propagating
through a neural network representing conjugate gradient,
motivated from the properties of LG. The structure of LG is
symmetric, diagonally-dominant, and positive semi-definite.
Additionally, LG is quite sparse due to the limited number of
edges incident on each node. Therefore, a matrix inversion
technique needs to only work with non-zero elements of the
matrix. By removing the row and column corresponding to
the node with grounded voltage, LG is a well-conditioned,
positive-definite matrix suitable for conjugate gradient. An

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4341



0 5000 10000 15000 20000
Training Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Si

ng
le

-S
te

p 
KL

-D
iv

er
ge

nc
e CG 100 Iterations

CG 75 Iterations
CG 50 Iterations
CG 25 Iterations
CG 2 Iterations

20 40 60 80
% Data Availability

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e 

Tr
an

sit
io

n 
 P

ro
ba

bi
lit

y 
%

 E
rro

r

CG 2
CG 25
CG 50
CG 75
CG 100

20 40 60 80
% Data Availability

2.5

5.0

7.5

10.0

12.5

15.0

Av
er

ag
e 

Hi
tti

ng
 T

im
e 

 E
rro

r %

CG 2
CG 25
CG 50
CG 75
CG 100

20 40 60 80
% Data Availability

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e 
Si

m
ila

rit
y

CG 2
CG 25
CG 50
CG 75
CG 100

Figure 2: An overview of the results for learning random walks from partial trajectories. The first graph on the left represents an example
of an experiment with 40 % data availability. We tested the performance of CGInv under different levels of maximum allowed conjugate
gradient iterations. The second, third, and fourth graphs from the left represent average % error between the true and learnt transition
probability matrix, average % error between the true and learnt hitting times, and the cosine similarity between the true and learnt weight
vectors respectively. We can see that our models are able to recover the ground-truth random walk models, achieving almost zero in KL
divergence, average transition probability error, and small errors in average hitting time and the cosine similarity of the learnt weight vectors.

illustration of conjugate gradient is shown in Figure 1. The
method of conjugate gradients is initialized with a vector
x0 that serves as a guess. Following the iterative procedure
as shown in the blue box of Figure 1, the k-th conjugate
gradient iteration uses the current approximation of the root
xk and refines the solution to xk+1. Essentially, conjugate
gradient modifies the solution vector by taking correct length
steps in the computed search directions, pk+1, from the
residual vectors rk+1 [Shewchuk, 1994]. Hence, the method
converges in at most n iterations to find the true solution. The
time complexity of each conjugate gradient iteration scales
O(n2) and yields a worst-case running time of O(n3) if all n
iterations are used.

Differentiating Conjugate Gradient. The depth of
conjugate gradient is dependent on how far away the initial
guess is from the true root, but this variability never alters the
routine in each iteration. Therefore, we can treat conjugate
gradient as a chain of identical processes that can be unrolled
one iteration at a time. This description can naturally be
extended as treating each conjugate gradient iteration as
a single layer in a neural network and connecting them
sequentially. Since matrix-vector operations dominate each
iteration, we can easily back-propagate through the neural

network to compute the gradient ∂L−1
G

∂LG
. The red dashed box

of Figure 1 represents the partial derivatives of each quantity
in a single conjugate gradient iteration with respect to the
loss function. We assume access to the partial derivatives

∂ l
∂ rk+1

, ∂ l
∂ pk+1

, and ∂ l
∂xk+1

to compute derivatives for ∂ l
∂ rk

, ∂ l
∂ pk

,

and ∂ l
∂xk

in the previous iteration. These derivatives are linked
together to compute the partial derivative of the loss function
with respect to matrix A, ∂ l

∂A , where A represents LG. The
computation of derivatives between two consecutive layers
scales O(n2). Since the gradient through the matrix inverse
is neatly represented as a feed-forward neural network, we
simply embed the gradient computation into the stochastic
gradient descent framework.

5 Experimental Results
In ecological research, landscape-resistance costs are usually
combinations of different factors such as roads, slope,

elevation, land cover, and range limitations [Cushman et
al., 2006; McRae and Beier, 2007]. We generated multiple
structured 10×10 resistance grids from Dilkina et al. (2013)
to mimic these costs. Then, we computed a single resistance
surface by adopting a linear parametrization assigning a
specific weight to each factor. These resistance surfaces
served as our ground-truth configurations.

5.1 Results for Learning Random Walks from
Partial Trajectories

To comprehensively test our model performance in learning
random walks from partial trajectories, we simulated an
animal individual for a 1000 time-steps based on a unique
linear parametrization of three structured instances. To
emulate partial trajectories, we experimented with 4 different
scenarios that consisted of 80%, 60%, 40%, and 20% data
availability. For each scenario, we executed 5 different
variations of CGInv to test the effectiveness of restricting the
maximum number of conjugate gradient iterations. We also
ran DirectInv, but the runtime was much slower than CGInv,
so we omitted graphing the results.

