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Abstract

This paper studies when a market-making firm
should place orders to maximize their expected net
profit, while also constraining risk, assuming or-
ders are maintained on an electronic limit order
book (LOB). To do this, we use a model-free and
off-policy method, Q-learning, coupled with state
aggregation, to develop a proposed trading strat-
egy that can be implemented using a simple lookup
table. Our main training dataset is derived from
event-by-event data recording the state of the LOB.
Our proposed trading strategy has passed both in-
sample and out-of-sample testing in the backtester
of the market-making firm with whom we are col-
laborating, and it also outperforms other bench-
mark strategies. As a result, the firm desires to put
the strategy into production.

1 Introduction

We consider a financial asset traded on an electronic ex-
change. Market participants, including institutional investors,
market makers, and speculators, can post two types of
buy/sell orders. A market order is an order to buy/sell a cer-
tain quantity of the asset at the best available price in the mar-
ket. A limit order is an order to trade a certain amount at a
specified price, known as an ask price for a sell order, and
a bid price for a buy order. Limit orders are posted to an
electronic trading system, and all the outstanding limit orders
are summarized by stating the quantities posted at each price
level in a limit order book (LOB), as shown in Figure 1, which
is the dominant market structure among exchange-traded U.S.
equities and futures. The LOB is available to all market par-
ticipants.

The limit orders rest or wait in the LOB, and are matched
against incoming market orders. A market buy (sell) order
executes first at the lowest ask (highest bid) price, and next in
ascending (descending) order with higher (lower) priced asks
(bids). The execution within each price level is prioritized
in accordance with the limit order time of arrival, in a first-
come-first-served (FCFS) fashion.

In this paper, we take the perspective of a market-making
firm. The market-making firm provides liquidity by submit-
ting limit orders, and removes liquidity by canceling existing
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Figure 1: An illustration of a limit order book (LOB)

limit orders. Provided that the lowest ask price exceeds the
highest bid price,! the market-making firm earns profit when
one market order to buy trades with its resting limit sell or-
der and another market order to sell trades with its resting
limit buy order. The challenge is that the market-making firm
cannot guarantee always being on both sides of the trade due
to the stochasticity of order arrivals, and the resulting move-
ments of the lowest ask and highest bid prices. The market-
making firm with whom we partnered prefers to begin with
the simplest possible strategy that places at most one order
per side. Furthermore, the firm is most interested in a strat-
egy for placing orders at the best bid and ask prices.

Our objective is to provide real-time guidance for how to
manage the firm’s portfolio of limit buy and sell orders on
the LOB, so as to maximize the expected net profit, while pe-
nalizing mismatch between the amount bought and sold, and
ensuring a sufficiently high Sharpe ratio.? To do this, we use
historical trading data to train a model for real-time decision
making. More specifically, we formulate this problem as a
Markov decision problem (MDP). Two main issues in solving
the MDP are: (1) difficulty in estimating the transition prob-
abilities, and (2) a very large state space (the notorious curse
of dimensionality). To overcome these issues and be able to
find a well-performing heuristic, we implement a model-free

!The arrivals of limit buy orders with bid prices higher than the
lowest ask price will be fulfilled immediately, similarly for the ar-
rivals of limit sell orders with ask prices lower than the highest bid
price; thus the highest bid price does not exceed the lowest ask price.

>The Sharpe ratio measures the return of an investment com-
pared to its risk. Usually, any Sharpe ratio greater than 1.0 is con-
sidered acceptable to good by investors. A ratio higher than 2.0 is
rated as very good. A ratio of 3.0 or higher is considered excellent.
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Figure 2: Timing of LOB events

Q-learning algorithm together with state aggregation.

2 Model

‘We model this problem as a finite-horizon discrete-time MDP.
The simplified assumed timing of events happening in the
LOB is illustrated in Figure 2. The objective is to provide a
strategy for when (and when not) to have one buy and/or one
sell order resting on the LOB. The assumption that at most
one buy and one sell order can rest on the buy and sell side
respectively is based on a high-frequency trading convention
to (1) backtest whether the simple strategy is profitable, (2)
see how the simple strategy performs in production, and (3)
expand to more complicated order strategies (such as order
stacking).

