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Abstract

Recent proliferation of cryptocurrencies that allow for
pseudo-anonymous transactions has resulted in a spike
of various e-crime activities and, particularly, cryp-
tocurrency payments in hacking attacks demanding
ransom by encrypting sensitive user data. Currently,
most hackers use Bitcoin for payments, and existing
ransomware detection tools depend only on a couple
of heuristics and/or tedious data gathering steps. By
capitalizing on the recent advances in Topological Data
Analysis, we propose a novel efficient and tractable
framework to automatically predict new ransomware
transactions in a ransomware family, given only
limited records of past transactions. Moreover, our new
methodology exhibits high utility to detect emergence
of new ransomware families, that is, detecting
ransomware with no past records of transactions.

1 Introduction
This decade has been marked with the rise of blockchain based
technologies. In its core, blockchain is a distributed public
ledger that stores transactions between two parties without
requiring a trusted central authority. On a blockchain, two
unacquainted parties can create an immutable transaction
that is permanently recorded on the ledger to be seen by the
public. The first application of Blockchain has been the Bitcoin
cryptocurrency [Nakamoto, 2008]. Bitcoin’s success has ushered
an age known as the Blockchain 1.0 [Swan, 2015], and there are
over 1000 Blockchain based cryptocurrencies.

Bitcoin transactions can be created anonymously, and partic-
ipation in the network does not require identity verification. A
payment can be requested by delivering a public Bitcoin address
(i.e., a short string) to a sender by using anonymity networks such
as Tor [Dingledine et al., 2004]. This ease of usage and worldwide
transaction availability of Bitcoin have been noticed by malicious
actors. Pseudo-anonymity of cryptocurrencies has attracted the
interest of a diverse body of criminals, transnational terrorist
groups, and illicit users. Cryptocurrency related crime and crim-
inal abuse of blockchain technologies are nowadays recognized
as the fastest-growing type of cyber-crime [Lewis, 2018].
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Using cryptocurrencies for ransomware payments appears to
be substantially more prevalent than has been previously realized.
As noted by Hernendex-Castro et al. [Hernandez-Castro et al.,
2014], among the respondents to their survey, “the prevalence of
the CryptoLocker ransomware seems much higher than expected.
The proportion of CryptoLocker victims that claim to have agreed
to pay the ransom to recover their files (41%) seems to be much
larger than expected (3% was conjectured by Symantec, 0.4%
by Dell SecureWorks)”. Hence, understanding ransomware
payments and their overall economic impact is an emerging
challenge of critical societal importance.

There have been efforts to analyze the cryptocurrency trans-
actions using various heuristics. For example, the “co-spending”
heuristic” is based on the idea that all input addresses of a
transaction must belong to the same person since private keys
associated with those accounts are needed to sign the transaction
inputs [Meiklejohn et al., 2016]). However, to our knowledge,
none of the previous efforts has leveraged advanced data analytics
based on topological and geometric concepts of the underlying
blockchain transaction graph.

In this paper, our goal is to identify Bitcoin addresses that are
used to store and trade Bitcoins gained through ransomware activ-
ities. To address this challenge, we propose a scalable data-driven
Bitcoin transaction analytics framework that is substantially more
effective in predicting ransomware payment related addresses,
compared to the existing heuristic based approaches.

We can summarize the significance of our contributions:
• To the best of our knowledge, we are the first to introduce

the machinery of topological and geometric data analytic tools
not only to ransomware detection but to e-crime analysis on
blockchain.
• We design six features that encode known Bitcoin transaction

obfuscation patterns which exhibit high utility in predicting
ransomware related activities.
• Using the ground truth data collected by various external

studies, we show that the developed ransomware prediction
approach based on the Topological Data Analysis (TDA)
delivers substantially higher accuracy, compared to existing
heuristic based and standard machine learning procedures.
• In addition to detecting new addresses associated with a known

ransomware family, we show that our new methodology
also exhibits high utility to detect the emergence of new
ransomware families.
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2 Related Work
The success of Bitcoin [Nakamoto, 2008] has also encouraged
significant usage of cryptocurrencies for illegal activities. The
earliest results aimed at tracking the transaction network to locate
bitcoins used in illegal activities, such as money laundering and
blackmailing (e.g., [Androulaki et al., 2013]), by using heuristics.

