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Abstract

This paper presents CORTA, a software agent
that designs personalized rehabilitation programs
for homeless youth suffering from opioid addic-
tion. Many rehabilitation centers treat opioid ad-
diction in homeless youth by prescribing rehabili-
tation programs which are tailored to the underly-
ing causes of addiction. To date, rehabilitation cen-
ters have relied on ad-hoc assessments and unprin-
cipled heuristics to deliver rehabilitation programs
to homeless youth suffering from opioid addiction,
which greatly undermines the effectiveness of the
delivered programs. CORTA addresses these chal-
lenges via three novel contributions. First, CORTA
utilizes a first-of-its-kind real-world dataset col-
lected from ~1400 homeless youth to build causal
inference models which predict the likelihood of
opioid addiction among these youth. Second, uti-
lizing counterfactual predictions generated by our
causal inference models, CORTA solves novel op-
timization formulations to assign appropriate reha-
bilitation programs to the correct set of homeless
youth in order to minimize the expected number
of homeless youth suffering from opioid addiction.
Third, we provide a rigorous experimental analy-
sis of CORTA along different dimensions, e.g., im-
portance of causal modeling, importance of opti-
mization, and impact of incorporating fairness con-
siderations, etc. Our simulation results show that
CORTA outperforms baselines by ~110% in min-
imizing the number of homeless youth suffering
from opioid addiction.

1 Introduction

Opioid addiction is a chronic disease which is characterized
by a compulsive urge to use opioid drugs (even when they are
no longer required medically), and it can cause devastating
social, economic and health problems. The United States is
in the midst of an opioid overdose epidemic (or “opioid cri-
sis”’), with ~2.1 million cases reported in 2017 alone, lead-
ing to 47,600 deaths [CDC, 2018]. In particular, opioid ad-
diction is highly prevalent among homeless youth, who of-
ten choose opioid drugs over other recreational drugs (e.g.,
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methamphetamine, cocaine) as opioids are far cheaper and
relatively easier to obtain [Fischer ef al., 2006]. In fact, pre-
vious studies show that the rates of opioid addiction among
homeless youth are 7X higher than the general youth popula-
tion [Hadland et al., 2014]. Thus, any attempt at tackling the
“opioid crisis” crucially depends on our success at minimiz-
ing rates of opioid addiction among homeless youth.

To tackle this problem, rehabilitation centers are tasked
with prescribing and implementing COR-12 rehabilitation
programs for addicted homeless youth, which represent the
most commonly used method of treatment for opioid addic-
tion [Hazelden, 2013]. In order to be effective, it is critical
for COR-12 programs to be tailored to the needs of each pa-
tient, based on an evaluation of the underlying causative is-
sue/problem that “caused” the opioid addiction. Therefore,
in addition to prescribing long-term medication for treating
addiction, these rehabilitation programs crucially include be-
havioral counseling and evaluation/treatment for the underly-
ing causative issue/problem. For example, if poor financial
condition (or unstable mental health) is the underlying rea-
son behind the youth’s opioid addiction, then career counsel-
ing (or psychiatric care) can be added into their rehabilitation
plan. Table 1 shows several potential issues (e.g., poor men-
tal health, low education levels, etc.) that commonly have a
causative effect on opioid addiction among homeless youth.

Unfortunately, rehabilitation centers face several chal-
lenges in their work. First, it is very difficult for health
workers at rehabilitation centers to uncover causal associa-
tions between potential issues/problems faced by a homeless
youth and opioid addiction. Thus, while rehabilitation cen-
ters do deliver customized rehabilitation programs, they de-
termine the causative issue/problem for each homeless youth
in an ad-hoc manner, and there is little evidence to support the
accuracy of their decision making. Second, most rehabilita-
tion centers operate under manpower constraints (i.e., limited
number of health workers) due to which strategic assignment
of their limited resources to the correct set of homeless youth
is critical, yet most centers do this assignment in an unprinci-
pled manner, which leads to gross inefficiencies (we validate
this in our experiments). Finally, in sensitive domains impact-
ing life/death (like the ones that motivate this work), rehabil-
itation centers need to ensure that their decision making does
not discriminate among people with respect to protected or
sensitive characteristics such as race, ethnicity, disability, etc.
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Thus, these challenges significantly limit the effectiveness of
the centers rehabilitation efforts.