2.1 LOB State Variable

Assume there are n price levels in the order book, indexed
by P :={1,2,...,n}. Attimet € T := {0,1,2,...,T},
|R{,| € {0,1} denotes whether there exists a limit order be-
longing to us at price p € P, and |R?,| € {0,1,2,...} de-
notes the total number of limit orders resting from other mar-
ket participants at price p € P. We distinguish between the
bid and the ask side according to whether R}, (i = 1,2) is
negative or positive; Rip < 0 (i = 1,2) for the bid side, and

i, > 0 (i = 1,2) for the ask side. Whenever the state is
such that we have an order resting, we conservatively assume
that our order rests at the back of the queue. The implication
is that our model will tend to underestimate the frequency at
which our orders are executed, resulting in an underestima-
tion of profit.

The best bid and ask prices (also called the market bid
and ask prices) can be expressed as a function of R; =
(Rt1p7 R?p)p67l

e The best bid price (which is the highest bid price) is

Br, ==max{p € {0,1,...,n} : R, + R}, < 0}.

e The best ask price (which is the lowest ask price) is
ag, :=min{p € {1,..,n,n+1} : R}, + R}, > 0}.
In the above, p = 0 and p = n + 1 represent the degenerate
cases of no bids and no asks, respectively. Since the best bid
and ask prices can be determined from R, there is no need
to include them as part of the state variable. Then, the pre-
decision state variable at time ¢ is given by R;.

2.2 Decision Variable

A trading policy can be decomposed into a sequence of ac-
tions taken at the best bid and/or the best ask price. The
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available actions are to add, cancel, or do nothing, and we
encode this using 0 and 1. A 0 on the bid side implies we
do not want an order resting at the best bid price, and so
we cancel any existing order on the bid side, and otherwise
do nothing. A 1 implies we do want an order resting at the
best bid price, and so we place an order at the best bid price
and simultaneously cancel any existing order on the bid side.
This leads to the allowable action space for any state R; be-
ing A := {(0,0),(0,1),(1,0),(1,1)}, where the two com-
ponents in an action pair correspond to the action on the bid
side and the ask side, respectively. Later, this will be useful
for us to restrict the action space when there is too much mis-
match between the amounts bought and sold, in which case
the allowable actions will be a subset of .A. The state after
taking an action A; = (A1, Aie) € A can be expressed by
two n-dimensional vectors R#! and R¢?, defined as
Ry2 =R}, forallp € {1,2,...,n}
.. Ap=1landp =g, or

Riy = { Lot 4y = 1andp = ap, @

0, otherwise.

2.3 Exogenous Order Arrivals and Cancellations

Let DMP and DM be the number of units demanded respec-
tively by market buy and sell orders, which arose between
time ¢ and ¢ + 1. We have at most one resting order at ag,
and one at Sp,, which rest at the end of queue, and none else-
where. The implication is that our orders execute if lA)tM B
and/or ﬁgw 9 is no fewer than the number of orders resting at
the best ask and/or best bid; the state can then be updated in
terms of the first n-dimensional vector, for all p € P,

0, ifp=ap, and DMB > Rl + Rg2

N e
Rpbi=1 0, ifp=fnand D)'S > RE 4 R ()
R?Z} , otherwise.

In order to update the second n-dimensional vector, which
represents the resting orders from other market participants,
we require more detailed knowledge. Define pf; to be the
highest ask price against which a market buy order will ex-
ecute.’> If there are enough limit orders resting at the low-
est ask price to fill the incoming market buy orders (i.e.,
DMB < R{;, + R{7.), then p% = apg, and the trade

quantity at price ag, is k% := D}MB. Otherwise p% > ag,.
the trade quantities at any ask prices p lower than pf, exactly
equals the number of resting orders at the price, and the trade
quantity at price p%t can be expressed by

