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Abstract

Predicting anomalies (e.g., blocked driveway and
vehicle collisions) in urban space plays an im-
portant role in assisting governments and commu-
nities for building smart city applications, rang-
ing from intelligent transportation to public safety.
However, predicting urban anomalies is not triv-
ial due to the following two factors: i) The se-
quential transition regularities of anomaly occur-
rences is complex, which exhibit with high-order
and dynamic correlations. ii) The Interactions be-
tween region, time and anomaly category is multi-
dimensional in real-world urban anomaly forecast-
ing scenario. How to fuse multiple relations from
spatial, temporal and categorical dimensions in the
predictive framework remains a significant chal-
lenge. To address these two challenges, we propose
a Cross-Interaction Hierarchical ATtention network
model (CHAT) which uncovers the dynamic oc-
currence patterns of time-stamped urban anomaly
data. Our CHAT framework could automatically
capture the relevance of past anomaly occurrences
across different time steps, and discriminates which
types of cross-modal interactions are more impor-
tant for making future predictions. Experiment re-
sults demonstrate the superiority of CHAT frame-
work over state-of-the-art baselines.

1 Introduction

Urban anomalies has drawn increasing attention with the
growing number of urban sensing platforms (e.g., noise mon-
itoring system and traffic condition reporting sites) [Zheng
et al., 2014; Wu et al., 2020]. This work aims to predict
anomalies of different categories at each region of a city to
enable more timely and efficient resolution of urban issues.
Predicting urban anomalies is of great value to traffic man-
agement and intelligent transportation. For example, if one
can forecast blocked driveway events and traffic accidents be-
forehand, such anomalies can be prevented or mitigated by
utilizing emergency mechanisms or designing more effective
strategies (e.g., traffic flow control [Tordanidou et al., 2017]).

Existing work to anomaly prediction and detection in a
city merely focus on summarizing temporal occurrence tran-
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sitions linearly while cannot handle the scenarios where dy-
namic temporal dependencies exist in the distributions of
anomalies [Wu et al., 2017; Huang et al., 2016; Zheng et
al., 2015]. As shown in [Zhang et al., 2017; Zhang er al.,
2018], the time factor plays an important role in modeling ur-
ban anomalies, since regions, time periods and anomaly cate-
gories are dynamic correlated in urban spaces. Hence, failing
to effectively capture such subtle dynamics is inappropriate
and cannot represent the complicated real-world scenario. In
contrast, this paper explicitly addresses the problem of urban
anomaly prediction under dynamic scenarios.

However, developing such an urban anomaly prediction
system is very difficult and two important technical chal-
lenges exist. First, the patterns of anomalies may vary over
time, e.g., anomaly causality in summer might be different
from that in winter. Traditional time series models (e.g., au-
toregression integrated moving average (ARIMA) [Wiesel et
al., 2013] and Gaussian Processing (GP) [Esling and Agon,
2012]) do not well capture the complex spatial-temporal de-
pendencies in a fully dynamic manner [Liu et al., 2016].
While recurrent neural network (RNN) and its variants (e.g.,
LSTM and GRU) have been utilized in modeling non-linear
transition regularities of spatial-temporal data [Yu er al.,
2017; Liu et al., 2016], these models can hardly capture long-
term temporal correlations from a global perspective, and
understand which historical anomaly occurrences should be
more emphasized during the prediction phase.

Another challenge is how to effectively model time-
evolving multi-dimensional interactions. In real-world ur-
ban scenarios, interactions across regions (spatial dimension),
time frames (temporal dimension) and anomaly categories
(semantic dimension) are implicit and time-evolving [Feng et
al., 20181, which makes the urban anomaly prediction more
challenging. For example, blocked driveway may have differ-
ent probabilities of occurrence at different regions across dif-
ferent time slots, due to some non-periodic events (e.g., short-
term road constructions). Hence, cross-dimensional interac-
tions at different time frames might have varying importance
in helping the urban anomaly prediction task. Effectively cap-
turing the interaction importance remains a challenge.