In this paper, we address these challenges by proposing
CORTA (Comprehensive Opioid Response Tool Driven by
Artificial Intelligence), a novel software agent which opti-
mizes the delivery of opioid rehabilitation services to home-
less youth. CORTA collects data about opioid usage be-
haviors of homeless youth and uses that data to train high-
dimensional causal inference models which can predict sus-
ceptibility of homeless youth to opioid addiction. CORTA
specifically trains causal inference models due to the afore-
mentioned need to uncover underlying reasons behind opi-
oid addiction of homeless youth. Finally, using counterfac-
tual estimates derived from these causal inference models,
CORTA solves novel Integer Linear Program (ILP) formula-
tions to determine the optimal assignment of homeless youth
to the correct rehabilitation programs. CORTA’s ILP formu-
lation finds such optimal assignments by minimizing the ex-
pected number of homeless youth suffering from opioid ad-
diction, while respecting fairness and limited capacity con-
straints faced by rehabilitation centers. Our simulation re-
sults show that CORTA improves upon existing state-of-the-
art by resulting in ~110% fewer homeless youth suffering
from opioid addiction, and is robust to handling fairness con-
siderations.

Related Work To the best of our knowledge, there is
no prior work on using Artificial Intelligence (AI) tech-
niques to minimize the likelihood of opioid (or any other
drug) addiction among homeless youth. However, there has
been a lot of recent interest in developing Al solutions for
different problems faced by the homeless youth commu-
nity. This line of work started with [Yadav er al., 2016;
Wilder et al., 2017; Yadav et al., 2015; Yadav et al., 20171,
who proposed and deployed Al algorithms for influence max-
imization to raise awareness about HIV prevention among
homeless youth. Next, [Rahmattalabi et al., 2019a] pro-
posed algorithmic interventions on friendship based social
networks of homeless youth to minimize substance abuse in
this population. Similarly, [Rahmattalabi et al., 2019b] pro-
posed social network based interventions for suicide preven-
tion among homeless youth. However, collecting accurate
social network data for homeless youth is very difficult, due
to which their approach may not always be applicable in the
real-world. Finally, [Chan er al., 2018; Azizi ef al., 2018;
Kube et al., 2019] proposed methods to assign different
homeless services to homeless youth in order to minimize
their probability of re-entry into homelessness.

2 Real World Dataset

CORTA was used to collect a first-of-its-kind dataset from
~1400 homeless youth about their educational background,
exposure to gang violence, mental health history, STI infec-
tion status, etc., along with their opioid misuse history. Using
this data, CORTA builds causal inference models to predict
likelihood of opioid addiction in homeless youth. These mod-
els allow CORTA to generate counterfactual estimates which
are used inside novel ILP formulations which provide optimal
assignment of rehabilitation programs to homeless youth. We
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now describe the generated real-world dataset in detail.

Data Collection The dataset was collected by surveying
a total of 1426 homeless youth in the United States. Each
homeless youth was asked to undertake a computer based sur-
vey questionnaire in which they were asked about their opioid
use behaviors, i.e., they were asked whether they suffer from
opioid addiction or not. In addition, each homeless youth
was asked to report his/her sociodemographic characteristics
(age, gender, ethnicity, sexual orientation, etc.), psychologi-
cal characteristics (which evaluate their mental health), street
victimization experiences (physical/sexual abuse and expo-
sure to gang violence), and their sexual risk behaviors (e.g.,
their opinions about unprotected sex, their awareness about
different STTs, and best practices). All procedures and data
collection methods used in CORTA’s data collection were
reviewed and approved by an Institutional Review Board.
Please refer to [Barman-Adhikari et al., 2019] for more de-
tails on the data collection procedure.

Data Pre-Processing The data described above could not
be used as-is with Machine Learning (ML) algorithms be-
cause of two issues. First, the collected data had lots of
missing entries for several features, as homeless youth could
choose to not answer survey questions that made them feel
uncomfortable. Second, it is necessary to identify exogenous
features in the data, as only these exogenous features can
potentially be modified via targeted rehabilitation programs.
Thus, while there could be other endogenous causative issues
for opioid addiction, CORTA only focuses on modifying ex-
ogenous causative issues (or features).

After data collection, the raw dataset contained 1426 dat-
apoints (one for each homeless youth). Each datapoint con-
tained 212 features and a single binary label which denotes
whether the homeless youth suffers from opioid addiction
(1=yes) or not (0=no). Finally, CORTA uses MICE [Azur
et al., 2011], a state-of-the-art data imputation algorithm to
infer missing feature values in this dataset.

