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Abstract

The increasing amount of urban data enables us to
investigate urban dynamics, assist urban planning,
and, eventually, make our cities more livable and
sustainable. In this paper, we focus on learning
an embedding space from urban data for urban re-
gions. For the first time, we propose a multi-view
joint learning model to learn comprehensive and
representative urban region embeddings. We first
model different types of region correlations based
on both human mobility and inherent region prop-
erties. Then, we apply a graph attention mechanism
in learning region representations from each view
of the built correlations. Moreover, we introduce
a joint learning module that boosts the region em-
bedding learning by sharing cross-view informa-
tion and fuses multi-view embeddings by learning
adaptive weights. Finally, we exploit the learned
embeddings in the downstream applications of land
usage classification and crime prediction in urban
areas with real-world data. Extensive experiment
results demonstrate that by exploiting our proposed
joint learning model, the performance is improved
by a large margin on both tasks compared with the
state-of-the-art methods.

1 Introduction

The city is composed of various kinds of regions, where peo-
ple work, study, entertain and live. Studying quantitative rep-
resentations of urban regions can help us better explore the
correlations of urban properties and provide valuable insights
into the structures and dynamics of cities. Also, such repre-
sentations are of great value to downstream applications such
as land usage classification [Yao et al., 2018], crime predic-
tion [Huang et al., 2018], estate price estimation, and so on.
In recent years, with the advent of mobile sensing tech-
nologies, the increasing amount of urban data, such as hu-
man trajectories, vehicle traffic, Point-of-Interests (Pols), and
check-in records, are being collected in the digital form from
diverse sources. Such various urban data reveal the configura-
tions and connections of regions from multi-view and provide
great opportunities for jointly learning the representations of
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urban regions, i.e., mapping the regions into distributed and
low-dimensional vectors in a latent embedding space.

Human mobility flow data, such as human trajectories and
vehicle traffic, have been widely used to learn the represen-
tations of regions [Pan et al., 2012; Zheng et al., 2014; Yao
et al., 2018]. To explore region correlations hidden in human
mobility, scholars have made great efforts on various meth-
ods ranging from matrix decomposition [Pan et al., 2012;
Zheng et al., 2014] to word and network embeddings [Wang
and Li, 2017; Zhang et al., 2017; Yao et al., 2018]. However,
the above models are single-view based, i.e., only consider-
ing mobility flow data. As single-view based models cannot
explore the power of multi-type urban data, this inherent flaw
limits their performance.

Several previous studies have also tried to combine region
attributes with human mobility data to characterize region
representations [Zhang et al., 2019; Fu et al., 2019]. How-
ever, even multi-view data are used, there are still two short-
comings in these works. First, different views are combined
simply and equally. For example, [Fu et al., 2019] considered
both human mobility connectivity and geographic distance to
construct Pol-Pol networks for each region. However, the
correlations from the two views are simply concatenated as a
feature of the region. Similarly, in [Zhang et al., 2019] the
region representations from different views are also directly
stacked together as a comprehensive feature. In these ways,
information from different views contributes equally to the
final representation, which is not the optimal combination in
practice. Moreover, inter-view cooperation is not considered
in these works. In the urban environment, region relations
from different views are highly correlated. For example, the
Pol types of a region usually imply the region’s human mobil-
ity patterns, such as the time of traffic peak hours. Thus, it is
important to share and propagate information between differ-
ent views in the learning process, which was not considered
in existing works. As a result, there is a compelling need to
develop an effective solution to learn comprehensive region
embeddings jointly from multi-view urban data.

In this paper, we aim to propose a joint representation
learning framework for region embedding by leveraging both
human mobility and inherent region properties. We design a
graph neural networks based representation learning frame-
work using homogeneous graph structures to represent both
human mobility and inherent region properties. Compared
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with the traditional neural networks such as multilayer per-
ceptron(MLP) used in existing works [Fu ef al., 20191, graph
neural networks can better capture the underlying region rela-
tionships and produce more robust region embeddings. Also,
instead of simple graph reconstruction, we designed two dif-
ferent types of tasks to train our model, which make sure that
human mobility interactions and region attribute information
are well reserved in the learned region representations. Fi-
nally, we design a joint learning module to cooperate and
fuse multi-view data in a deep cooperation manner. We first
apply a self-attention layer to enable cross-view information
sharing, which extracts useful global information from other
views to boost the representation learning process of every
single view. Moreover, we propose to fuse multi-view em-
beddings with adaptive weights and engage the fused embed-
dings into multiple tasks to produce more comprehensive re-
gion representations.