To tackle the aforementioned challenges, we propose a
new deep learning framework—Cross-Interaction Hierarchical
ATtention Network (CHAT). We first propose to encode
the dynamic anomaly occurrence patterns by integrating the
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temporal-wise attention mechanism and bidirectional long
short-term memory network. The integrative framework
augments recurrent neural architecture by learning an at-
tentive gating mechanism, which is calculated based on
the summarized global temporal information, to recalibrate
learned time-ordered sequential transitional regularities from
past observations across different time slots. In addition,
to fully exploit the time-evolving multi-dimensional inter-
actions in modeling urban anomaly data, we further de-
velop an interaction-wise attention mechanism to learn the
joint representations of anomaly occurrence patterns across
spatial-temporal-semantic dimensions. Our developed CHAT
model leverages the augmented recurrent layer to discover
the temporal dependency patterns, and the strengths of at-
tention mechanism to capture complex time-evolving multi-
dimensional interactions across time, location and categories.

In summary, we highlight our contributions as follows:

* In this work, we explore the urban anomaly prediction
problem from the viewpoint of hierarchical attention net-
works, empowering it to effectively model time-evolving
multi-dimensional spatial-temporal data.

* We propose an integrative architecture with bi-directional
recurrent layer and temporal-wise attention mechanism, to
exploit global temporal contextual information.

* Additionally, we design an interaction-wise attention
mechanism to learn the joint representations across spatial-
temporal-semantic dimensions for consensus anomaly pre-
diction in a seamless manner.

* We conduct extensive experiments on the real-world urban
anomaly datasets to show that our developed CHAT frame-
work consistently outperforms state-of-the-art methods.

2 Preliminaries

We consider a set of I geographic regions in a city:
Ry, ..., Ry, a set of J anomaly categories: Oq,...,O , and
K time slots, where ¢, j and k is used to represent the in-
dex for region, anomaly category and time slot, respectively.
Anomalies of each region are reported from the first time slot
(e.g., day) to K-th time slot.

Definition 1 Anomaly Tensor AS. We define an anomaly
tensor AS; € RIX/*E o represent the time-stamped
anomaly sequences of all geographical regions for all
anomaly categories across K time slots. In particular, we set
the element AS;; ; . = 1 given the O;-th category of anoma-
lies reported from region the region R; at the k-th time slot.
Otherwise, the AS; ; 1. will be set as 0.

Problem Statement. Based on the above defined terms, we
formulate the urban anomaly prediction problem as follows:
given the anomaly tensor AS generated from the first time
slot till K-th time slot, the goal is to forecast the anomaly
occurrence of each category O; at each region R; of a city in
the future time slot.
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Figure 1: The Architecture of CHAT Model.

3 Methodology

3.1 Dynamic Temporal Dependencies Modeling

While Recurrent Neural Networks (RNNs) have been widely
applied to model sequential data by proposing hidden-to-
hidden connections [Bishop, 19951, they are unable to learn
the long-term dependencies (i.e., dependencies between time
steps that are far apart) in time series data. Hence, we utilize
Long Short-Term Memory (LSTM) [Hochreiter and Schmid-
huber, 1997] to address the above limitations and make our
predictive model more effective. Formally, the vector repre-
sentations of hidden states h; and c¢; for each time step ¢ are
derived with the following operations:

i =0c(W;-hi1 + Vi -z + b;)

or =0(Wo - he—1 + Vo - e + b5)

[t ZO'(Wf “hi_1 + Vf - Ty + bf)

e =p(We - hy—1 + Ve - 24 + be)

e =ftOc1+itOc

hy =o0; © ¢(ct) (D

where W, € R%*% represents the learnable weight matrix
for the representation ¢;_; and h;_; from the ¢ — 1 time slot.
V. € Rd=*ds ig another weight matrix for the input. b, is
the defined bias term. The latent dimensionality of input and
latent embedding vector is respectively denoted by d, and
ds. The activation function of tanh (¢(-)) and sigmoid (o (+))
function is applied over the transformation operation. In our
recurrent unit, the input input gate, output gate and forget gate
is defined as i, o, and f;, respectively. We represent the op-
erations in the LSTM unit as [ct, hy] = LSTM(*, ¢t—1, ht—1).