2 PR, —1 2
+RgaRt)_E : -i,-]_Rgp’

P=CR;

kg, == DMP — (B2,
assuming DMP < (Ris, + RiZ,) + X, o, o1 B
(where the summation in the above display is the empty set
if p%t = ap, + 1). In the rare case that the total num-
ber of limit orders resting on the book is not enough to
fill all the incoming market buy orders (that is, if DMZ >

n

(R?éRt + R?O%Rt) T D p—an, +1 R$2), then p = n and the

3This assumes the non-degenerate case that there are ask orders
resting on the LOB (agr, < n + 1).
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trade quantity at price n is the amount resting at that price,
so that kg, := R$2 (excess demand is lost). Similarly, de-

fine pgt to be the lowest bid price against which a market sell
order will execute,* and kgt to be the trade quantity at price

p%t. Then the second component of the state after the arrival
of market orders is, for all p € P,

0. if pe{pgt+177ﬁRf}U
9 /2 {OéRf,v"'vp?%t_]'}a
Ry =4 R — k%H ifp= p%” 3)
R?p2 _kRﬂ ifp:pR,j
R‘t‘g , otherwise,

where R¢? is as defined in (1).
Finally, the other market participants add and cancel orders

between time ¢ and ¢ + 1, denoted by O; = (Otp)pep and
Cy = (C’tp)pep. This results in the state update

Rol = 1_277117
Z’; ::2 . . forallp € P, 4)
Rtp = Rtp + Otp - Ctp7

and has the restriction that R{ZQ + O/\f,p > CA'tp, forallp € P;
i.e., the number of orders canceled cannot exceed the number
of orders present.

2.4 Transition Function

According to the timing of events as shown in Figure 2, there

are three state updates from time ¢ to ¢t + 1, which are elab-

orated in equations (1), (2), (3), and (4). Then, we can write

the pre-decision state vector in the next decision epoch as
Rip1 = (RY), RYY). 6)

tp>
2.5 Objective Function

Over the course of each day, the market-making firm gains
profit and incurs loss when market orders execute against the
market maker’s resting limit orders. For a given state and
action pair, (R;, At), and arrival of market buy and sell or-

ders, (DMB DMS), we define the contribution function as
the common financial metric profit and loss (PnL):

C(Rt’ Atvf)guB’ Bi\/IS) = EB ) (mRt - 6Rt) + B (aRf - mR:)?

(6)
where binary variables £” and E® indicate respectively
whether we have a resting order that was executed on the bid
side and on the ask side, and mp, := (ag, + g, )/2 denotes
the mid price.

Since PnL is accounted for relative to the mid price, it is
necessary to include another term in the objective function
that penalizes the potential change in cash value due to move-
ments in the mid price. To do this, the decision-maker must
also track his open position, or inventory level. Recalling that
A; = (Ap, Ayo) has first component corresponding to an ac-
tion on the bid side and second component corresponding to
an action on the ask side, the open position, or inventory level,

“This assumes the non-degenerate case that there are bid orders
resting on the LOB (8r, > 0).
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between time ¢ and ¢ + 1 after the arrival of market orders is
defined as

t ~
invt = Zi:() ]I{Ail = 1}1{DZJWS Z RgéR1 + R?E)R,}

t N
> MHAe =DM > R+ RZ. Y, ()

where the first and second summation represent the cumu-
lative amount bought and sold, respectively. Then, if Am;
denotes the change in the mid price between time period £ — 1
and t (defined to be 0 for ¢ = 0), the objective function is

V(Ry, Ay, ﬁtMB, ﬁtMS, invy) := C(Ry, Ay, ﬁtMB, ﬁtMS) + invg - Amy.
®)
Some papers like [Spooner et al., 2018] also studied two
alternative penalty terms in the objective function, symmet-
rically dampened PnL: 7 - invy - Amy, and asymmetrically
dampened PnL: min(0,n - inv; - Amy), to disincentivize
trend-following and bolster spread capture, because a damp-
ening applied to the inventory term reduces the profit gained
through speculation (i.e., following behavior) relative to that
from capturing the spread. We also tried both in our experi-
ments, but they do not display a better performance, so here
we only consider the basic objective function in (8).

3 Data Analysis

Our dataset is a common and competitive futures contract
traded on the Chicago Mercantile Exchange (CME)’s Globex
electronic trading platform in 2019. It is Level II order book
data, which provides a more granular information than the
trade and quotes (TAQ) data mostly used by traders to do
financial analysis. Since trading is extremely active during
the time near market open and market close, the dynamics of
the LOB may differ significantly during these time periods,
as compared to the behavior throughout the remainder of the
trading day. Hence, we truncate the data to the timeframe
9:00 a.m.—14:30 p.m. for every day.