Overall, the contributions of this paper can be summarized
as follows:

e We study the urban region representation problem by
exploring region correlations in the urban environment
from multiple views, including human mobility and in-
herent region properties.

e We propose a joint learning model to incorporate multi-
view region correlations to learn comprehensive region
embeddings. Specifically, we design a cross-view infor-
mation sharing layer to boost the learning of individual
view and a fusion layer to effectively combine multiple
views.

e We conduct extensive experiments to evaluate our
method based on real-world data. The results demon-
strate that our method consistently outperforms state-of-
the-art baselines by over 20% in land usage classifica-
tion and over 10% in crime prediction tasks in terms of
various metrics.

In the rest of this paper, we first illustrate some preliminary
definitions and define the problem. Then, we introduce the
proposed model in details and show the experiment settings
and results. At last, we introduce related work and conclude
our paper.

2 Preliminaries and Problem Statement

Urban human mobility We define urban human mobility
as a set of trip records that occur in urban areas. We denote a
human mobility dataset as M and each entity in M is a tuple
consisted of source and destination of the trip:

M = {m07m17 cee 7m|M|}a m = (7‘3,7‘d)7vm S M,
where r; is the start region and r is the destination region.

Urban region attributes The region attributes are the in-
herent social and geographic features of urban regions. A
certain type of attribute of regions can be denoted as A as
follows:
A= {61,62,...,(_1'71},66 RF7VE:€ A,

where a; is the corresponding feature of i-th region and F’
is the number of dimensions of that feature. In our work,
multiple region attributes, like Pols and check-in records, are
considered.
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Urban region representation learning Give the human
mobility M and the set of urban region attributes .4s, the
goal of urban region representation learning is to learn a dis-
tributed and low dimensional embedding of each urban re-
gion, which is denoted as &,

5:{51762,-.-,671},56 Rd,V(?E 5,

where €; is the embedding of i-th region, and d is the embed-
ding size. In the d-dimension embedding space, the region
correlations revealed by both the human mobility and region
attributes are preserved.

3 Methodology

Figure 1 shows the framework of our proposed multi-view
joint representation learning framework. First, we introduce
the modeling of multi-view correlations between urban re-
gions from both human mobility and region attributes. We
then describe our base model and learning objectives. Finally,
we present an effective multi-view joint learning module.

Multi-view region
correlations

Joint learning

Human Mobility .‘\/< module
V7, - 7\ — [ ]
—" —
GAT > _, Learning
Layers — Objectives
*
0 -
-

Figure 1: Framework of the proposed multi-view joint representa-
tion learning for region embedding.

3.1 Multi-view Correlation Modeling

Urban regions are related to each other from multiple aspects.
For example, in terms of human mobility activities, like com-
muting, remote regions may form a community that serves as
a daily life circle in the urban environment. Alternatively,
according to the inherent attributes of regions such as Pol
distribution, adjacent regions show high correlations due to
similar functionalities. To learn robust and comprehensive
representations of urban regions, we have to consider region
correlations from multiple views jointly. In our method, we
construct four types of region correlations based on human
mobility and region attributes.

Region Correlations Based on Human Mobility

Recent studies [Wang and Li, 2017; Yao er al., 2018] have
shown that human mobility reveals important underlying re-
gion correlations. Regions that receive human flows from the
same sources or send human flows to the same targets usually
play similar roles and are considered close to each other from
the human mobility view [Yao et al., 2018]. In our method,
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we define the source and destination context of a region based
on inter-region interactions. Given a set of human mobility
M, the interaction weight from region r; to region r; is com-
puted as: wyt = [{(rs,7q) € M|rs = r;,r4 = r;}|, where
|.| counts the set size. Then the source and destination con-
texts of a region r; are described by distributions p;(r|r;) and
pa(r|r;) as follows:

T

T

w;t
ps(rlri) = Wa pa(r|ri) = W @)

Based on the source and destination context of each region,
we define two types of correlations as follows,

C;J = Sim(pS(r‘Ti)7ps(T|rj))a 2
Ci = sim(pa(rlrs), pa(r|r;)). 3)

where sim(-) denotes the cosine similarity, C/ is the source
correlation, Czlj represents the destination correlation.