Bitcoin provides pseudo-anonymity; although all transactions
are public by nature, user identification is not required to
join the network. Mixing schemes (e.g., [Maxwell, 2013;
Ruffing et al., 2014]) exist to hide the flow of coins in the
network. Earlier research results have shown that some Bitcoin
payments can be traced [Meiklejohn et al., 2016]. As a result,
obfuscation efforts [Narayanan and Möser, 2017] by malicious
users have become increasingly sophisticated.

In ransomware analysis, Montreal [Paquet-Clouston et al.,
2019], Princeton [Huang et al., 2018] and Padua [Conti et
al., 2018] studies have analyzed networks of cryptocurrency
ransomware, and found that hacker behavior can help us identify
undisclosed ransomware payments. Datasets of these three
studies are publicly available.

Early studies in ransomware detection have used decision
rules on amounts and times of known ransomware transactions to
locate undisclosed ransomware (CryptoLocker) payments [Liao
et al., 2016]. More recent studies are joint efforts between
researchers and Blockchain analytics companies; Huang et
al. [Huang et al., 2018] identify shared hacker behavior and use
heuristics to identify ransomware payments. The authors estimate
that 20,000 victims have made ransomware payments. However,
these studies do not extract features nor build machine learning
models to detect ransomware payments and families.

Feature extraction has been studied for ransomware detection
in the software security domain. In software code analysis,
Cryptolock inspects ransomware programs and their activity for
malicious characteristics [Scaife et al., 2016]. In this line of work,
studies on ransomware for mobile devices extract software code
features to catch malicious programs (e.g., [Scaife et al., 2016]).
However, these approaches mainly target ransomware detection
before ransomware infects a system, and do not consider Bitcoin
transactions. A more recent approach of [Weber et al., 2019] uses
166 custom designed features and applies graph convolutional
networks to detect illicit transactions (not just ransomware).
We report a performance comparison of our TDA-based tool
regarding data given in [Weber et al., 2019] in Section 6, and
show that it provides better performance compared to the graph
convolutional network based approach.

Similar TDA improvements are reported in the literature. For
example, Abay et al. achieve better prediction accuracy with
TDA based Persistent Homology tools [Abay et al., 2019], and
Li et al. achieve better anomaly detection accuracy with TDA
based models [Li et al., 2020]. However, these works are aimed
at price or price anomaly prediction.

3 Background and Preliminaries
3.1 Ransomware
Ransomware is a malware that infects a victim’s data and
resources, and demands ransom to release them. In two main
types, ransomware can lock access to resources or encrypt their
content. Besides computer systems, ransomware can also infect

IoT and mobile devices [Martin et al., 2018]. Ransomware can
be delivered via email attachments or web-based vulnerabilities.
More recently, ransomware have been delivered via mass exploits.
For example, CryptoLocker used Gameover ZeuS botnet to
spread through spam emails. Once the ransomware is installed,
it communicates with a command-and-control center. Although
earlier ransomware used hard-coded IPs and domain names,
newer variants may use anonymity networks, such as TOR, to
reach a hidden command-and-control server.

3.2 Bitcoin Graph Model
We consider a directed weighted graph G = (V,E,B) created
from a set of transactions TX and input and output addresses in
TX (see [Akcora et al., 2017] for a graph primer on Blockchains).
On G, V is a set of nodes, and E ⊆ V × V is a set of edges.
B = {Address,Transaction} represents the set of node types.
For any node u ∈ V , it has a node type φ(u) ∈ B. For each edge
eu,v ∈ E between adjacent nodes u and v, we have φ(u) 6= φ(v),
and either φ(u) = {Transaction} or φ(v) = {Transaction}.
An edge e ∈ E represents a coin transfer between an address
node and a transaction node. This heterogeneous graph model
subsumes the homogeneous case (i.e., |B| = 1), where only
transaction or address nodes are used, and edges link nodes of
the same type. Here, we focus on the case where each address
node is linked (i.e., input or output address of a transaction)
via a transaction node to another address node. We use Γia
and Γoa to refer to predecessors (in-neighbors) and successors
(out-neighbors) of an address a, respectively.