In contrast to most of the literature where the time stamps
are only accurate to 1 second, our event-by-event data records
the state of the LOB with microsecond decimal precision,
once an order submission, order cancellation, or order exe-
cution occurs. From this, we extract time-stamped detailed
information on order adds, order cancels, and order transac-
tions at each of the highest 10 price levels on the bid side and
the lowest 10 price levels on the ask side.> Then, we aggre-
gate the data at the second level and construct six time series,
for the following six order book events: (1) market buy or-
ders; (2) market sell orders; (3) limit buy orders; (4) limit sell
orders; (5) cancellations on the bid side; (6) cancellations on
the ask side. The reason we aggregate at the second level is
that our purpose is to derive a strategy that can have slow ex-
ecution speed (i.e., need not execute at the microsecond level
or faster). This is because the market-making firm with whom
we partnered does not view speed as its primary competitive
advantage.

SFor the product we study, the difference between the best bid
and ask prices, i.e., the spread, is rarely more than one tick. A spread
of more than one tick occurs less than 0.01% of the time. As a result,
in contrast to some of the past literature [Spooner er al., 2018], we
do not need to record the spread for decision making purposes.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on Al in FinTech

3.1 Independence Check

For analysis purposes, we would like to know that DM5,

bgM 5.0y, C, are independent across time, as well as inde-
pendent of each other. The intuitive reason this may be true
is that aggregation at the second level is large enough to min-
imize the impact of any following behavior occurring in the
other market participants, as that usually happens at much
finer timescales. In other words, although the data may show
slight autocorrelations at the microsecond level, one second
is large enough for that autocorrelation to be negligible.

We investigate the autocorrelation and cross-correlation of
the sizes and inter-arrival times of the aforementioned six
time series, and also examine the cross-correlation between
different price levels for each time series. The absence of cor-
relation is necessary but not sufficient to show that successive
observations of a random variable are independent. However,
in our particular application setting, no correlation for both
the observations and their common variants (e.g., square, in-
verse) should suffice as an indication of independence, in the
same spirit of [Cont and De Larrard, 2012].

Autocorrelation

We first study the autocorrelations regarding size, and the
results show that all autocorrelation coefficients are signifi-
cantly close to zero for all time-lag separations by the Durbin-
Watson test. We also investigate the autocorrelation of the
square and inverse of the size. The results remain the same.
Thus, we conclude that the order sizes of each of the order
book events are all independent.

Doing a similar check for inter-arrival times, we find that
the sequences of inter-arrival times for market buy and sell
orders are positively autocorrelated with autocorrelation co-
efficient around 0.2, but the Durbin-Watson statistic is not
statistically significant. The inter-arrival times of limit or-
ders and cancellations are significantly positively correlated
but the correlation coefficients are both smaller than 0.1. As
mentioned earlier, such small autocorrelations can be ignored
when we aggregate at the second level. Moreover, note that
the large number of observations in the high-frequency data
induces narrow confidence bands and spurious significance;
thus when the number of observations is large, statistically
significant autocorrelations do not indicate practical signifi-
cance if the correlations are very small. Therefore, we can
state that the arrivals of all events are also independent.

Cross-Correlation

When we examine the cross-correlation between different
time series, we use the Spearman’s coefficient to measure
correlation, where +1 and —1 represent strong positive and
negative correlation respectively, and O represents no corre-
lation. The result shows that the Spearman’s correlation co-
efficients, with p-value smaller than 0.05, are all very close
to zero (smaller than 0.01). Thus, we conclude that the or-
der sizes and the arrivals of these six order book events are
pairwise uncorrelated/independent; and the sizes and arrivals
of limit orders and cancellations at different price levels are
uncorrelated as well.
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3.2 Distribution Fitting

Traditionally, to solve a MDP, we need information on the
transition matrix. To this end, we investigate the distribution
of order size and inter-arrival time for market orders, limit or-
ders, and cancellations on the bid and ask sides. After drop-
ping the last 1% outliers in the dataset, we try more than 50
common discrete and continuous distributions to fit the data,
but it turns out that the p-values of the chi-squared test or
the KS-test for all the fits are close to zero, and the sums
of squared errors of prediction (SSE) are much greater than
1, which are both indicative of very poor fits. We also con-
sidered estimating an empirical distribution, but that did not
pass statistical tests, due to the heavy-tail pattern of our data.
Hence, it is difficult to estimate the MDP transition matrix.