Region Correlations Based on Region Attributes

The inherent region attritbutes are the meta-knowledge that
describes the geographic and social nature of a region. Given
a type of attributes of n regions A = {@;}?_,, the correspond-
ing region correlations are computed as

CY = sim(;, d;). 4
‘We consider two attributes as follows:

e Pol attributes: The Pol attributes of a region refer to
the importance of each type of Pols within the region.
Specifically, we first map Pols to the located region.
Then we compute the importance of each type of Pols
in a region using TF-IDF model by considering a Pol as
word and a region as a document.

e Check-in attributes: Check-in data are posted by users
who appear in a specific Pol. Different from Pol at-
tributes only describing the quantity of Pols, check-in
data takes human activities into account and reflects the
activeness of each Pol category. Similarly, we use TF-
IDF model to compute the importance of each type of
check-ins within a region as its check-in attribute.

From the Pol and check-in attributes of regions, we com-
pute the Pol correlation C,,; and check-in correlation Ccpy,
between regions as illustrated in equation (4).

3.2 Base Model

Now, we introduce the base model that learns region repre-
sentations using region correlations from single view. Gen-
erally, given the region correlation C from a single view, we
first construct a graph G(V, '), where V = {v;}_; denotes
n regions and N/ = {N;}?_; denotes the neighborhood of
each node. N; is defined as the set of k£ nearest neighbors
of v; in terms of correlation C. Following this procedure, we
construct graphs Gs, Gg, Gpoi and Gepy, based on region cor-
relations Cs, Cg, Cpoi and Cepy, respectively.

After the construction of the graph, we employ graph at-
tention network(GAT) [Veli¢kovié e al., 2017] to learn rep-
resentations of vertices. GAT applies attention mechanism

on graph-structured data. It updates the representation of a
vertex by propagating information to its neighbors, where the
weights of its neighbor vertices is learned by attention mech-
anism automatically. Formally, given the input vertex feature

h = {]_7:1,]_7:2, o Hn} .h; € R, a GAT layer updates the
vertex representations by following steps:

eij = exp (ReLU (—a” [Wﬁinwﬁj])) , )

exp (e4;
a;; = softmax; (e;5) = %7 (6)
kEN; i

f—i; =0 Z OtijWHj 5 (7)
JEN;

where W and & are learnable parameters, || is the concate-
nation operation. To enhance the performance, we apply
multi-head attention mechanism in each GAT layer as sug-
gested [VeliCkovi¢ er al., 2017]. In practice, we stack two
GAT layers together as a GAT block. We apply GAT blocks
on graphs G, Gg, Gpo; and Gpx and denote the output vertex
representations as £, £4, Epoi and E., Tespectively.

3.3 Joint Learning Module

The above base model merely learns region representations
based on single-view region correlations. In order to enable
cooperation among different views during learning process
and effectively fuse multi-view representations, we present a
joint learning module as shown in Figure 2. The proposed
framework consists of two parts. The first part enables in-
formation sharing across all views via a self attention layer.
The second part is a fusion layer that combines multi-view
representations by learning adaptive weights.

& )
&
Van) 2 ~
ki ¢ T
D
dd—a Ad— A l-a
L A" Av >
a a a
=R
t t t
[ Fusion Layer ][ Self Attention Layer ]
& &, &

Figure 2: The architecture of multi-view joint learning module, con-
sisting of a self-attention layer and a fusion layer.