Furthermore, to improve the performance of LSTM in
modeling long sequence data, Bidirectional Long Short-Term
Memory (BiLSTM) [Schuster and Paliwal, 1997] was devel-
oped to consider both the past and future contextual signals
for each time step in the generated sequence. Specifically,
BiLSTM involves two hidden layers separately with forward

states [y, ﬁt] and backward states [‘¢, k], respectively,
i.e., (1) forward hidden layer models the contextual informa-
tion in sequence from 1-th to ¢-th time step, and (2) backward
hidden layer models the contextual information in sequence
from ¢-th to 1-th time step. In particular, we use the anomaly
sequence from x; to z as the input to the forward LSTM and

_>
derive the sequence of forward hidden states (h 1, ..., h 1)
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and (1, ..., ). The backward LSTM takes the anomaly
sequence information in the reverse order (i.e., from xr to

(_
xL) as input to update the hidden states (h1,..., h ) and
(°c'1,..., ¢T). We further concatenate the forward hidden

— —
state h ¢, 725 and backward hidden state h ¢, Yt. The equa-
tions below describe how the forward and backward hidden
states from individual time slot are updated.

[e], hy] =LSTM (¢, &3, he_1)
[H, ﬁf] :LSTM(%, %7 }£t+1)

I :[ﬁﬁ <Et]T (2)

Finally, we obtain the final hidden vector representation as
= =

ht = [h ts h t] .

3.2 Hierarchical Attention Networks

In order to mitigate the limitation of recurrent neural architec-
ture in dealing with long-term dependencies [Graves, 2013],
the attention mechanism was introduced to endow the neural
network models with the capability of learning where to pay
attention on the input series data, and generate the latent rep-
resentations by differentiating the relevance of encoded time
steps [Yang et al., 2016]. The attention network introduces
a context vector to learn different relationships between in-
stances in an explicit manner.

Our hierarchical attention framework consists of two at-
tention modules: (i) the temporal-wise gating module which
aims to select the relevant anomaly information for predict-
ing anomaly occurrence in the future; and (ii) the interaction
attention which learns to score the importance of pair-wise
interactions between regions, anomaly categories and time
slots. In the following subsections, we will present the tech-
nical details of each component.

Temporal-wise Attention
The objective of anomaly prediction task is to forecast the
occurrence of anomalies at each geographical region R; €
[R1, ..., R] of a city in the future time slot, based on the ob-
served anomaly data from previous time slots, i.e., 1 to x7.
To augment our bidirectional recurrent architecture with the
ability in encoding long-term dependencies (with the large se-
quence length), and allow our CHAT framework to focus on
certain parts of anomaly sequence, we design a temporal-wise
attention layer and integrate it with the BiLSTM architecture
to learn importance scores from a set of source hidden states.
We use h,t € [1,...,T) to represent hidden state of ¢-th
time slot. Then, we feed h; into a one-layer MLP to obtain
contextual vector u; which corresponds to the hidden repre-
sentation of h;. A softmax function is further applied to cal-
culate the relevance of each source hidden representation with
a normalization operation. We formally model the relations
between hidden states corresponding to different time slots
using the temporal-wise attention mechanism as follows:

uy =tanh(Wiemhy + biem)

tﬂm@@iyﬁ—iah 3
! Ztexp(UtTUtem)’ ' t=1 o
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where / is defined as the concatenated hidden representation
with the learned attention weights. Formally, we denote our
temporal attention mechanism as below:

h =Attention(hs, ..., hr). 4)

Interaction Attention Module

With the consideration of spatial, temporal and categorical di-
mensions, we can represent the multi-dimensional anomaly
data with a three-way tensor AS, where each dimension
stands for geographical region, anomaly category and time
slot, respectively. Each element in this tensor indicates that:
in k-th time slot, the anomaly occurrence of category O; was
reported from region R;. Given this constructed tensor, we
can note that the interactions exist between each pair of two
individual dimensions [Rendle and Schmidt-Thieme, 2010]
(e.g., j-th category anomalies happened at region R; or j-th
category anomalies were reported from k-th time slot). In this
work, we define E;, EJ; and Ej, to represent the embedding
vectors of region I?;, anomaly category O; and k-th time slot,
respectively. Here, we define the interactions between regions
and anomaly categories, regions and time slots, anomaly cate-
gories and time slots as ®; ;, ®; 1, P, 1, respectively. The in-
teraction between each two dimensions are formally defined
as follows:

(Pi,j :RCLU(WL]’ [EZ, Ej] + bi,j)
(I%-’k :RCLU(Wi’k[Ei; Ek] + bz‘,k)
CDj,k :ReLU(ijk[Ej; Ek] + bj’k) ®))

where W, and b, represents the learnable transmission matrix
and bias term, respectively.

While the anomaly sequence AS of a entire city exhibits
interactions between regions, anomaly categories and time
slots, not all these three interactions contribute equally to help
forecast future anomaly occurrence. Hence, we propose to
utilize attention mechanism with an interaction level context
vector w which measures the importance of interactions be-
tween different dimensions. Our interaction attention can be
given as follows:

d = Attention(®; ;, B; i, Bj 1) (6)

We further denote the concatenated interaction as ® in our
interaction attention as follows:

w =tanh(Wini[®i j, i g, j k] + bint)

cap(ulu,) ¢

Y ety @

j=1

3.3 Model Optimization of CHAT Model

In the learning process of our CHAT model, we aim to obtain
the occurrence likelihood (denoted as z; ;1) of j-th category
of anomalies at the k-th time slot from region R;. In the loss
function, the cross entropy is leveraged as follows:

L = — Z Zi7j7klnﬁi,j’k
(i,5,k)€S
(1 =z j0)In(1 — 2 ) (®)

The model parameters can be obtained by minimizing the de-
fined loss function.
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4 Evaluation

We perform extensive experiments to evaluate the effective-
ness of our urban anomaly predictive framework (i.e., CHAT)
on the real-world dataset from New York City. In this sec-
tion, we first describe the experimented data used in this work
and introduce the detailed experimental settings. Then, we
present the performance validation results to demonstrate the
superiority of our developed framework with the comparison
against state-of-the-art techniques. To be more specific, we
aim to answer the following research questions:

* RQ1: Can our CHAT outperform state-of-the-art baselines
in predicting urban anomalies over different time periods?

* RQ2: What is the performance of CHAT in predicting
category-specific urban anomalies?

* RQ3: How does our CHAT perform in forecasting urban
anomalies w.r.t different geographical region resolutions?

* RQ4: What is the impact of temporal-wise gating mecha-
nism and interaction-wise attention mechanism in the joint
deep neural network architecture?

* RQ5: How do hyperparameters affect the performance?

4.1 Experimental Setup

Data Description

We carry out experiments on the real-world urban anomaly
dataset which is collected from New York City (NYC)'. This
data contains different categories of urban anomaly reports
from the 311 online platforms®. Each reported urban anomaly
report is formatted as (timestamp information, anomaly cat-
egory, coordinates). This dataset span from Jan 2014 to Dec
2014. We focus on four key categories of citywide anoma-
lies (e.g., Blocked Driveway, Building Use, Noise and Illegal
Parking) in this work. Figure 2 shows the geographical distri-
butions of different categories of anomalies in New York City
(NYC) on August and October, respectively.

Region Partition

We map each anomaly report into one region of a city with
different geographical scales, so as to investigate the perfor-
mance of CHAT with respect to different region scales. We
present the details of our partitioning methods as follows:

High-Level Geographical Region Scale. We partition New
York City into 77 geographical areas based on the information
of political districts 3. Each individual partitioned geographi-
cal area is referred to as high-level region.

Fine-Grained Geographical Region Scale: We partition
New York City into 862 geographical area [Zheng et al.,
2015] using road segments (i.e., road segments from level 1
to level 5). Each individual partitioned geographical area is
referred to as a fine-grained region.

"https://data.cityofnewyork.us/
Zhttps://portal.311.nyc.gov/
*https://data.cityofnewyork.us/Public-Safety/Police-Precincts/
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Figure 2: Geographical distribution of anomaly occurrences
across different categories on Aug and Oct.