In addition, we identify nine exogenous features in our
dataset, each of which could represent a potential is-
sue/problem that causes opioid addiction among homeless
youth (and can be treated via rehabilitation programs). All
of them were categorical in nature. For ease of exposition,
we collapsed these nine categorical features into binary fea-
tures using simple thresholding rules. Table 1 shows a list
of these nine exogenous binary features in our dataset. At a
high level, CORTA’s goal is to find an optimal many-to-one
matching between homeless youth and these exogenous fea-
tures. We can then create custom rehabilitation programs for
each homeless youth based on the matched exogenous feature
in the optimal matching solution, i.e., if a homeless youth is
matched with “Mental Health Condition” in the optimal so-
lution, then psychiatric care is added into the youth’s custom
rehabilitation plan. CORTA finds this optimal matching solu-
tion by solving novel ILP formulations that we describe later
in the paper.

After pre-processing, our dataset contained 1426 data-
points, and each datapoint consisted of 212 columns and a bi-
nary label. Our final dataset suffered from a class-imbalance
problem, as 80% of the 1426 homeless youth did not suffer
from opioid addiction. On the other hand, only 20% of our
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ID Causative Issue

Explanation of Corresponding Binary Feature in Dataset

1 Atttitude towards LGBTQ+
2 Educational History
3 Current Schooling Status
4 Foster Care History
5 Condom Accessibility
6 Condom Usage Behavior
7 PrEP Awareness
8 Exposure to Street Violence
9 Mental Health Condition

Youth is pro-LGBTQ+ (1=yes) or anti-LGBTQ+ (0=no)
Youth has passed high-school (1=yes) or not (O=no)
Youth currently attends school (1=yes) or not (O=no)
Youth is in foster care (1=yes) or not (O=no)

Youth can access condoms before sex (1=yes) or not (0=no)

Youth uses condoms during sex (1=yes) or not (0=no)

Youth has awareness about PrEP HIV medication (1=yes) or not (O=no)
Youth has experienced street violence in the last month (1=yes) or not (0=no)
Youth suffers from a mental health disorder (1=yes) or not (O=no)

Table 1: Potential causative issues/problems that can be the underlying cause of opioid addiction in homeless youth. Each of these nine
causative issues corresponds to a binary exogenous feature in our homeless youth dataset. Note that while there could be other endogenous
causative issues for opioid addiction, we only focus on these nine exogenous features (i.e., features which can potentially be modified via

targeted rehabilitation programs) in our dataset.

homeless youth (datapoints) suffered from opioid addiction.

3 Causal Inference Models

Our next contribution is to build ML algorithms which can
predict the likelihood of each homeless youth (datapoint) suf-
fering from opioid addiction. These predictions can guide
rehabilitation centers in choosing appropriate rehabilitation
programs for at-risk homeless youth. Since these rehabilita-
tion programs need to be tailored to the individual needs of
each homeless youth (e.g., based on the underlying cause of
their opioid addiction), it is necessary to build causal infer-
ence models (as opposed to traditional ML models) which
can uncover hidden causal relationships between input fea-
tures and response variables. An additional benefit of causal
models is that they allow us to derive counterfactual estimates
for each datapoint, which can be used to formulate Integer
Linear Program (ILP) formulations for optimal rehabilitation
delivery (described in the next section).

We use state-of-the-art models Bayesian Additive Regres-
sion Trees (BART) [Chipman et al., 2010] and Honest Causal
Forests [Wager and Athey, 2018] that can successfully gener-
ate heterogeneous treatment effect estimates (or counterfac-
tual predictions) in addition to ATE (average treatment ef-
fects). Previous studies have shown that BART and Honest
Causal Forests outperform several baseline algorithms (e.g.,
propensity score, nearest neighbor matching algorithms, etc.)
for causal inference on complex observational data [Hill,
2011], hence we compare only among these two models.

Learning Results We compare the predictive performance
of BART and Causal Forest against two standard non-causal
ML models: (i) Lasso [Tibshirani, 1996]; and (ii) a C4.5 de-
cision tree [Quinlan, 2014]. In order to train these ML mod-
els, we divide our dataset into training/test sets using a ran-
dom 70:30 split. The hyper-parameters for all our models
are optimized using K-fold (KX = 10) cross-validation. The
trained models are then used to get probabilities of opioid ad-
diction for each homeless youth in the test set. Using these
predicted probabilities and the ground-truth labels, we plot
Receiver Operating Characteristic (ROC) curves to analyze
the predictive performance of the various models.