Cross-view Information Sharing

Region correlations observed from multiple views are various
but highly related. Take human mobility correlations and Pol
correlations of regions as example. In the morning rush hours,
most people move from the regions with residence Pols to the
regions with business Pols, while in the evening rush hours
people move in the opposite direction. Such high correlations
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inspire us that incorporating information from multi-view can
enhance the learning process of each single view.

Based on the above intuition, we propose to employ the
self-attention mechanism [Vaswani et al., 2017] to propa-
gate knowledge across the representations of different views.
Given the representations from M different views as {&; €
R"*4}M . For each representation &;, we associate a key
matrix /&; € R™** and a query matrix Q; € R™** with it as
follows:

K; =&Wy, Qi =&W,. (®
For each view, we then propagate information among all
views as follows:

T M ) M
[Az]gl = softmax ({QZK’ } > , &= E A& (9)
i=1 i=1

Vk

In our case, 5’,» is considered as the relevant global information
for i-th view. To incorporate this information in the learning
process, we compute

El=a+(1-a)&, 0<a<l, (10)

where &/ is the representation for i-th view with global infor-
mation, and « is the weight of global information.

Multi-view Fusion

To adopt the learned region representations in various appli-
cations, a comprehensive region representation that preserves
multi-view correlations is needed. To fuse the multi-view rep-
resentations, we propose a fusion layer that learns adaptive
weights for different views as follows:

M
£=Y wi&, wi=0(EWy+by). (11)

where w; is the weight of i-th view, which is learned by a
single layer MLP network with the i-th embeddings as input.
In order to enable the learning of the multi-view fusion
layer, we engage &£ in the learning objective of each view.
Formally, we update the representation of each view as:

Ei=(&+&))2 (12)

By feeding the outputs of the base model into proposed joint
learning module, we obtain region embeddings &, £q4, Epoi
and E.px, on which we design various learning tasks.

3.4 Learning Objectives

To effectively training our model, we design two types of
tasks based on human mobility and region attributes, i.e.,
source and destination region prediction and region relation
reconstruction.

Source and destination prediction We aim to predict the
destination region given the source region or conversely based
on the region representations £ = {e’}" , and &4 =
{e’,}™_,. Given the source region r;, we model the distri-
bution of destination region r; as follow:

exp(el” e})
L (13)

Ds(rjlri) = —————F—
Zj exp(el” €})
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Correspondingly, we model the distribution of source region
r; for a given destination region r; as:

. exp(efiTej)
pd(Tj|7”i) = —{j] (14)
>_jexp(ey es)

Then given the human mobility dataset M which contains
real-world source and destination region pairs, the learning
objective function is defined as the negative log-likelihood of
predicted distributions. Formally, the objective function can
expressed as:

ﬁmob = Z

(ri,rj)EM

—log ps(rj]r:i) —log pa(rilry).  (15)

Region relations reconstruction To let the learned region
embeddings reserve the region similarity in terms of differ-
ent region attributes, we design the task to reconstruct region
correlations based on corresponding embeddings. Take Pol
attributes as example, the learning objective is defined based

on Cpo; and Epp; = {e?,; 11, as follow:

poi
iy i T
‘CPOi = Z(ijoz ~ Cpoi eg)oi)2’ (16)
i,J

Similarly, we define the learning objective L.py of check-in
attributes. In this way, the final learning objective is:

L= Emob + £poi + [/chk- (17)

4 Evaluation

We empirically evaluate our model with two important down-
stream applications: land usage classification and crime pre-
diction.

4.1 Experiment Settings

Data Description

We collect several real-world datasets of New York City from
NYC open data website!. The description of each dataset
is shown in Table 1. We apply taxi trip data as the human
mobility data and use Manhattan borough that divided into
180 regions as our studied area.

Dataset | Description

Boundaries of 180 regions split
by streets in Manhattan, New York.
Around 10 million taxi trip records
during one month in the studied area.
Around 20 thousand Pol locations of
13 categories in the studied area.
Over 100 thousand check-in locations of
over 200 fine-grained categories.
Around 40 thousand crime records
during one year in the studied area.