4 Ransomware Detection and Prediction
In this paper, we state the following five questions to analyze ran-
somware behavior on the Bitcoin blockchain: 1 - Which features
can we extract from the Bitcoin network to detect ransomware
payments? 2 - Does a ransomware family (e.g., Cryptolocker)
show the same behavior on the Bitcoin blockchain over time? 3 -
How similar is the behavior of different ransomware operators
on the Bitcoin blockchain? 4 - Can we detect Bitcoin ransom
payments that are not reported to law agencies or Blockchain
Data Analytics companies? 5 - Based on the information
about existing ransomware families at a time, can we detect the
emergence of a new ransomware on the Bitcoin blockchain?

To address questions 1 - 5 , we formulate two primary re-
search problems: i) detecting undisclosed payments to addresses
that belong to a known ransomware family and ii) predicting
the emergence of a ransomware family unknown to the date. We
start by stating the notations used in our problem definitions.

Let {au}u∈Z+ be a set of addresses, and let each address
au be associated with a pair (~xu, yu), where ~xu ∈ RD is a
vector of its features and yu is its label. Depending on a setting,
yu can designate a white (i.e., non-ransomware) address or a
ransomware address. We associate timestamp tu to represent
the earliest time when the address au appeared in a blockchain
transaction. An address can appear in Bitcoin multiple times.
Let f1, . . . , fn be labels of known ransomware families which
have been observed until time point t. We set f0 to be the label
of addresses which are not known to belong to any ransomware
family and we assume them to be white addresses. Before time
point t, if we observe l addresses a1, . . . , al, then we form their
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D × l-matrix of features Xt = {~x1, . . . ,~xl} and a vector of
labels Yt = {y1, . . . , yl} ∈ {f0, f1, . . . , fn}.
We formally define our research problems:
Problem 1 [Existing Family Detection]: Let rs be a known ran-
somware family of interest. Let Ỹt ⊆ Yt be such that ∀yj ∈
Ỹt, yj ∈ {f0, frs} and X̃t ⊆ Xt be the corresponding matrix of
features. (If at time t, Ỹt ∩{frs} = ∅, increase t such that Ỹt con-
tains at least one frs). Let {al+1, . . . , al+z} be a set of addresses
whose set of labels Yt′ = {yl+1, . . . , yl+z} is unknown, and let
Xt′ = {~xl+1, . . . ,~xl+z} be a set of their corresponding observed
features. Let t′ > t, and t < min{tal+1

, . . . , tal+z
}. The problem

is to predict all addresses am ∈ {al+1, . . . , al+z} such that ym =
frs, using their available set of featuresXt′ and history (Xt, Yt).
Problem 2 [New Family Prediction]: Let rs′ be a new, yet unob-
served ransomware family, and frs′ be its label. Let (Xt, Yt) be a
pair of the sets of features and labels, respectively, such that at time
point t, ∀yj ∈ Yt, yj 6= frs′ . Let {al+1, . . . , al+z} be a set of
addresses whose set of labels Yt′ = {yl+1, . . . , yl+z} is unknown,
and let Xt′ = {~xl+1, . . . ,~xl+z} be a set of their corresponding
observed features. Let t′ > t, and t < min{tal+1

, . . . , tal+z
}.

The problem is to predict all addresses am ∈ {al+1, . . . , al+z}
such that ym /∈ {f0, f1, . . . , fn} and am is associated with the
new ransomware rs (i.e., ym = frs′), using their available set
of featuresXt′ and history (Xt, Yt).

5 Methodology
To solve each of our two research problems, we use four existing
(baseline) methods and propose a fifth solution based on Topologi-
cal Data Analysis that achieves the best results. In this section, we
will outline these methods. We start by discussing our features.