Figure 2 represents the results of different experiments.
To observe that training converges for all 5 variations of
CGInv, the graph on the left plots the 40% data availability
experiment as a representative example of the single-step
KL divergence plateauing near 0. We measured the
KL-divergence between the learnt and true probabilities
of moving from one-step in every location and summed
all the individual values into an aggregate measure called
the single-step KL divergence. As expected, all measures
between the probability transition matrices, hitting time
matrices, and weight vectors improve as data availability
scales upward. Through the graphs in Figure 2, we
verified that our computational framework fitted with CGInv
variations can effectively learn the ground-truth values in
three different aspects: transition probabilities, hitting times,
and the weight vector.

From a computational efficiency standpoint, we noticed
that running CGInv with only 2 conjugate gradient iterations
produces massive benefits in total run-time while maintaining
similar accuracy to other training variations. The benefits of
running smaller number of conjugate gradient iterations lie

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4342



0 5000 10000 15000
Training Time (seconds)

0.75

0.80

0.85

0.90

0.95
M

an
te

l C
oe

ffi
cie

nt

CG 100 Iterations
CG 75 Iterations
CG 50 Iterations
CG 25 Iterations

Single-Step
KL-Divergence

Average
Commuting
Time Error %

Cosine
Similarity Runtime (s)

CG 2 0.302 7.48 0.883 >16000
CG 25 0.002 0.79 0.994 13273
CG 50 0.087 4.28 0.847 11571
CG 75 0.084 4.35 0.849 13362
CG 100 0.084 4.35 0.849 15278

Figure 3: The experimental results of Mantel coefficient optimization shows our models recover the ground-truth random walk models. The
graph shows the training curves of CGInv under variations of maximum number of conjugate gradient iterations. CG 2 results were omitted
because training failed to converge on the ground-truth value. The table on the right represents the KL-divergence of the final transition
probability matrix, error between true and learnt commuting times, cosine similarity between true and learnt weight vectors, and the total
runtime. Values with ”>” failed to converge within a time-limit.

in the fact that one can compute many more gradient updates
and the added stochasticity of the gradient updates can help
in optimization. Additionally, optimization algorithms are
observed to converge faster in terms of total computation
if the computed gradients are estimates of the true gradient
[Goodfellow et al., 2016]. From this perspective, variations
of CGInv with less number of conjugate gradient iterations
have the potential to be more efficient and effective in
training.

5.2 Mantel Coefficient Optimization Results
To execute Mantel optimization experiments, we first
simulated tagging 100 animal individuals randomly
initialized across 100 locations expressed as a 10× 10 grid.
The ground-truth resistance surface was a linear combination
of 10 different structured instances. To compute the genetic
distance matrix, we programmed a simple genetics simulator
that generates Bray-Curtis distances between two animal
individuals based on their true commuting time added
with Gaussian noise. The magnitude of the Bray-Curtis
distances were linearly proportional to the length of the
commuting time. Since the Mantel coefficient detects a
linear relationship between the two ecological distance
matrices, we created the genetic distance matrix based on
linear methods so our framework has an opportunity to
recover the true resistance grid. To test the efficiency of
CGInv, we initialized 5 variations of the training algorithm
from CG 2 to CG 100 to recover the original set of weights.

The results of the Mantel optimization experiments are
shown in Figure 3. We omitted the results of CG 2 from
the graph because it failed to converge to the ground-truth
value. However, our computational framework is successful
in maximizing the Mantel coefficient for other variations of
CGInv as training progresses. An interesting result in the
table of Figure 3 is CG 25 obtains a remarkably accurate
solution vector remarkably even though the training curve
is masked by CG 75 and nearly identical to other CGInv
variations. Compared to CG 100, 75, and 50, the output
of CG 25 contains noisier solutions due to fewer allowed
conjugate gradient iterations. Back-propagating through such

solutions might yield more stochastic gradients that allow the
training algorithm to converge on more optimal extremum.

Surprisingly, we observed that reducing the number of
conjugate gradient iterations seems to have no substantial
effect on the efficiency of CGInv. We performed subsequent
experiments to measure the average number of conjugate
gradient iterations on the initial epochs for CG 100, which
is going to be made available in the full version of the
paper. The average number of conjugate gradient iterations
started at 50 and started dropping by 1 or 2 iterations every
couple epochs or so. Due to this observation, we realized
that the training progress across different variations of CGInv
produced minimal improvements in training time efficiency.

6 Conclusion
Ecological models such as the Circuitscape provide novel
and intuitive approaches in evaluating the role of landscape
features in genetic differentiation and animal movement.
However, the true capacity of these models can be unlocked
only when we master the ability to fully utilize ecological
data, computational power, and statistical learning. Our
computational framework is one such example integrating
core concepts from multiple disciplines.

Through the method of moment matching, we showed
that our framework successfully learns random walks in two
different ecological setups. Wrapping conjugate gradient as
layers in a neural network allowed us to scale the efficiency
of our approach as evidenced in experiments. Additionally,
our computational framework can be readily deployed in
real-world ecological studies. As future work, we look
forward to embedding the learned random walk model in
landscape optimization studies to fuel conservation efforts.