None of our models overfit the data. For example, train-

ing/test AUROC (Area under ROC Curve) was 0.7765/0.6981
for BART and 0.7834/0.6729 for Decision Trees. The key
takeaway is that all four models significantly outperform ran-
dom classifiers (AUROC = 0.5). Out of the two causal in-
ference models, BART (AUROC = 0.69) outperforms Causal
Forest (AUROC = 0.67), hence we use BART as our model
of choice inside CORTA. Also, this figure shows that BART,
Lasso and C4.5 achieve similar levels of predictive perfor-
mance, with AUROC values of 0.6981, 0.6839, and 0.6729
(respectively). While this suggests that standard ML models
(e.g., C4.5 decision trees, Lasso, etc.) suffice for this prob-
lem, we illustrate the limitations of using standard ML mod-
els for optimal rehabilitation delivery in our experiments.

Uncovering Causal Relationships For the larger enter-
prise proposed in this work to make sense, it is important that
different rehabilitation programs tailored according to differ-
ent “underlying causes of opioid addiction” actually lead to
different treatment effects on the homeless youth. For exam-
ple, if homeless youth A is enrolled in a rehabilitation pro-
gram R; tailored according to cause C (as compared to pro-
gram R, tailored for cause C5), and all other aspects of the
rehabilitation program (features) are left unchanged, then the
likelihood of opioid addiction for youth A should be different
when they are assigned in programs R; and Ry. Further, our
model should also allow us to estimate the heterogeneous im-
pact of a rehabilitation program (say R;) across the homeless
youth population (characterized by some features w that we
explain in Section 4). Recall that Table 1 shows nine exoge-
nous features present in our dataset, each of which represents
a possible “underlying cause of opioid addiction”. Accord-
ingly, we assume that we have nine different rehabilitation
programs. Next, we try to uncover causal relationships be-
tween these nine exogenous features in our dataset and the
binary target variable (i.e., whether homeless youth suffers
from opioid addiction or not). These uncovered causal rela-
tionships can be used by rehabilitation centers to select their
key decision variable, i.e., selecting the “underlying cause of
opioid addiction” in order to customize the rehabilitation pro-
gram of each homeless youth.

Since our observational data comes by surveying homeless
youth, it is susceptible to measurement errors in treatment as-
signments. Hence, differentiating between the efficacy of all
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Figure 1: Pairwise Treatment Effects

rehabilitation programs together could amplify the bias (due
to measurement endogeneity) and lead to misleading infer-
ences. Thus, to compare the effects of different programs, we
propose a novel pair-wise four-step identification strategy: (i)
We compare these nine rehabilitation programs by doing pair-
wise inference, i.e., we look at differential treatment effects
between pairs of rehabilitation programs (as opposed to con-
sidering heterogeneity of treatments in all nine rehabilitation
programs at once). For each of the (g) program pairs, we
only keep the datapoints (from our full dataset) correspond-
ing to homeless youth assigned to only one (or both) of these
two programs (in the pair) and remove the remaining data-
points. We train a BART model based on this pruned dataset;
(ii) Next, we use BART to approximate the counterfactual
distribution of opioid usage based on this model for both the
programs (i.e., estimate the heterogeneous treatment effect of
both programs). At the end of this process, we have two coun-
terfactual distributions, one for each rehabilitation program in
the pair. (iii) We then conduct ¢ — test across these two distri-
butions to find statistically different treatment effects for our
two programs. First, we compute the difference across the
treatment effects of the two programs (by computing a dif-
ference distribution that captures the difference between the
two counterfactual distributions). Then, we take the mean and
2.5% and 97.5% quantiles of the difference distribution and
reject the null (i.e., distributions are the same) if 95% cred-
ible region includes 0. (iv) Finally, this pairwise procedure
is repeated for all (g) pairs of rehabilitation program types in
order to differentiate the effect of each rehabilitation program
on homeless youths’ opioid usage.