5.1 Graph Features
On the heterogeneous Bitcoin network, the in-neighbors Γin of a
transaction txn is defined as the set of transactions (not addresses)
whose one or more outputs are input to transaction txn. The
out-neighbors of txn are denoted as Γon. A transaction has inputs
and outputs; the sum of output amounts of a transaction txn is
defined as Ao(n) =

∑
au∈Γo

n

Aou(n), where an output address au

receivesAou(n) coins.
On the Bitcoin network, an address may appear multiple times

with different inputs and outputs. An address u that appears in
a transaction at time t can be denoted as atu. To mine address
behavior in time, we divide the Bitcoin network into 24 hour
long windows by using the UTC-6 timezone as reference. This
window approach serves two purposes. First, the induced 24
hour network allows us to capture how fast a coin moves in the
network. The speed is measured by the number of blocks in the
24 hour window that contains a transaction involving the coin.
Second, temporal information of transactions, such as the local
time, has been found useful to cluster criminal transactions (see
Figure 7 in [Huang et al., 2018]).

On the heterogeneous Bitcoin network, in each snapshot
we extract the following six features for an address: income,
neighbors, weight, length, count, loop.
Income of an address u is the total amount of coins output to u:
Iu =

∑
tn∈Γo

u

Aou(n).

Neighbors of an address u is the number of transactions which
have u as one of its output addresses:

∣∣Γiu∣∣.
We define the next four address features by using their time

ordered position in the defined 24 hour time window. We denote
time of a window with the earliest time t of transactions in it. For
each window, we first locate the set of transactions that do not
receive outputs from any earlier transaction within the studied win-
dow t, i.e., TX = {∀txn ∈ TX,s.t.,Γin = {at01 , . . . , at

n

z }, t0 ≤
tn < t}. These transactions consume outputs of transactions
that have been generated in previous windows. For simplicity,
we refer to a transaction tx ∈ TX as a starter transaction.
Weight of an address u,Wu, is defined as the sum of the fraction
of coins that originate from a starter transaction and reach u.
Each output address u of a transaction txn receives 1/Γon coins,
regardless of the amount Aou(n). Note that weight is oblivious
to the transacted amount. This design makes the weight feature
robust against obfuscation that uses big coin flows to many other
addresses.
Length of an address u, Lu, is the number of non-starter
transactions on its longest chain, where a chain is defined as an
acyclic directed path originating from any starter transaction and
ending at address u. A length of zero implies that the address
is an output address of a starter transaction.
Count of an address u, Cu is the number of starter transactions
which are connected to u through a chain, where a chain is
defined as an acyclic directed path originating from any starter
transaction and ending at address u.
Loop of an address u, Ou is the number of starter transactions
which are connected to u with more than one directed path.
Rationale: We designed graph features to quantify specific
obfuscation patterns used by ransomware operators:

Loop counts how many transactions i) split their coins; ii)
move these coins in the network by using different paths and
finally, and iii) merge them in a single address. Coins at this
final address can then be sold and converted to fiat currency (see
Figure 7 in [McGinn et al., 2016] for examples of such patterns).

Weight quantifies the merge behavior (i.e., the transaction
has more input than output addresses), where coins in multiple
addresses are each passed through a succession of merging trans-
actions and accumulated in a final address (see aggregations in
Figure 1 of [Huang et al., 2018] for an application of this pattern).

Similar to weight, we design the count feature to quantify
the merging pattern. However, the count feature represents
information on the number of transactions, whereas the weight
feature represents information on the amount (what percent of
these transactions’ output?) of transactions.

Length quantifies mixing rounds [Maxwell, 2013] on Bitcoin,
where transactions receive and distribute similar amounts of coins
in multiple rounds with newly created addresses to hide the coin
origin (see the mixing rounds in Figure 2 of [Ruffing et al., 2014]).

5.2 Baseline Methods for Ransomware Prediction
Naive Similarity Search (1): We use addresses in a specific
time window t and compute pairwise Cosine similarity [Karypis
et al., 2000] to known ransomware addresses from past l days.
Heuristics: The following heuristics [Meiklejohn et al., 2016]
are used in our experimental evaluation. Co-spending heuristic
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Figure 1: Mapper graph of the Cerber ransomware addresses (2017 day
307), filtered with the length attribute. Around clusters we indicate the
number of past ransomware addresses contained in the cluster. We show
the total order (i.e., address count) of two biggest clusters inside circles
(326 and 537). The two clusters with 19 past ransomware addresses (top
left) contain 53 and 67 addresses. Clusters without past ransomware
are depicted in yellow.

