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Abstract
Tandem mass spectrometry is the most widely used
technology to identify proteins in a complex bi-
ological sample, which produces a large number
of spectra representative of protein subsequences
named peptide. In this paper, we propose a hier-
archical multi-stage framework, referred as Deep-
Tag, to identify the peptide sequence for each given
spectrum. Compared with the traditional one-stage
generation, our sequencing model starts the in-
ference with a selected high-confidence guiding
tag and provides the complete sequence based on
this guiding tag. Besides, we introduce a cross-
modality refining module to asist the decoder fo-
cus on effective peaks and fine-tune with a rein-
forcement learning technique. Experiments on dif-
ferent public datasets demonstrate that our method
achieves a new state-of-the-art performance in pep-
tide identification task, leading to a marked im-
provement in terms of both precision and recall.

1 Introduction
Identifying proteins in complex biological samples is an el-
ementary task in medicine and biology, such as analysis
of components in the blood. Tandem mass spectrometry
(MS/MS) is widely employed to accomplish this task. At a
general MS/MS experiment, a collection of spectra is created
in a particular order, each of which is representative of a pro-
tein subsequence called a peptide. The pair consisting of a
matched peptide sequence and spectrum is considered as a
peptide-spectrum match (PSM). Accurately identifying the
peptide sequences responsible for each experimental spec-
trum becomes a challenging task in Proteomics.

Recent advances in deep learning technology have sub-
stantially improved the performance of peptide identifica-
tion. The essential practice of neural peptide sequencing
models follow encoder-decoder paradigm [Tran et al., 2017;
Tran et al., 2019; Qiao et al., 2019]. In between, convolu-
tional neural network (CNN) is utilized to encode an input
spectrum and recurrent neural network (RNN) is adopted as a
sequence decoder to produce the entire peptide sequence, one
amino acid at each time step. Most of these peptide sequenc-
ing approaches are trained by maximizing the likelihood of

Figure 1: Illustration of our proposed hierarchical sequencing
framework. The model consists of one spectrum encoder (CNN)
and a sequence of peptide sequence decoders (Transformer plus Re-
fine), and it takes the experimental spectra as input and expands the
high-confidence guiding tag layer by layer.

each ground-truth amino acid based on previously generated
amino acids and the spectrum with backpropagation.

However, there exist two major problems in these peptide
sequence identification methods: (1) It is unreliable for the
sequence decoders to generate amino acid one by one as a
peptide sequence from left to right. Since the fragments of
the peptide are more likely to occur in the middle position in
a biological experiment, which results in a lower abundance
of effective signal peaks on both sides of the spectrum and
easy to be concealed by noise peaks [Li et al., 2005]. On the
other hand, the peptide sequencing process is accomplished
by a greedy search or with a beam search, which predicts
the next amino acid according to local maximum occurrence
probability. There is a case that some total matched peptide
sequences may be filtered at early steps which are with low
probability to be recognized in similar noise peaks by us-
ing the local maximum probability network alone. Such a
top ranking-based approach assumes that the log-probability
of every amino acid in a match sequence must be among
top choices. Actually, this is not necessarily true. (2) De-
spite involving two different modalities in peptide sequenc-
ing, former approaches seldom explore the interactions be-
tween CNN and RNN structure. A common method is di-
rectly feeding the spectrum feature from CNN into the RNN
as the initial node [Tran et al., 2017]. However, such a naive
method treats features in the experimental spectrum the same
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and ignores the major influence of local features when gen-
erating each amino acid. Uncorrelated global spectrum infor-
mation may interfere with current peptide sequence genera-
tion and severely limits the capacity of complex reasoning.