Out of (}) = 36 program pairs, we observe statistically
significant (p = 0.05) population-wide treatment effects in
18 pairs. All these heterogenous treatment pairs are repre-
sented as a graph in Figure 1. There are nine nodes in Figure
1, one for each rehabilitation program. The 18 edges repre-
sent program pairs which exhibit population-wide treatment
effects. For instance, we find that Programs 1 (Attitude to-
wards LGBTQ+) and 4 (Foster Care History) do not have
statistically different efficacy and hence, are represented by
a missing edge between them. Due to lack of space, we move
the actual 95% credible intervals for these 18 program pairs
to the appendix'. We find that Program 1 (Attitude towards
LGBTQ+) has a statistically stronger efficacy on opioid usage
over the other six programs that it is connected to in Figure 1.

"http://amulyayadav.com/Papers/ijcai2020-appendix.pdf

4 Optimization of Rehabilitation Delivery

Rehabilitation centers have limited manpower to conduct
their different rehabilitation programs, e.g., only a limited
number of homeless youth can receive career counseling as
part of their rehabilitation program, as the rehabilitation cen-
ter has a limited number of career counselors. Thus, it is
crucial for centers to select the right set of homeless youth to
rehabilitate, and provide them with the correct rehabilitation
program (based on an assessment of the underlying cause of
their opioid addiction) for efficient utilization of their limited
resources. As a result, CORTA looks at two operational ob-
jectives that rehabilitation centers care about. First, CORTA
tries to maximize the number of youth suffering from opioid
addiction (in the ground-truth test set) that are chosen by the
center for rehabilitation, and are assigned to the correct re-
habilitation program (as per counterfactual estimation). Sec-
ond, CORTA also tries to minimize wastage of centers lim-
ited resources. To achieve these objectives, CORTA formu-
lates the problem of optimal rehabilitation program delivery
among homeless youth as an Integer Linear Program (ILP).

4.1 ILP Formulation

For clarity, we denote decision variables and constants in
CORTA’s ILP formulation with bold and plain symbols, re-
spectively. Let IV denote the total number of homeless youth
(i.e., number of datapoints in our test set). Let M denote the
number of available rehabilitation programs (we use M = 9
based on the nine exogenous features in our dataset). Let
C;Vj € {1, M} denote the maximum capacity of rehabili-
tation program j, i.e., C; denotes the maximum number of
homeless youth that can be rehabilitated in program j. Let p?
denote the “base” probability of homeless youth ¢ suffering
from opioid addiction (i.e., probability of addiction without
the effect of any rehabilitation). Let p;; denote the counter-
factual probability of homeless youth ¢ suffering from opi-
oid addiction if they are assigned to rehabilitation program
j. Note that p{ and p;; represent the output from running
CORTA’s trained BART model on the test set. Let ;; be a
binary decision variable that denotes whether homeless youth
¢ is “rehabilitated” in program j (x;; = 1) or not (x;; = 0).
Let w; be a binary decision variable that denotes whether
homeless youth ¢ is chosen for rehabilitation by the center
(w; = 1) or not (w; = 0).

Finally, let y;; be a binary constant which denotes if home-
less youth ¢ already “enjoys” the effects of rehabilitation pro-
gram j (y;; = 1) or not (y;; = 0), before the center chooses
to rehabilitate that youth. Thus, y;; = 1 denotes that the reha-
bilitation center does not need to assign homeless youth % to
program j, as youth 7 already “enjoys” the effects of program
7. For example, let rehabilitation program j be tailored to
people suffering from mental depression. Thus, the direct ef-
fect of assigning program j to homeless youth ¢ is that he/she
is no longer depressed, hence the value of feature ID 9 (Table
1) for youth ¢ is set to 0. However, if youth ¢ is not depressed
to begin with (i.e., feature ID 9 for youth ¢ is already set to 0
in the test dataset), then he/she is said to already “enjoy” the
effect of intervention j. In this case, we set y;; = 1, otherwise
yi; = 0. The ILP formulation is given as follows:
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where the objective function minimizes the expected num-
ber of homeless youth suffering from opioid addiction. Note
that this ILP is equivalent to minimal weighted assignment
subject to two different capacity constraints, which is an NP-
Hard problem (through a trivial reduction from the knapsack
problem). In practice, our ILP runs quickly — the largest ex-
periments reported in Section 5 look less than one minute to
solve. We solve this ILP using Gurobi 8.1 to find optimal
assignments of rehabilitation programs to homeless youth.