(2A): “If two addresses are inputs to the same transaction, the
same user controls them”. Transition heuristic (2B): “If we
observe one transaction with addresses A and B as inputs, and
another with addresses B and C as inputs, then we conclude that
A, B, and C all belonged to the same user”.
Clustering - DBSCAN (3A): DBSCAN is a density-based
non-parametric clustering algorithm. DBSCAN can mark outlier
points that lie alone in low-density regions as noise [Ester et al.,
1996].
Clustering - Hierarchical (3B): We use k-means clustering
with Forgy based initial seed selection on address feature
vectors [Forgy, 1965].
Extreme Gradient Boosting Trees (4A): XGBT applies
gradient boosting algorithms to decision trees [Chen and Guestrin,
2016].
Random Forest (4B) is a supervised ensemble of multiple
simple decision trees [Ho, 1995].

5.3 TDAMapper for Ransomware Analysis
We now introduce the concepts of Topological Data Analysis
(TDA) into detection of ransomware patterns on Bitcoin. The
fundamental idea of TDA is to extract hidden data patterns via
systematic analysis of data shapes such as, cycles and flares,
quantified at various resolution scales [Carlsson, 2009].

The key idea behind Mapper is the following. Let U be a total
number of observed addresses and {~xu}Uu=1 ∈ RD be a data
cloud of address features. Select a filter function ξ : {~xu}Uu=1 →
R. Let I be the range of ξ, that is, I = [m,M ] ∈ R, wherem =
minu ξ(~xu) andM = maxu ξ(~xu). Now place data into overlap-
ping bins by dividing the range I into a set S of smaller overlap-
ping intervals of uniform length, and let uj = {u : ξ(~xu) ∈ Ij}
be addresses corresponding to features in the interval Ij ∈ S. For
each uj perform a single linkage clustering to form clusters {ujk}.

As a result, Mapper produces a low dimensional representation
of the underlying data structure in the form of a ”cluster tree”

Algorithm 1 TDA filtering with multiple attributes.
Input: A set of networks CT 1, . . . ,CT D; filter threshold q;
inclusion threshold ε1; size threshold ε2; set of past ransomware
addressesRS; set of past non-ransomware addressesNRS.
Output: A set of suspicious ad-
dresses.

1: P : Map← Initialize scores of all l addresses with 0.
2: for cluster Cc ∈ CT do
3: Ac ← select all addresses in Cc
4: V ← Ac ∩RS
5: if |V | ≥ ε1 × |RS| then
6: if |Ac| ≤ ε2 × |CT .V | then
7: for au ∈ Ac \ {RS ∪NRS} do
8: Pu ← 1 + Pu
9: qt ← quantile(P, q)

10: return {∀au ∈ P |Pu ≥ qt}

graph CT where each ”cluster” is a branch of some single
connected component rather than a disconnected component on
its own as in conventional clustering analysis. In Figure 1, we
show an example of the produced Mapper graph. Each node
may contain three sets of addresses: past RS addresses, past
non-RS addresses, and addresses of the current time window,
whose labels are unknown. If current addresses are contained
in clusters that also contain many past known ransomware
addresses, by association, we deem these current addresses
potential ransomware addresses.

We filter the TDA mapper graph by using each of our six graph
features. As a result, we get six filtered graphs CT 1, . . . ,CT 6

for each time window. Afterwards, we assign a suspicion, or risk
score to an address au (see Algorithm 1).

Algorithm 1 starts by computing the number of past ran-
somware addresses in each cluster. If both inclusion and size
thresholds, ε1 and ε2, respectively, are satisfied, addresses in the
cluster have their suspicion scores incremented.
Parameters. We use two parameters to control what we learn
from mapper clusters: inclusion and size parameters. The
inclusion parameter ε1 limits what can be learned when very
few ransomware addresses are contained in the cluster. The
size threshold ε2 prevents learning when cluster includes too
many addresses. Such phenomenon usually happens if a filtering
feature does not exhibit a sufficiently discriminating performance
during a specific time window, and all addresses are lumped
together. We further use a quantile threshold q on addresses,
and label addresses suspicious only if they are in the top 1− q
of all addresses. We emphasize that by controlling q, ε1 and ε2
parameters, we can avoid making predictions when evidence of
past ransomware is not sufficiently strong.