Considering the great challenge of generating peptide se-
quences from left to right in one stage, we propose a novel
hierarchical multi-stage framework, namely DeepTag, that
generates peptide sequences with the help of guiding tags
[Tabb et al., 2003], which refer to high-score peptide sub-
sequences, will be expanded in later decoders. Technically,
our model consists of a spectrum encoder and a sequence
of Transformer-based peptide decoders that gradually expand
peptide sequences in two sides. To refine the information of
decoder at the input time, we adopt a refining module, which
can fuse historical subsequence information and spectrum in-
formation to conduct the sequence generation. Different from
[Tran et al., 2017], our model utilize cross-modality refining
mechanism [Vaswani et al., 2017] to weight spectrum fea-
tures based on the preceding output of Transformer decoder
layer. Furthermore, inspired by the recent work [Zhang et al.,
2017], we design a similar RL-based training method, but ex-
tend it from one-stage to our multi-stage framework, where
rewards are incorporated at each stage as intermediate super-
vision. Figure 1 illustrates our proposed hierarchical frame-
work, which consists of three peptide sequence decoder net-
works. Specifically, the first Transformer decoder generates
the guiding tag for the observed spectrum, and the subsequent
Transformer decoders serve as sequence extension. At each
stage in our DeepTag, refined spectrum features and hidden
vector produced by the preceding decoding stage are adopted
as inputs to the subsequent stage.

Our contributions are summarized as follows:
• We introduce a hierarchical multi-stage framework to

improve the peptide identification from mass spectra,
which iteratively expands the peptide sequences layer by
layer based on high-confidence guiding tags.
• We present a new multi-layer cross-modality refining

mechanism to refine the spectrum features before feed-
ing to the sequence decoders, which significantly boosts
the performance of peptide sequencing.
• We incorporate a modified RL-based fine-tune technique

that can optimize the multi-stage model with the normal-
ized intermediate rewards.

2 Background
Tandem mass spectrometry is the key technology for mixed
sample detection and biology pathological research. It has
numerous successful applications in medical, biology, and
pharmacy [Craig and Beavis, 2004]. In practical MS/MS ex-
periments, the digesting enzyme is first employed to cleave
proteins into peptides. Next, the generated peptides are suc-
cessively imported to the mass spectrometry in two rounds. In
the first round, the mass and charge of enact peptide, called
precursor mass and precursor charge, are measured. In the
second round, the peptides are further fragmented and a se-
quence of mass spectra are provided, which corresponds to a
small part of peptide [Li et al., 2005]. Specifically, each out-
put mass spectrum is a set of (mz , intensity) pairs where m

z

denotes the mass-to-charge ratio and intensity value is the
abundance of these ions.

In this study, we aim to reconstruct the amino acid se-
quence of a peptide on the basis of the given spectrum. Nev-
ertheless, the major challenge lies that: (1) a large number of
candidate combinations lead to high computational complex-
ity. Since there will be exponential situations to be considered
as the candidate prediction in an extreme case. (2) peptide
fragmentation produces multiple types of ions that hold quite
different intensity values. The division rule is critical but re-
mains understudied [Tran et al., 2017]. (3) there are plenty of
noise peaks blending with the real ions that limits the deter-
mination of correct sequences.

To cover the above issues, early pioneering sequencing
models integrate graph algorithms and dynamic program-
ming to reduce the task complexity [Dasari et al., 2010].
However, these methods set strong assumptions, and the ac-
curacy of the identification results is restricted. Later on, deep
learning technology was introduced to peptide sequencing
[Tran et al., 2017; Zhou et al., 2017; Tran et al., 2019]. These
methods exploit the encoder-decoder paradigm that firstly uti-
lizes CNN to encoder spectrum and then adopt an RNN-based
decoder to generate the output sequence, leading to promising
results for this task. Nevertheless, during inference, most se-
quence models employ a common decoder mechanism using
a greedy or beam search. That is, they always predict the next
amino acids with top local score and produce the total peptide
in one stage. Notably, such a mechanism can miss correct
peptides at early steps. In contrast, our hierarchical learning
framework incorporates high-confidence guiding tags and a
multi-stage sequence extension process to compensate such
errors and effectively reduce the search space.

3 Methods

3.1 Task Formulation

Peptide sequencing is the task of automatically producing
a peptide sequence P̂= {â1, â2, . . . âT } to identify a given
spectrum S, where ât ∈ A is the predicted amino acid letter,
A is the space including 20 candidate amino acids, <s> and
<e> symbol, and T denotes the peptide sequence length.