Evaluation Protocols

We adopt two sets of evaluation metrics: we adopt Marco-
FI and Micro-F1 [Ni et al., 2018] as the evaluation metrics
to measure the prediction accuracy across different anomaly
categories. We further use FI-score to investigate the perfor-
mance of predicting category-specific anomalies. Note that
higher Macro-F1, Micro-F1 and F1-score indicate better pre-
diction performance.

In our experiments, the evaluation dataset is divided into
into training, validation and test sets with the period of 5.5
month, 0.5 month and 0.5 month, respectively. The predic-
tion results over all time slots (days) in the test period are
averaged to generate the final prediction performance. Dur-
ing the evaluation process, the valuation set serve as the data
for parameter tuning.

Baselines for Comparison

We consider six types of baselines for performance com-
parision: (i) traditional predictive analytic model (i.e., LR);
(ii) conventional time series forecasting techniques (i.e., GP
and ARIMA); (iii) Bayesian inference method for spatial-
temporal data forecasting (i.e., BIAP); (iv) tenor factorization
technique for urban anomaly prediction (i.e., TFAP). (v) deep
recurrent networks for spatial-temporal data prediction (i.e.,
ST-RNN and DRN); (vi) spatial-temporal pattern modeling
with attentive recurrent framework (i.e., ARF).

 Gaussian Processing (GP) [Esling and Agon, 2012]: it
predicts the anomaly of each region using kernel function
to measure the distance between past anomaly distribution
and the anomaly occurrence in the predicted time slot.

¢ Auto-Regressive Integrated Moving Average
(ARIMA) [Wiesel et al., 2013]: this conventional
time series approach aims to predict region’s anomalies by
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considering the frequency of anomaly occurrence.

* Logistic Regression (LR) [Hosmer Jr ef al., 2013]: we
leverage this method with the incorporation of extracted
temporal features from historical anomaly traces.

e Tensor Factorization-based Anomaly Prediction
(TFAP) [Wu er al., 2017]: Tt aims to predict anomaly
occurrences by extending the Matrix Factorization scheme
to consider the temporal dimension of crime data.

* Bayesian Inference Anomaly Prediction (BIAP) [Huang
et al., 2016]: it proposes a Bayesian inference method to
jointly model the sequential patterns of anomalies and de-
pendencies between different regions.

e Spatial-Temporal Recurrent Neural Networks (ST-
RNN) [Liu et al., 2016]: it proposes to model the spatial-
temporal patterns of sequential data by employing the re-
current neural networks.

e Deep Recurrent Networks (DRN) [Yu et al., 2017]: it
is a stacked deep recurrent neural architecture to cap-
ture dynamic periodical transitional regularities for spatial-
temporal data forecasting.

* Attentive Recurrent Framework (ARF) [Feng et al.,
2018]: this approach models the evolving dependencies in
time-ordered spatial-temporal data with the integration of
attention mechanisms and recurrent neural network.

Parameter Settings

We use Adam [Kingma and Ba, 2015] as our optimizer to
learn the model parameters of our CHAT framework. In our
experiments, we set the hidden state dimensionality d and em-
bedding dimension e as 32. Furthermore, the sequence length
T in our recurrent neural architecture is set to 10. In the pre-
diction phase of CHAT, we set the number of hidden layers as
3. The representation dimensionality of our attention mecha-
nism is set to 32. The methods are trained from scratch with-
out any pre-training on a single NVIDIA GeForce GTX 1080
Ti GPU with a learning rate and batch size of 1e~3 and 64.

4.2 Performance Comparison (RQ1, RQ2, RQ3)

Table 1 lists the evaluation results of all compared methods
with different settings of training and test periods for fine-
grained and high-level region scale, respectively. We observe
that CHAT outperforms other baselines over different time
periods. In addition, although different time windows re-
flect a spectrum of temporal diversity which is maintained
by month and season variation (e.g., Jul, Aug-Summer and
Sep, Oct-Autumn), our proposed CHAT method consistently
achieves the best performance by capturing such subtle tem-
poral dynamics of urban anomaly data.