We denote TDA models with the TDAε1|ε2q notation. TDA
models may deliver nested results; for example TDA0.5|ε2

q may
return the same set of suspicious addresses as TDA0.7|ε2

q results.
For such cases, we prefer the most restrictive model; i.e., the
model with the highest q, highest ε1 and lowest ε2.
Main idea: By observing the intrinsic topology and geometry of
the blockchain transaction graph, Mapper allows for recovering
of hidden similarities between ”clusters”, or groups of addresses,
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that are typically unavailable with traditional clustering techniques.
If an address appears in attribute filtered clusters with known
ransomware addresses frequently, it is more likely to be a
ransomware address itself.

6 Ransomware Detection and Prediction
Dataset. We have downloaded and parsed the entire Bitcoin
transaction graph since its beginning in 2009. Using a time
interval of 24 hours, we have extracted daily transactions on
the network and formed the Bitcoin graph. For computational
efficiency, we have filtered out the network edges that transfer less
than B0.3, since ransom amounts are rarely below this threshold.
Metrics and Parameters. We compute accuracy by using overall
sums of TN, FN, FP and TP values across multiple time windows
as (TP+FN)/(P+N). In all models, we report the optimal pa-
rameters that maximize F1 scores in predictions: In DBSCAN, we
experimented with ε = 0.05, . . . ,1 values. Random Forest uses
ntree=500 and mtry=|Xt|/3. XGBoost uses the gbtree booster
and nrounds = 25. For TDA computations, we use the TDAMap-
per RStats package (https://github.com/paultpearson/TDAmapper)
with parameters overlap=40 and interval = 80.

6.1 Existing Family New Address Detection
Given features and known labels of past addresses Xt, Yt at
time t and features of addresses Xt′ at time t′ > t, we train for
existing ransomware family detection:
1. Select a ransomware family rs whose new addresses will be
detected at time t′.
2. For t < t′, use a training length l, and create a dataset Xt
which holds features and labels of addresses observed between
times t− l and t.
3. Create an f0 sample of size N fromX0

[t−l,t] ⊆ X[t−l,t] without

replacement where ∀xu ∈ X0
[t−l,t], yu = f0 andN =

∣∣∣X0
[t−l,t]

∣∣∣.
4. Create a ransomware sample of size N fromXrs

[t−l,t] ⊆ X[t−l,t]
without replacement where ∀xu ∈ Xa

[t−l,t], yu = frs and

N ≤
∣∣∣Xrs

[t−l,t]

∣∣∣.
5. Using the ground truth data at t′, find all ransomware addresses
for t′: Xrs

t′ .
6. Using the ground truth data at t′, take a sample ofM = 1000
white (i.e., f0) addresses without replacement: X0

t′ .
7. Remove past known addresses from Xrs

t′ , i.e.,
Xrs
t′ ← Xrs

t′ \Xrs
[t−l,t].

8. Use features {X0
[t−l,t]∪X

rs
[t−l,t]} and labels {Y 0

[t−l,t]∪Y
rs
[t−l,t]}

as the training data, and classify {X0
t′ ∪Xrs

t′ }.
We emphasize four aspects of existing family detection: i)

from the test dataset we remove appearances of addresses that
have appeared in the past (i.e., t < t′), since we already know
their labels, ii) if an address appears in multiple windows, its
each appearance has (potentially) different features in X[t−l,t]
with the same rs label, iii) on many days, we do not have N
past rs addresses to train from, iv) Most importantly, we learn a
model for each ransomware family. In our analysis, we show
that these models do not share the same characteristics.
Heuristics. Using co-spending and transition heuristics with all
history (i.e.,N = |Xt|, and l =∞), we discover only 40 unique

RS Method l #w N TP TN Acc. Gain (%)
Crypto TDA.65|.65

.9 240 300 34 439 22K 0.69 213.8
Locker DBSCAN.15 60 300 67 935 11K 0.22
Crypto TDA.8|.65