Our model builds a hierarchical framework with the same
target as those one-stage models, but with the additional inter-
mediate layers between the output layer and the input layer.
Specifically, we first train the model via maximizing the log-
likelihood of each guiding tag conditioned on the input spec-
trum and the target peptide sequence P = {a1, a2 . . . aT },
and then optimize the model with peptide-level evaluation
metrics. We denote the predicted peptide subsequence of the
ith extensive stage decoder as P̂

i
, i ∈ {1, . . . , N}, and N is

the number of stages. Notably, we treat stage i = 1 as the
guiding tag decoder and P̂

1
= {âi, . . . , âi+k−1} represents

the guiding tag of spectrum S, where k is the length of tags
and 1 ≤ k ≤ T . As a result, each intermediate sequence
decoder provides the increasingly expanding peptide subse-
quence, and the prediction of the last decoder is taken as the
final peptide sequence.
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3.2 Spectrum Encoding
Following [Qiao et al., 2019], we select top n=500 most
intense peaks and represent the spectrum as a tuple set
{(mz , intensity)}

n
1 to tackle the accuracy-speed / memory

trade off problem. Integrated with spectrum feature extrac-
tion matrix, the experimental spectrum S is encoded to the
spatial spectrum features V as,

V = CNN(S), (1)

Practically, we employ pre-trained T-Net [Qiao et al., 2019]
as our spectrum information encoder, which is designed for
the kind of order invariant data.

3.3 Hierarchical Decoding
The overall hierarchical decoding framework consists of one
guiding tag decoder and a sequence of Transformer-based ex-
tensive decoders that repeatedly extend the prediction of a
guiding tag from the preceding decoder. The first stage of
our model decoding is a guiding tag decoder which generates
high-confidence guiding tags based on the global spectrum
features. In the subsequent stages, each stage i ∈ {2, . . . , N}
is a sequence expansion decoder which extends the peptide
subsequence based on spectrum features and the outputs of
the previous stage. More formally, our proposed hierarchical
decoder handle the final peptide sequence as:

p(P̂
N
|V) = p(P̂

1
|V)

N∏
i=2

p(P̂
i
|P̂
i−1

,V). (2)

In addition, we consider the hidden states of the preceding
stage to provide the following stage weighted spectrum re-
gions for better peptide sequence prediction. In the follow-
ing, we will introduce the adopted guiding tag decoder, tag
extension decoder, and refining module in detail.

Guiding Tag Decoder
We start by decoding in a guiding tag search in the first stage
(i = 1), where we learn a guiding tag decoder with an Trans-
former network, named TMtag . At each time step t ∈ [1, k],
the input to TMtag consists of the previous output sequence

P̂
1

<t = {âi, . . . , âi+t−1} and the intial spectrum features V.
Hence, we get the condition probability:

p(P̂
1
|V) =

k∏
t=1

p(a1t |P̂
1

<t,V). (3)

In practical terms, instead of applying RNN or LSTM, we in-
troduce the basic Transformer model to the peptide sequence
generation in this task. In our preliminary experiments, we
have found that the Transformer can achieve better perfor-
mance in this task, and thus we apply this model to the se-
quence decoder.

Briefly, the Transformer decoder consists of an embedding
layer and multiple decoder layers. Each decoder layer has
a mask self-attention module and a point-wise feed-foward
network (FFN). The detail tag decoder flow is described as:

TMtag(P̂
1

<t,V) = FFN(ATTcrs(V,ATTself (P̂
1

<t))), (4)

where ATTcrs(·) and ATTself (·) denote cross-attention and
self-attention layer respectively.

Sequence Extension Decoder
In the subsequent stages, each ith sequence extension decoder
predicts the tth remaining amino acid âit based on the spec-
trum featrues V, the refining weights αi−1

t and the previously
generated peptide sequence P̂

i−1

t from the preceding decoder.
The probability of sequence can be calculated as:

p(P̂
i
|P̂
i−1

,V) =
N∏
t=1

p(ait|P̂
i

<t, P̂
i−1

,V). (5)

In fact, each sequence extension decoder consists of an
TMex network and a refining module. At each time step t,
the input to TMex incudes the refined spectrum feature xi−1,
the previous output amino acid at−1, and the output of the
preceding TMex. Therefore, the updating procedure of TMex

can be written as:

TMex(P̂
i

<t, x
i) = FFN(ATTcrs(xi,ATTself (P̂

i

<t))), (6)

xit = [g(V, αi−1, hi−1); P̂
i−1

t ], (7)

where hi−1 is the hidden state from preceding Transformer
and g(·) is the spatial attention function which feeds refined
spectrum features as additional inputs to TMex at each time
step to emphasise the effective peak information and ignore
the noise peaks. When i=2, it represents the information
transmits from the guiding tag decoder to the sequence ex-
tension decoder; when i>2, it represents the increasely im-
proved process of the sequence extension decoder itself.