Acknowledgements
Devulapalli acknowledges the support from the Purdue
Doctoral Fellowship. This research was supported by
NSF grants IIS-1850243, CCF-1918327, CMMI-1763108,
CMMI-1935451, as well as by Microsoft AI for Earth grants.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4343



References
[Amos and Kolter, 2017] Brandon Amos and J. Zico Kolter.

Optnet: Differentiable optimization as a layer in neural
networks. In ICML, 2017.

[Bras et al., 2013] Ronan Le Bras, Bistra N. Dilkina,
Yexiang Xue, Carla P. Gomes, Kevin S. McKelvey,
Michael K. Schwartz, and Claire A. Montgomery. Robust
network design for multispecies conservation. In
Proceedings of the 27th AAAI Conference on Artificial
Intelligence (AAAI), 2013.

[Chandra et al., 1996] Ashok K Chandra, Prabhakar
Raghavan, Walter L Ruzzo, Roman Smolensky, and
Prasoon Tiwari. The electrical resistance of a graph
captures its commute and cover times. Computational
Complexity, 6(4):312–340, 1996.

[Cushman et al., 2006] Samuel A Cushman, Kevin S
McKelvey, Jim Hayden, and Michael K Schwartz. Gene
flow in complex landscapes: testing multiple hypotheses
with causal modeling. The American Naturalist,
168(4):486–499, 2006.

[Dickson et al., 2019] Brett G Dickson, Christine M
Albano, Ranjan Anantharaman, Paul Beier, Joe Fargione,
Tabitha A Graves, Miranda E Gray, Kimberly R Hall,
Josh J Lawler, Paul B Leonard, et al. Circuit-theory
applications to connectivity science and conservation.
Conservation Biology, 33(2):239–249, 2019.

[Dilkina et al., 2013] Bistra N. Dilkina, Katherine J. Lai,
Ronan LeBras, Yexiang Xue, Carla P. Gomes, Ashish
Sabharwal, Jordan Suter, Kevin S. McKelvey, Michael K.
Schwartz, and Claire A. Montgomery. Large landscape
conservation - synthetic and real-world datasets. In
Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, (AAAI), 2013.

[Gomes, 2009] Carla P. Gomes. Computational
Sustainability: Computational Methods for a Sustainable
Environment, Economy, and Society. The Bridge,
39(4):5–13, 2009.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[Inman et al., 2013] Robert M. Inman, Brent L. Brock,
Kristine H. Inman, Shawn S. Sartorius, Bryan C.
Aber, Brian Giddings, Steven L. Cain, Mark L. Orme,
Jay A. Fredrick, Bob J. Oakleaf, Kurt Alt, Eric A.
Odell, and Guillaume Chapron. Developing priorities
for metapopulation conservation at the landscape scale:
Wolverines in the western united states. 2013.

[Legendre and Legendre, 2012] Pierre Legendre and Loic FJ
Legendre. Numerical ecology, volume 24. Elsevier, 2012.

[Ling et al., 2019] Chun Kai Ling, Fei Fang, and J. Zico
Kolter. Large scale learning of agent rationality in
two-player zero-sum games. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI, 2019.

[McClure et al., 2016] Meredith L McClure, Andrew J.
Hansen, and Robert M. Inman. Connecting models

to movements: testing connectivity model predictions
against empirical migration and dispersal data. Landscape
Ecology, 31:1419–1432, 2016.

[McRae and Beier, 2007] Brad H McRae and Paul Beier.
Circuit theory predicts gene flow in plant and animal
populations. Proceedings of the National Academy of
Sciences, 104(50):19885–19890, 2007.

[McRae et al., 2008] Brad H. McRae, Brett G. Dickson,
Timothy H. Keitt, and Viral B. Shah. Using circuit
theory to model connectivity in ecology, evolution, and
conservation. Ecology, 2008.

[McRae, 2006] Brad H McRae. Isolation by resistance.
Evolution, 60(8):1551–1561, 2006.

[Sheldon et al., 2010] Daniel Sheldon, Bistra Dilkina, Adam
Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon
Conrad, Carla Gomes, David Shmoys, William Allen, Ole
Amundsen, and William Vaughan. Maximizing the spread
of cascades using network design. In Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence,
pages 517–526, 2010.

[Shewchuk, 1994] others Shewchuk, Jonathan Richard. An
introduction to the conjugate gradient method without the
agonizing pain, 1994.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4344

http://www.deeplearningbook.org

	Introduction
	Random Walks and Circuit Theory
	Learning Random Walks
	Learning Random Walks from Partial Trajectories
	Mantel Coefficient Optimization
	Training via Stochastic Gradient Descent

	Propagating Gradients through the Matrix Inverse Efficiently
	DirectInv using Implicit Function Theorem
	CGInv: Inverting Conjugate Gradient

	Experimental Results
	Results for Learning Random Walks from Partial Trajectories
	Mantel Coefficient Optimization Results

	Conclusion