.9 240 600 15 217 11200 0.77 65.0
Wall DBSCAN.2 240 600 59 728 16913 0.47
Crypt TDA.35|.35

.9 90 300 14 77 11K 0.80 19.9
XXX COSINE 30 600 65 589 42K 0.69
Locky TDA.8|.5.9 240 300 11 451 8221 0.78 2.9

COSINE 90 300 194 2395 146K 0.76
Cerber TDA.5|.35

.9 120 300 29 187 23K 0.80 -7.8
XGBOOST 240 300 436 1.6K 374K 0.87

Table 1: Task 1:Existing family undisclosed address detection.

addresses from CryptoLocker (Padua), CryptoWall (Padua),
CryptoTorLocker2015 (Montreal), CryptoTorLocker2015 (Padua)
families.

Authors of the three datasets that we adopt had already
considered heuristics. Since the creation of these datasets, there
have been very few addresses that are involved in transactions
by past ransomware addresses.

Table 1 shows the main results of our models. Gain is defined
as improvement of accuracy over the next best model (i.e.,
Gain = 100×(AccTDA−Accbase)/Accbase); in CryptoLocker
and CryptoWall this model is DBSCAN. Naive Cosine similarity
search is the best baseline model in Locky and CryptXXX fam-
ilies. For each ransomware family, TDA has a hyper-parameter
set that produces the best model. These parameter values are not
the same across families. Sample size (N) and training length (l)
parameters are different. For each family, we also provide the best
non-TDA model for comparison. The CryptoLocker ransomware
has the best TDA gain result with an improved accuracy of
213.8%. In Table 1, #w is the number of windows where a
model makes at least one label prediction. By using the q, ε1 and
ε2 hyper-parameters, TDA models avoid predicting labels when
the level of confidence in the derived classification is low.

Similar to TDA, DBSCAN can ignore data points in clustering,
and DBSCAN yields two of the best non-TDA results. In the
best TDA models for each ransomware family, we predict 16.59
FP for each TP (lower is better). This number is 27.44 for the
best non-TDA models.
Other approaches. The Elliptic dataset study [Weber et al.,
2019] detects illicit transactions by using a Graph Convolutional
Network, but Random Forests (RF) achieves higher accuracy. The
Elliptic dataset does not disclose how each feature is generated nor
provides the actual transactions or addresses used in transactions.
Hence, we could not generate the features used in our study to
compare utility of the features we have proposed. However, simi-
lar to our approach, the authors have divided the network into (50)
time periods, and have used the latest periods as the test data. We
applied our TDA approach to the Elliptic dataset by using the 166
features found in [Weber et al., 2019] to detect illicit transactions
and to understand the relative performance of our TDA tool. We
have found that our TDA-based approach has detected 322 TP
vs. 362 in RF in windows 40, 41 and 42, but correctly detected
up to six times more TP transactions (14 vs 131 tp) in periods
43, . . . ,50. In particular, in four of the last seven windows TDA
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RS First Used #Unique add.
Cerber 62/2016 89/2016 16
CryptXXX 132/2016 133/2016 38
DMALocker 7/2015 34/2016 14
CryptoWall 59/2014 64/2014 22
Locky 42/2016 47/2016 59

Table 2: Day/Year pairs in the discovery experiment.

can detect illicit transactions, but RF cannot detect any.

6.2 New Family Prediction
Given featuresXt and known labels Yt of past addresses at time
t and features of addresses Xt′ at time t′ > t, we now train for
discovering addresses belonging to new ransomware families:
1. For t < t′, use a training length l, and create a dataset
X[t−l,t] ⊆ Xt which holds features of addresses observed
between windows t− l and t.
2. Create an f0 sample of size N fromX0

[t−l,t] ⊆ X[t−l,t] without

replacement where ∀xu ∈ X0
[t−l,t], yu = f0 andN =

∣∣∣X0
[t−l,t]

∣∣∣.
3. Create a ransomware sample of size N fromXrs

[t−l,t] ⊆ X[t−l,t]
without replacement where ∀xu ∈ Xrs

[t−l,t], yu 6= f0 and

N ≤
∣∣∣Xrs

[t−l,t]