Refining Module
As mentioned above, global spectrum features is adopted for
our sequence decoder to generate the amino acids. However,
in most real cases, each amino acid is only related to a small
region of a spectrum. Directly incorporating the whole spec-
trum feature for amino acid prediction can lead to sub-optimal
identification results due to the noises integrated from the ir-
relevant regions [Vaswani et al., 2017].

Towards that end, the attention mechanism has been pro-
posed to effectively improve the performance of peptide iden-
tification [Xu et al., 2015]. It typically produces a spatial fea-
ture map attending spectrum peaks regions relevant to each
predicted amino acid. In this work, to extract more avail-
able spectrum information for each amino acid prediction, we
adopt a Transformered-based cross-modality module to filter
out noises gradually and pinpoint the effective peaks that are
highly relevant to the current sequence prediction [Anderson
et al., 2018]. In each sequence extension stage i, our refining
model operates on both spectrum features V and importance
weights αi−1

t from the preceding stage.
Formally, for the time step t of stage i, the work process of

our refining model can be defined as:

g(V, αi−1
t , hi−1

t ) = αi−1
t · (W i · V + bi) (8)

αi−1
t = TMref (V, hi−1

t , P̂
i

<t) (9)

where TMref denotes Transformered-based refining layer
and please note that when i = 1, we set α1

t to zero.
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Data set Lab Instrument Species #Spectra Publication

Mann-Human-QE Mann Q Exactive Human 27,570 [Michalski et al., 2011]
Mann-Mouse-QEHF Mann Q Exactive HF Mouse 172,000 [Sharma et al., 2015]
Gygi-Human-QE Gygi Q Exactive Human 176,000 [Chick et al., 2015]
Dong-Ecoli-QE Dong Q Exactive Escherichia coli 15,000 [Liu et al., 2014]
Xu-Yeast-QEHF Xu Q Exactive HF Yeast 243,000 [Chi et al., 2018]

Table 1: Basic dataset information.

3.4 Training Procedure
The introduced hierarchical framework results in a deep ar-
chitecture. Correspondingly, it tends to cause the vanish-
ing gradient problem during training, where the magnitude
of gradients decreases dramatically when backpropagated
through multiple intermediate sequencing layers [Anderson
et al., 2018]. An effective approach to tackle this problem
is to integrate supervised training objectives for the interme-
diate sequencing layers. Each stage of the hierarchical sub-
sequence decoder is trained to predict the peptide sequence
repeatedly. Here, we first introduce a cross-entropy (XE) loss
to optimize the network parameters, i.e.,

LiXE(θ1:i) = −
T∑
t=1

log(pθ1:i(at|P<t, S)), (10)

where at denotes the ground-truth amino acid letter, and θ1:i
is the parameters up to the stage-i peptide sequence decoder.
We thus acquire the overall training objective for the full ar-
chitecture via adding up the losses at each stage i:

LXE(θ) = −
N∑
i=1

LiXE(θ1:i)

= −
N∑
i=1

T∑
t=1

log(pθ1:i(at|P<t, S)),

(11)

where pθ1:i(at|P<t, S) represents the confidence probability
of amino acid at given by the i-th decoder. The weights of
the models are shared across all time steps.

However, optimizing the loss function LXE is usually not
sufficient, since the current log-likelihood training objective
causes the discrepancy problem. To be specific, the decoder
is trained to focus on the correctness of predicting each amino
acid separately. However, at each step in the test stage, the de-
coder is fed with the predicted amino acid from previous step
rather than ground truth. This leads to the gap between train-
ing and test and linits the performance in test. To address this
gap, we can regard the peptide sequence generation process as
a reinforcement learning process. In detail, given an environ-
ment, we want to train an agent to take an action (next amino
acid) conditioned on the current environment (spectrum fea-
tures and previously generated amino acids). After producing
a complete peptide sequence, the agent will receive a peptide-
level reward and update its internal state accordingly.