Note that the prediction task becomes more challenging
when we map each urban anomaly into a specific fine-grained
region (out of 862) compared to high-level region (out of 77),
since the generated anomaly tensor A.S will become more im-
balanced by including more zero values, i.e., there are fewer
anomaly occurrences when mapping anomaly reports into
more fine-grained geographical regions. we can observe that
obvious improvements can be obtained by our CHAT with
different geographical region scale as compared to competing

4363

baselines, suggesting that CHAT is capable of handing sparse
urban anomaly data by explicitly jointly embedding all spa-
tial, temporal, and categorical signals into the prediction.

We further perform experiments to evaluate CHAT in pre-
dicting individual anomaly categories with fine-grained re-
gion scale as shown in Figure 3. Overall, our proposed pre-
dictive system outperforms state-of-the-art methods in most
cases. Additionally, CHAT achieves relatively 39.1%, 25.5%
and 20.3% gain in terms of F1-score over ST-RNN, DRN and
AREF respectively when predicting building use category with
fine-grained geographical region scale. The advantage of the
proposed CHAT lies in its proper consideration and accom-
modation of dynamic anomaly pattern challenge.

(C) Illegal Parking

(b) Blocked Drive

(d) Building Use

Figure 3: Forecasting results for category-specific anomalies.

4.3 Model Ablation Study (RQ4)

We now perform the model ablation study of the proposed
CHAT with respect to the designed components. In this sub-
section, we consider three variants of the proposed CHAT
method which correspond to different analytical aspects:

« Effectiveness of Temporal Attention CHAT-IA: A model
variant without temporal-wise gating mechanism.

o Effectiveness of Interaction Attention CHAT-TA: An-
other variant of CHAT without interaction attention mech-
anism to capture cross-interaction patterns.

« Effectiveness of Bi-directional Recurrent Architecture
CHAT-UA: This simplified version of CHAT models the
anomaly sequence via unidirectional LSTM networks and
dual-stage attention mechanisms.

0.56 0.5

Macro-F1
Micro-F1

Jul Aug Sep Oct

(a) Macro-F1
Figure 4: Model Ablation Study of CHAT Framework.

(b) Micro-F1

Figure 4 presents the results of all compared variants in
predicting anomalies across different categories respectively
(with fine-grained region scale). We can notice that the full
version of our framework CHAT-F achieves the best perfor-
mance. We summarize the following key observations:
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Scale Fine-Grained Region High-Level Region

Month July August September July August September
Method | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1
GP 0.391 0.359 0.402 0.364 0.423 0.385 0.773 0.756 0.789 0.769 0.795 0.773
ARIMA | 0.332 0.263 0.342 0.261 0.360 0.282 0.818 0.782 0.826 0.788 0.834 0.793
LR 0.443 0.359 0.437 0.360 0.427 0.350 0.799 0.781 0.801 0.785 0.805 0.787
TFAP 0.477 0.398 0.485 0.385 0.493 0.421 0.833 0.818 0.850 0.834 0.849 0.832
BIAP 0.450 0.342 0.449 0.372 0.418 0.394 0.802 0.797 0.831 0.817 0.818 0.783
ST-RNN | 0.439 0.369 0.464 0.386 0.472 0.392 0.823 0.810 0.840 0.825 0.839 0.824
DRN 0.460 0.395 0.465 0.388 0.459 0.378 0.826 0.813 0.832 0.817 0.834 0.820
ARF 0.468 0.404 0.478 0.404 0.478 0.399 0.831 0.813 0.829 0.815 0.838 0.823
CHAT 0.513 0.453 0.515 0.459 0.547 0.486 0.867 0.841 0.875 0.854 0.882 0.861

Table 1: Overall prediction results with both fine-grained and high-level geographical region scales across different periods.

* The efficacy of our designed temporal attention mechanism
to encode the unknown relevance of past anomaly occur-
rences in forecasting future anomalies.

» The effectiveness of our interaction attention mechanism
in capturing time-evolving multi-dimensional interactions
across regions, time slots and anomaly categories.