S Experimental Evaluation

We evaluate the effectiveness of CORTA in a variety of set-
tings. All our experiments were run on a 2.2 GHz Intel Core
17 machine having 16 GB of RAM. All experiments are av-
eraged over 30 runs. All our experiments assume equal ca-
pacities for each rehabilitation program, i.e., C; = C'Vi €
{1,M}. We use two metrics of comparison in this sec-
tion: (i) number of opioid addicts in the test set who have
been chosen for rehabilitation, and are assigned to the cor-
rect rehabilitation program (as per counterfactual estimation);
and (ii) percentage of unused capacity of rehabilitation cen-
ters (or wastage). Throughout this section, the output from
our trained BART model (i.e., base probabilites (p?) and the
counterfactual probabilities (p;;)) is assumed to be the ground
truth probabilistic model of opioid addiction among home-
less youth, and this is used to compute the expected number
of opioid addicts in the population. This is because actual
ground-truth heterogenous treatment effects of different re-
habilitation programs on the likelihood of opioid addiction
in homeless youth is not available in our dataset. Finally,
all experiments are statistically significant under bootstrap-t
(a = 0.05).

We present results in three stages. First, we present results
to illustrate the importance of causal modeling in CORTA,
i.e., how do causal models improve over standard non-causal
ML models. Second, we present results to illustrate the im-
portance of ILP optimization in CORTA, i.e., how would our
results differ if we used causal models, but did not use explicit
ILP formulations to assign rehabilitation programs to home-
less youth. Finally, we present results to show the impact of
fairness constraints on the ILP optimization.
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Baselines We propose several non-trivial heuristic base-
lines in this section. In order to evaluate the importance of
causal modeling in our approach, we use the following heuris-
tic method to assign rehabilitation programs to homeless
youth: (i) we train a standard non-causal C4.5 decision tree
on our training data, which outputs probabilities of homeless
youth suffering from opioid addiction (for each youth); (ii)
Let K denote the total capacity available to the rehabilitation

M
center, i.e., »_ C; = K. We select the homeless youth with
j=1

the top- K probabilities of suffering from opioid addiction (as
per the output of the C4.5 decision tree) for rehabilitation; and
(iii) we select the rehabilitation programs for these K home-
less youth. Since C4.5 decision trees do not provide coun-
terfactual estimates, there is no way to choose appropriate
rehabilitation programs for these K chosen homeless youth.
Thus, we evaluate the best (C4.5-Best) and worst-case (C4.5-
Worst) performance on our metrics with the K -chosen home-
less youth. In C4.5-Best (C4.5-Worst), we select the reha-
bilitation program (for each homeless youth) with minimum
(maximum) counterfactual probability as per the output of
BART (we use counterfactual probabilities output by BART
since we have no way to derive ground-truth counterfactual
estimates). Note that choosing rehabilitation programs with
minimum (maximum) counterfactual probabilities minimizes
(maximizes) the ILP’s objective function, hence these heuris-
tics represent the best-case (worst-case) performance achiev-
able with C4.5 decision trees.

In order to evaluate the importance of ILP optimization in
our approach, we use two heuristic baselines. In both of our
baselines, we assume that we have access to the output from
CORTA’s BART model in deciding assignments of programs
to youth, however, we replace our explicit ILP formulation
with heuristic assignments. For our first baseline (BART-
Min), we select the homeless youth with the top-K proba-
bilities of suffering from opioid addiction (as per the output
of the BART model) for rehabilitation, and for each of these
youth, we select the rehabilitation program with minimum
counterfactual probability. For our second baseline (BART-
Max Difference), we select the K-homeless youth who hold
the greatest potential for “improvement”, i.e., youth whose
probabilities of suffering from opioid addiction can be de-
creased by the greatest amount (as a result of rehabilitating
them in some program). More formally, we sort homeless

youth on the basis of <p? — min; pij) and pick the top-K

youth from this sorted list, and assign rehabilitation programs
to these K youth accordingly.