Inspired by [Ren et al., 2017; Gu et al., 2018], we fine-tune
our multi-stage sequence generation model with RL tech-
nique. The sequence decoder of each stage can be consid-
ered as an agent that consistly interacts with the environment.

The policy network determines a policy pθ1:i which receives a
state including preceding subsequence outputs, internal state
and spectrum features, and produce an action ãit corresponds
to the next amino acid at time step t. Once we get the com-
plete predicted peptide sequence P̃

i
, the agent will acquire a

reward r(P̃
i
). The goal of RL-based training is to minimize

the expected punishments of multi-stage decoding as,

LRL(θ) = −
N∑
i=1

EP̃i∼pθ1:i
[r(P̃

i
)] ≈ −

N∑
i=1

r(P̃
i
), (12)

where P̃
i
= {ãi1, . . . ãiT } and ãit is sampled from the stage i

at time step t. r(P̃
i
) is calculated by comparing the gener-

ated peptide sequence to the corresponding ground-truth se-
quence. On this basis, we can compute the expected gradient
with the Monte-Carlo to gain P̃

i
from pθ1:i as:

∇θLRL(θ) =
N∑
i=1

∇θ1:iL(θ1:i)

≈ −
N∑
i=1

r(P̃
i
) · ∇θ1:i logpθ1:i(P̃

i
).

(13)

4 Experiments
4.1 Experimental Preparation
Datasets. All the experiments are conducted on five public
data sets from different labs and species. Table 1 presents
the basic information of the data sets where “#Spectra” rep-
resents the number of spectra used in training or testing. The
forms of these data were all high-resolution HCD. Open-
pFind [Chi et al., 2018] was employed to deal with these raw
data sets and the five data sets were searched against the cor-
responding reviewed database of human, mouse, E.coli, and
yeast, respectively, which were all downloaded from Uniprot
and their versions are consistent with [Chi et al., 2018]. To be
specific, we configure the precursor ion tolerance as 20 ppm
and the fragment ion tolerance as ±20 ppm. We also con-
trolled the FDR at 1% at the spectrum level. Furthermore,
in order to maintain the matching quality of all spectra in
these data sets, we removed the PSM whose matched peak
number was less than its peptide length as well as the spec-
tra with peptide length longer than 20. Finally, ∼ 920,000
high-quality PSMs were acquired for later experiments. Im-
portantly, the peptide sequences identified from Open-pFind
were assigned to the corresponding MS/MS spectra and then
used as final ground truth for testing the correctness of se-
quencing results.
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Dataset Mann-Mouse-QEHF Gygi-Human-QE Dong-Ecoli-QE Xu-Yeast-QEHF

Metric AAR AAP PR AAR AAP PR AAR AAP PR AAR AAP PR

PEAKS 0.342 0.483 0.145 0.365 0.421 0.152 0.425 0.462 0.178 0.382 0.453 0.155
Novor 0.371 0.502 0.152 0.383 0.412 0.187 0.461 0.501 0.218 0.401 0.512 0.171
DeepNovo 0.427 0.512 0.241 0.454 0.428 0.251 0.513 0.521 0.321 0.466 0.561 0.253
DeepNovoV2 0.467 0.532 0.266 0.484 0.448 0.281 0.533 0.538 0.345 0.482 0.583 0.262
DeepTag 0.492 0.568 0.289 0.515 0.486 0.307 0.581 0.580 0.382 0.512 0.605 0.271

Table 2: Total recall and precision of PEAKS, Novor, DeepNovo, DeepNovoV2 and our multi-stage DeepTag on different matched data sets.
AAR represents amino acid recall, AAP represents amino acid precision and PR represents peptide recall.

Compared approaches. We compared the following state-
of-the-art peptide sequencing methods: PEAKS [Ma et al.,
2003], Novor [Jeong et al., 2013] DeepNovo [Tran et al.,
2017] and DeepNovoV2 [Qiao et al., 2019]. Note that the
first two methods are constructed with a traditional search
strategy, while the last two methods are deep learning-based.