* The positive effect of CHAT in modeling dynamic temporal
dependencies with Bidirectional LSTM.

4.4 Parameter Study (RQS)

We present the evaluation results of parameter study in CHAT
in Figure 5. From the results, we summarize the following
observations. First, we can see that the model performance
tends to saturate once the embedding size reaches around 48.
Second, we can observe that increasing the sequence length
slightly improves overall performance. Third, we can observe
the low impact of the number of hidden layers in the feed-
forward network prediction layer on the performance.

0.55 0.55 0.55
“““ B SR S NS S e F TS
oy 0.5 Fy 0.5 hy 0.5
© © (]
£ g g
3 3 S
8 L ALl 8 A aaa 8 | L A
<0.45 P 0457 A AR g0.45
+Macro F1 +Macro F1 +Macro F1
“Micro F1 “Micro F1 “Micro F1
0.4

0.4
8 16 24 32 40 48 56
Hidden Dimensionality

0.4
2345678910
Sequence Length

01 2 3 45
# of Hidden Layers

(a) Hidden Layers (b) Sequence Length (C) Dimensionality

Figure 5: Parameter Study of CHAT Model.

5 Related Work

Urban Anomaly Detection and Forecasting. There ex-
ists a good amount of work on the topics anomaly detec-
tion [Pan et al., 2013; Doan er al., 2015; Zheng e al., 2015;
Le et al., 2013]. For example, Doan et al. detected anoma-
lies by modelling the behaviours of pedestrian flows across
multiple locations [Doan et al., 2015]. Zheng et al. identified
the anomalies from spatial-temporal data using a probability-
based detection method [Zheng er al., 2015]. Nevertheless,
the above schemes aim to identify the urban anomalies af-
ter they happen, which might lead to the inefficiency to han-
dle the anomalies beforehand. Instead, this work tackles
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the problem of predict the urban anomalies before they hap-
pen. While there exist two recent work on anomaly predic-
tion [Huang et al., 2016; Wu et al., 20171, significant limita-
tions exist in their solutions: (i) they cannot handle the sce-
narios where dynamic temporal dependencies exist in the dis-
tributions of anomalies. (ii) They modeled the time-ordered
anomaly sequence without differentiating the importance of
past anomaly occurrences. To address those limitations, this
work develops a new end-to-end prediction framework with
the aim of modeling interactions between different dimen-
sions from the urban anomaly data.

Time-stamped Data Modeling. Our work is related to the
literature that focus on modeling time-stamped data [Shuai et
al.,2017; Huang et al., 2018; Liu et al., 2016; Hu et al., 2017,
Huang et al., 2019; Zhang et al., 2019]. Recent research ef-
forts focus on applying recurrent neural network architectures
for sequence modeling. Some example architectures include
text parsing [Xiao et al., 20171, scene segmentation [Shuai et
al., 2017] and location prediction [Huang et al., 2017] and
event forecasting [Hu et al., 2017]. Different from the pro-
posed methods, we present a new hierarchical attention-based
neural network architecture to capture the dynamic patterns
across time slots in chronological anomaly sequences and im-
plicit interactions in multi-dimensional urban anomaly data.

6 Conclusion

In this work, we explored the neural network architectures
to study the urban anomaly prediction problem by develop-
ing a new framework Cross-Interaction Hierarchical Atten-
tion Network (CHAT), to explicitly model the relation struc-
tures corresponding to different perspectives. Particularly,
we first propose to capture the time-evolving dependencies in
anomaly sequence with a bidirectional recurrent framework,
so as to incorporate spatial and temporal context signals to
enrich latent feature representations. Then, we design our
method to carefully account for relations between regions,
categories and time slots. We evaluate our new method on
the real-world spatial-temporal dataset. The results showed
that our scheme outperforms state-of-the-art baselines from
different aspects. In future, a time-aware prediction model
is needed to better handle streaming anomaly data and infer
model parameters in a timely manner. In addition, it is also in-
teresting to apply our CHAT method to other spatial-temporal
learning applications with various urban urban sensing data.
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