Census blocks

Taxi trips

Pol data

Check-in data

Crime data

Table 1: Data Description

' opendata.cityofnewyork.us
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Baseline Algorithms
We conduct experiments on following 8 baselines of 4 types:

I. Single view methods

e CHK: We merely use the check-in attribute of a region
as the region embedding.

e Pol: We directly use the Pol attributes of a region with
TF-IDF method as the region embedding.

II. Graph embedding methods

e GAE: We apply graph autoencoder(GAE) in [Kipf and
Welling, 2016] on the multi-view graphs of regions and
make the GAE of each view share the middle layer to
learn region embeddings.

e node2vec: We apply node2vec in [Grover and
Leskovec, 2016] on multi-view graphs of regions and
concatenate the embeddings of each view.

III. State-of-the-art methods

e HDGE: HDGE [Wang and Li, 2017] jointly learns re-
gion representations by path sampling on both traffic
flow graph and spatial graph.

e ZE-Mob: ZE-Mob [Yao et al., 2018] learns region em-
beddings by considering the co-currency relation of re-
gions in human mobility trips.

e MV-PN: [Fu er al., 2019] proposed to learn region em-
beddings with multi-view Pol network within the region.
We denote it as MV-PN.

IV. Variant of our method

e Ours(No-J): In this variant of our model, we disable
the joint learning module and assigning equal weights to
each view to fuse the multi-view embeddings.

e Ours(Mob): In this variant of our model, we train our
model only based on human mobility data.

In our experiments, the embedding sizes of CHK and Pol
are the number of check-in and Pol categories, respectively.
The embedding size of HDGE and ZE-Mob are set as 20
and 96 as suggested by the authors. The embedding sizes
of GAE, node2vec, MV-PN, our model and variants are set
as 96. Please refer to the released code” for details of the
implementations.

4.2 Land Usage Classification

In the task of land usage classification, we aim to cluster re-
gions into groups based on their embeddings using K-means.
The regions with the same land usage type are supposed to be
assigned to the same group. We use the district division by the
community boards [Berg, 2007] as ground truth. As shown in
Figure 3(a), the borough of Manhattan is divided into 12 dis-
tricts mainly based on the land usage. For example, district 1
is known as the central business district (CBD).

We evaluate the clustering results using Normalized Mu-
tual Information (NMI) and Adjusted Rand Index (ARI) fol-
lowing the settings in [Yao er al., 2018]. The results are
shown in Figure 4. From the results, we have the follow-
ing observations. i) The methods considering multi-view re-
gion correlations generally have better performance than the

*https://github.com/mingyangzhang/mv-region-embedding
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methods considering only single-view correlations, i.e., Pol
and CHK. However, a simple combination of multi-view re-
gion representations, such as GAE and node2vec, can not
fully exploit the multi-view information. i) Our method
outperforms all baseline methods by a large margin, which
reaches over 20% improvement in terms of NMI and over
50% improvement in terms of ARI compared with state of
the art methods. i) The simple combination of multi-view
information causes decline of the performance, referring to
Ours(Mob) vs. Ours(No-J). In contrast, the multi-view fu-
sion layer brings around 5% and 20% improvement in terms
of NMI and ARI compared with the base model, referring to
Ours vs. Ours(No-J).

To intuitively evaluate the clustering results, we visualized
the clustering results of five methods in Figure 3, where the
same color marks regions in the same cluster. We can observe
that the clusters based on our method best fit the real districts.
For example, for districts one and two, the boundaries drawn
by our method are very close to the real boundaries. The
above results show that the region embeddings learned by our
model can well represent the region functionalities, and our
method is able to effectively fuse multi-view information.

4.3 Crime Prediction

In this task, we predict the number of crime events in each
region for one year with the learned region embeddings. In
practice, we apply the Lasso regression model [Tibshirani,
1996] to conduct the prediction.

| MAE | RMSE | R?

CHK 102.28 | 141.11 | 0.089
Pol 94.71 129.01 | 0.239
GAE 96.55 | 133.10 | 0.189
node2vec 102.00 | 135.61 | 0.158
HDGE 72.65 95.36 | 0.584
ZE-Mob 101.98 | 132.16 | 0.200
MV-PN 9230 | 123.96 | 0.297
Ours(No-J) | 67.78 93.62 0.599
Ours(Mob) | 66.13 89.93 0.630
Ours 65.16 88.19 | 0.644

Improve | 103% | 7.5% | 10.3%

Table 2: Crime prediction errors and goodness of fit.