∣∣∣.
4. Relabel all addresses in Y rs[t−l,t] with the label fr.
5. By using the ground truth data at t′, take a sample of M=1000
white addresses without replacement to be used in the testing
phase: X0

t′ .
6. By using the ground truth data, choose a family rs′ whose
emergence at t′ will be discovered.
7. By using the ground truth data at t′, find all ransomware
addresses for t′ to be used in the testing phase: Xrs′

t′ .
8. Use features {X0

[t−l,t]∪X
r
[t−l,t]} and labels {Y 0

[t−l,t]∪Y
r
[t−l,t]}

as the training data, and classify {X0
t′ ∪Xr

t′}.
We emphasize two aspects in predicting a new family: i) in

training, addresses of all existing families are relabeled with fr,
creating a unified ransomware class, ii) when an address is pre-
dicted as ransomware, we cannot immediately claim whether it
makes up a new family or belongs to an existing family. As our
current goal is to predict new ransomware families with no prior
information about these families, the training task has to learn a
single model that will identify all future ransomware families.
Using our models, we forecast the emergence of 25 ransomware
families. Emergence of the first ransomware, CryptoLocker, can-
not be predicted since we have no prior data to train a model.

The best model, TDA0.05|0.35
0.7 uses N = 1K

past samples, l = 120 training length, and predicts
TP = 26, FN = 8, TN = 5032, FP = 21075. The
model predicts 25 emerging ransomware families, but also results
in 810.57 FP for each TP. We hypothesize that this performance
is because of data scarcity in training; among the 25 families, only
three families have more than one address in their first window
on the Bitcoin blockchain. These families are DMALockerv3
(2016/day 233), Flyper (2016/335) and eRanger (2016/68).

We repeat the forecasting experiment by considering the
earliest window when a ransomware uses ten or more addresses.
Such filtering results in a dataset of five RS families. We exclude

RS Method TN TP Acc. Gain (%)

Cerber TDA0.05|0.95
0.9 849 3 0.88 47.1

TDA0.35|0.8
0.9 570 9 0.60

CryptXXX TDA0.2|0.2
0.9 917 1 0.96 37.6

COSINE 654 13 0.69

CryptoWall TDA0.05|0.95
0.9 810 11 0.82 0.61

TDA0.35|0.8
0.9 805 11 0.81

Locky TDA0.05|0.95
0.9 489 17 0.58 -57.9

COSINE 795 4 0.92

DMALocker DBSCAN0.2 120 7 0.25 998
DBSCAN0.15 4 7 0.02

Table 3: Task 2: Detecting new RS family (l = 60, N = 300).

the previously observed addresses of these families from our
training set. The first and the identified earliest windows for each
family are presented in Table 2. Time difference in windows is
as small as one day for some families.

Table 3 shows the main results of our models. We define
gain as improvement of accuracy over the next best model (i.e.,
Gain = 100 × (AccTDA − Accbase)/Accbase). We find that
three variations of TDA models deliver the best F1 results for
all five families. Besides TDA models, we show one competing
result from other models for each family. Overall, in three families
TDA has the highest accuracy value. We reach the best result for
CryptXXX, where a TDA model predicts 1 TP and 1 FP. With
the best models provided in Table 3, on average we predict 27.53
FP for each TP in forecasting of new ransomware families.

We emphasize that for some families, such as CryptXXX, our
models predict only two ransomware addresses, one of which is
a TP. This result offers evidence that our prediction models tend
to be highly effective for certain families of ransomware. These
results also show that we can detect addresses from an emerging
RS by using information from previously detected ransomware
addresses. Finally, such findings imply that RS operators tend
to behave similarly, which may indicate a shared origin between
RS families.

7 Conclusions
We have proposed a new framework to detect and predict
ransomware payments on Bitcoin using the advanced data
analytic machinery of Topological Data Analysis. The new
TDA-based tool has substantially improved the ransomware
detection accuracy, compared to existing approaches.

As a future research direction, we plan to extend the proposed
topological and geometric methodology to mapping entities to
IP addresses in geographical locations.
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