Evaluation metrics. In this paper, the generated amino
acid can be regarded as correct when the mass difference be-
tween the predicted amino acid and a ground-truth amino acid
is less than 0.1 Da, and the prefix mass before them as well as
the suffix mass behind them are different by less than 0.5 Da.
Following [Qiao et al., 2019], we adopt three types of met-
rics: precision, recall and area under curve (AUC) to evaluate
the performance of peptide sequencing. More subdivided, the
ratio of the total number of matched amino acids over the to-
tal number of amino acids in the generated peptide sequences
is considered as amino acid level precision while the fraction
of true peptide sequences in total predicted peptide sequences
is served as peptide level precision. Similar definitions can be
applied to recall and AUC as well.

Implementation details. The structure of our DeepTag
model was presented in Figure 1. We utilized T-Net [Qiao
et al., 2019] as our spectrum feature extractor. The final out-
put of T-Net was resized to 256 dimensions. The length of
the guiding tag was set to 5 (k = 5) and the total number of
the stage was set to 3 (N = 3). For guiding tag decoder,
we use the small transformer (dmodel = 256, dhidden =
256, pdropout = 0.1, nlayer = 3, and nhead = 2). For ex-
tended decoder, we use the base transformer by [Vaswani
et al., 2017](dmodel = 512, dhidden = 512, pdropout =
0.1, nlayer = 3 and nhead = 8). We first train our model un-
der the cross-entropy cost using Adam optimizer (lr=0.002)
and a momentum parameter of 0.9. Later on, we adopt the
proposed RL-based approach on the just trained sequencing
model to further optimize. During this stage, we use Adam
with a learning rate of 0.0002. After each epoch, we evalu-
ate the model performance on the validation set and choose
the sequencing model with the best rewarding. Overall, our
model was first trained on the Mann-Human-QE data set, and
then tested on Mann-Mouse-QEHF for cross-species valida-
tion and Gygi-Human-QE data set for cross-lab validation.
The rest of the data sets were adopted to test the robustness
of our model. Please note that the training dataset and test-
ing dataset come from different species [Zhou et al., 2017].
The cross-validation is used to guarantee unbiased training

Figure 2: The precision-recall curves of PEAKS, Novor, DeepNovo,
DeepNovoV2, and our DeepTag on Mann-Mouse-QEHF dataset.

and testing and does not give our model any advantage.

4.2 Comparing with State-of-the-art Methods
Table 2 summaries the performance comparisons between the
state-of-the-art peptide sequencing models and our proposed
DeepTag on different species and labs datasets. In general,
our DeepTag consistently exhibits better performance than
other sequencing models, which include the traditional search
methods (PEAKS, Novor) and deep learning-based methods
(DeepNovo and DeepNovoV2). The PR score of our Deep-
Tag can achieve 0.289 on the Mann-Mouse-QEHF dataset,
which is to-date the best performance and makes the abso-
lute improvement over the best competitor DeepNovoV2 by
2.3%. The performance improvements generally demonstrate
the key advantage of incorporating multi-stage decoding for
peptide sequencing. In particular, we can observe from the
two types in Table 2 that deep learning-based approaches out-
performs top human-designed search approaches ∼ 5.0 %
in AAR, ∼ 2.1 % in AAP and ∼ 6.5% in PR. In our opin-
ion, compared with the traditional search methods, the model
based on deep learning has greater advantages in extracting
spectral information and results in accurate peptide sequence.

On the other hand, we should also be aware that all se-
quencing tools report confidence scores for their predictions,
and setting a higher threshold of confidence score will lead to
a smaller part of peptides with high precision but will make
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Figure 3: The area under curve of PEAKS, Novor, DeepNovo, Deep-
NovoV2, and our hierarchical DeepTag on different species and labs
data sets.