We use Mean Absolute Error (MAE), Root Mean Square
Error(RMSE) to measure the prediction errors, and the coef-
ficient of determination (R?) to measure the goodness of fit
of models. We select the value of the weight of /1 normal-
ization in the Lasso model for each method by grid search-
ing and compute all the metrics by K-Fold cross-validation,
where K=5. The results are shown in Table 2. From the
results, we can observe that our method outperforms all the
baselines by a large margin. As listed in the last row, our
model achieves over 10% improvement in terms of MAE and
R2, achieves 7.5% improvement in terms of RMSE. More-
over, the cross-view sharing mechanism brings considerable
improvements, referring to Our vs. Our(No-J). Another ob-
servation is that the simple combination of multi-view corre-
lations, i.e., node2vec, ZE-Mob, lead to worse performance



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

(a) Districts (b) Ours

(d) GAE l (e) HDGE (f) ZE-Mob

Figure 3: Districts in Manhattan and region clusters.
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Figure 4: Fitness between land usage clustering results and truth.

than some single view methods, i.e., Pol in this task. This
result shows that the simple combination of multi-view cor-
relations will lose some information from views that are im-
portant for crime prediction.

5 Related Work
5.1 Graph Embedding

Graph embedding aims to learn low-dimensional vectors to
represent vertices in graphs. A traditional approach for graph
embedding is based on the factorization of the adjacency ma-
trix, Laplacian matrix or other variants [Roweis and Saul,
2000; Belkin and Niyogi, 2002]. Inspired by word embed-
ding models, some other algorithms are proposed to learn ver-
tex embedding based on random walk [Perozzi et al., 2014;
Grover and Leskovec, 2016], or other neighborhood sam-
pling techniques [Tang er al., 2015]. More recently, many
graph embedding methods based on graph neural networks
arise [Abu-El-Haija er al., 2018] [Kipf and Welling, 2016]. In
our method, we use the graph attention networks [Velickovié
et al., 2017] as the base model to learn region embeddings
from a single view.

5.2 Multi-view Representation Learning

The techniques for learning representation from multi-view
information can be classified into two categories. The first
category learns representations in different views that are
maximally correlated. The second category replies on multi-
view fusion[Su et al., 2015]. A child field of this area re-
lated to our work is multi-view graph embedding, which are
mainly based on cross-view regularization [Sun et al., 2018;
Qu et al., 2017; Huang et al., 2012]. However, the explicit

cross-view information passing is not considered in these
methods, which is demonstrated to be important for urban
region representation learning problem by this paper.

5.3 Region Representation Learning

Learning urban region embeddings have attracted much at-
tention because of the booming of urban big data. Human
mobility data are used in many previous works to model
the relationship between regions by constructing transition
graphs [Wang and Li, 2017] or counting co-occurrences [Yao
et al., 2018]. However, the inherent region properties such
as Pols are ignored in these works. Alternatively, multi-
view data of both human mobility and region attributes have
been utilized in some recent works [Zhang er al., 2019;
Fu et al., 2019]. For example, Fu et al. [Fu et al., 2019]
proposed an autoencoder based model that combines Pol cor-
relations and mobility information. However, these methods
combine multi-view information by simple manners without
cross-view information sharing and cooperation.

6 Conclusion

In this paper, we presented a multi-view joint learning model
for urban region embedding. Specifically, We utilized hu-
man mobility data, and inherent region attributes to construct
multi-view region correlations. We proposed a joint learn-
ing module to learn comprehensive region representations by
enabling cross-view information sharing and weighted multi-
view fusion. We conducted extensive experiments based on
real-world data to evaluate the effectiveness of our model.
The results demonstrate that our method is able to effectively
cooperate and fuse multi-view urban data to learn comprehen-
sive region embeddings and consistently outperforms base-
lines in various tasks. In future work, we will explore the
effects of different views of urban data in specific tasks and
extend our framework to be more task adaptive.
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