Importance of Causal Modeling We evaluate the perfor-
mance of CORTA against C4.5-Best and C4.5-Worst in Fig-
ures 2(a), 2(b). The X-axis in these figures shows increas-
ing capacity per rehabilitation program. The Y-axis in Figure
2(a) shows the number of opioid addicts (i.e., ground-truth
label in test set is 1) who have been chosen for rehabilitation
by the different assignment strategies. The Y-axis in Figure
2(b) shows the percentage of centers capacity unused by as-
signment of programs to youth. For example, when the ca-
pacity per intervention is 10, CORTA rehabilitated 27 opioid
addicts and resulted in a wastage of 10% of the overall ca-
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Figure 3: Importance of ILP Optimization

pacity K. Figure 2(a) shows that CORTA significantly out-
performs C4.5-Best and C4.5-Worst by rehabilitating 110%
more opioid addicts (on average). Figure 2(b) shows that
CORTA leads to minimal (~4%) resource wastage as com-
pared to C4.5-Best and C4.5-Worst (~66% wastage). Thus,
Figures 2(a), 2(b) establish the importance of causal model-
ing in our approach, as it leads to significantly more (~2X)
opioid addicts being rehabilitated while wasting a small frac-
tion of resources in comparison (4% vs 66%).

Importance of Optimization Next, Figure 3(a) and 3(b)
evaluate the performance of CORTA against BART-Min and
BART-Max Difference. The X and Y-axes in Figures 3(a), 3(b)
are defined as before. Figure 3(a) shows that CORTA signif-
icantly outperforms BART-Min and BART-Max Difference by
rehabilitating ~390% more opioid addicts (on average). Fig-
ure 3(b) shows that CORTA leads to minimal (~3%) resource
wastage as compared to BART-Min and BART-Max Difference
(~75% wastage). Thus, Figures 2(a), 2(b) and Figures 3(a),
3(b) establish the combined importance of causal modeling
and ILP optimization in CORTA; both components are essen-
tial to achieving desired outcomes.

Impact of Fairness Considerations Each homeless youth
in our dataset belongs to one or more protected (minority)
categories. For example, homeless youth may belong to
LGBTQ+, non-white, and/or female categories, etc. In real-
world domains involving low-resource communities such as
homeless youth, it is important to ensure that Al-driven algo-
rithmic assignments of rehabilitation programs to homeless
youth do not unfairly discriminate against any protected mi-
norities in the population. CORTA’s ILP framework allows us
to explicitly mitigate against such concerns with the inclusion
of proportional fairness constraints [Tsang er al., 2019].

Let L be the total number of different protected categories
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Figure 4: Incorporating Fairness Constraints

in our population. Let ¢; be a binary constant which denotes
whether homeless youth ¢ belongs to protected category [ (we
get ¢;; values from our dataset). Let oy € [0, 1] denote the
fraction of homeless youth in our dataset that belong to class
1 €[1, L] - atleast an ¢ fraction of the total capacity K must
be chosen from protected category [ in the output solution.
Then, we can add explicit fairness constraints in CORTA’s
ILP framework as follows:

N M
ZcilZmijzalKVlel,...7L (1)
=1 j=1

Figure 4(a) and 4(b) show the impact of adding fairness
constraints on CORTA’s solution quality (under varying ca-
pacities per intervention). To generate these figures, we re-
strict our attention to three protected minorities: gender, sex-
ual orientation and race. The X and Y-axes in Figures 4(a),
4(b) are defined as before. These figures show that incorpo-
rating fairness constraints does not impact CORTA’s effec-
tiveness. In Figure 4(a), we observe minimal differences in
the number of opioid addicts in rehabilitation between solu-
tions with and without fairness constraints for all values of ca-
pacity per intervention. Further, Figure 4(b) shows no differ-
ence in resource wastage between solutions with and without
fairness constraints regardless of capacity per intervention.

Surprisingly, this suggests that the “price of fairness” in
the optimal rehabilitation delivery problem is negligible, i.e.,
incorporating fairness constraints in the problem do not lead
to solutions with reduced effectiveness (at least until these
constraints are satisfiable). Therefore, high-quality solutions
do not need to be sacrificed in order to achieve fairness.

6 Conclusion

This paper proposes CORTA, an Al agent to assign appro-
priate rehabilitation programs to the correct set of homeless
youth in order to minimize the expected number of homeless
youth suffering from opioid addiction. We develop causal in-
ference models that can predict the likelihood of opioid addic-
tion among homeless youth. These causal inference models
generate counterfactual treatment estimates, which are used
to formulate novel ILP formulations for finding optimal as-
signments of rehabilitation programs to homeless youth. Our
results show that CORTA outperforms non-trivial baselines
by rehabilitating 110% more homeless youth suffering from
opioid addiction, while ensuring minimal resource wastage.
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