the rest of the dataset without results [Tran et al., 2017].
Hence, it is reasonable to depict precision-recall curves and
incorporate the area under curve (AUC) as metrics of pep-
tide sequencing quality. Figure 3 and 2 display the AUC
of different peptide sequencing methods on different data
sets and the precision-recall curves on Mann-Mouse-QEHF
dataset respectively. We can view that our multi-stage Deep-
Tag model still maintains superiority against other sequenc-
ing methods. For example, for Mann-Mouse-QEHF dataset,
the AUC of our DeepTag was 54.8% higher than that of
PEAKS ((0.48-0.31) / 0.31 = 0.548) and 37.1% higher than
that of Novor ((0.48-0.35) / 0.35 = 0.371). In addition,
DeepNovoV2 and our method often came in the first two
places, probably because of the improvement of deep learn-
ing technology in spectrum information encoder ( both mod-
els adopts T-Net to handle spectra ). In summary, the se-
quence generation method based on deep learning generally
present better performance compared with traditional search-
based strategy. More importantly, extensive experimental re-
sults demonstrated the improvement of our method was effi-
cient and reliable.

4.3 Neural Network Architecture Analysis
In this paper, we propose a novel hierarchical framework
whose architecture is worth further looking into. A natural
question arises ”why do we choose these structures here?”.
To answer this question, we construct an ablation study on
four variants based on our neural network structure: (1)
we implement a one layer Transformer-based guiding tag
decoder and one layer Transformer-based sequence exten-
sion decoder model named as TM1+1 layers. (2) We add
two additional Transformer networks after one layer Trans-
former sequence extension decoder model, which is named
as TM1+3 layers. If the number of layers is not indicated,
then N = 3 (1+2) in default. Then, we implement two types
of refined-based peptide sequencing models: (1) the output
of spectrum features are directly input to the hierarchical de-
coder, which is named as TM+no Refine. (2) the soft-refined

Methods AAR AAP PR AUC

TM1+1 layers 0.431 0.512 0.228 0.42
TM1+3 layers 0.424 0.503 0.224 0.40
TM+no Refine 0.406 0.498 0.216 0.38
TM+RefineSoft 0.450 0.525 0.246 0.43
DeepTag 0.473 0.537 0.255 0.45

Table 3: Performance comparisons on Mann-Mouse-QEHF for dif-
ferent metrics optimized by cross-entropy loss.

Methods AAR AAP PR AUC

TM1+1 layers 0.435 0.526 0.234 0.42
TM1+3 layers 0.428 0.511 0.230 0.41
TM+no Refine 0.410 0.503 0.221 0.39
TM+RefineSoft 0.482 0.552 0.278 0.46
DeepTag 0.492 0.568 0.289 0.48

Table 4: Performance comparisons on Mann-Mouse-QEHF for dif-
ferent metrics optimized by the RL-based method later.

model (TM+RefineSoft) proposed by [Xu et al., 2015].
More concretely, in this experiment, we first train the

baselines and our proposed DeepTag with a standard cross-
entropy loss. We report the performance of our model and
the baselines in Table 3. We can find that our hierarchi-
cal learning framework achieves the best performances in
all metrics. The soft refining models, TM+RefineSoft, pro-
vides slightly lower performance than our DeepTag. Note
that directly adding extra one additional Transformer layer
in TM1+3 layers decreases the performance of our Deep-
Tag as the model may experience overfitting. Our hierar-
chical approach which optimizes the network gradually with
the intermediate supervision can effectively avoid overfit-
ting to some degree. We also view that the refining mech-
anism (TM+RefineSoft and DeepTag) can significantly im-
prove the performance of peptide identification, compared
with TM+no Refine. After optimizing the model with cross-
entropy loss, we optimize with the RL-based algorithms to
fine-tune the models. The performance of five models are
presented in Table 4. Similar to the previous observations,
our DeepTag still obtains significant gains across all metrics.

5 Conclusion
Peptide sequencing is a challenging problem that incorpo-
rates both pattern recognition and optimization in data anal-
ysis. In this paper, we propose a hierarchial multi-stage
framework that utilized a refining module in conjunction with
multiple Transformer networks to improve MS/MS analysis.
Our model generates peptide sequences from high-confidence
guiding tags to both sides extended sequences, which we
found to be very beneficial for peptide identification. The
model was compared with other prevalent peptide identifica-
tion tools and experiments show that our DeepTag achieves
higher precision at both amino acid and peptide levels. Be-
sides, the effectiveness of various network architecture was
investigated in detail.
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