4 Q-learning Model

Our statistical analysis in Section 3 suggests that first es-
timating transition probabilities for the MDP in Section 2,
and next applying standard MDP solution techniques will not
yield satisfactory results. This observation motivates us to
consider a stochastic iterative (also called stochastic approx-
imation) method called Q-learning. Q-learning is a model-
free algorithm which can be applied to obtain an optimal
control policy for an MDP when the transition rewards and
the transition probabilities are unknown. Previous works,
such as [Bertsekas and Tsitsiklis, 1996; Tsitsiklis, 1994;
Jaakkola et al., 1994], have shown the convergence property
of Q-learning.

However, [Powell, 2007] and others have observed that the
Q-learning algorithm only works well in small state and ac-
tion spaces, and even in modest spaces, the performance may
not be good. The LOB state variable, (R}, R?,) for any given
t € T, has n = 20 price levels, and, for each price level, two
possible values for Rtlp and an infinite number of possible

values for pr, which we truncate to size 1000 for implemen-
tation purposes. This results in a lower bound on the LOB
state space size that is 10002° = 1 x 1099, and this does not
account for the history-dependent inventory level. That large
number motivates us to create a state aggregation function, in
the same spirit as [Pepyne et al., 1996], allowing us to reduce
the original large-scale MDP to a much smaller, and more

easily implementable, size.

4.1 Aggregation Method

From the extensive literature on market microstructure, such
as [Cartea and Jaimungal, 2016; Spooner et al., 2018; Cartea
et al., 2018], these are some attributes commonly used to de-
scribe the condition of the market and the decision-maker:
the imbalance of the book size on both the bid and ask side,
the magnitude of the market price movement, the trade vol-
ume, the relative strength index (RSI), the net amount bought
and/or sold, and the current PnL. After experimenting with
many different combinations of the aforementioned state at-
tributes, we find the best results using the five attributes listed
below. Note that the attributes used to describe the condi-
tion of the market (the first three below) come directly from
the LOB data, whereas the attributes used to describe the
decision-maker (the last two below) are history-dependent
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and must be updated in real-time as the market-making firm
executes trades. At each time t € 7T,

o bidSpeed(BS) € {0,1}: indicates whether the market
sell orders exceed the book size at the best bid price, and
is defined as

BS :=1{D}® > Rys, + R, }.

e askSpeed(AS) € {0,1}: indicates whether the market
buy orders exceed the book size at the best ask price, and
is defined as

AS =1{DMP > R}, +R,, }

o avgmidChangeFrac(MF) € {0,%1,+2}: character-
izes the relative change in the average mid price® from
time period ¢ — 1 to ¢ compared to the range in the mid
price over these two time periods, defined as f;. The pa-
rameter f € [—1, 1] determines the direction of the mid
price movement (positive or negative), and if that move-
ment is large or small; that is, |[MF| = 2 if |f| > f,
|IMF|=1if|f] € (0, f],and MF = 0if f; = 0.

o invSign(I1S) € {0,£1, £2}: characterizes the side and
magnitude of open positions, ¢nv,, as defined in (7). The
state is oversold if inv; < 0 and overbought if inv, >
0. The parameter I € (0,00) determines if the firm is
oversold or overbought by a large amount, in which case
|invy| > I and |IS| = 2, or by a small amount, in which
case |inv,| € (0,1] and |IS| = 1. The balanced state
IS = 0 occurs when inv; = 0.

o cumPnL(CP) € {0,1}: indicates whether the cumu-
lative PnL, defined from equation (6) as

t ~ ~
pnly =Y C(Ri, A, DMP, DM),  (9)

is large or small, as determined from the parameter P €
(=00, 00). Specifically, CP = lifpnl; < Pand CP =
0if pnly > P.

The attributes bidSpeed and askSpeed together charac-
terize market volatility. For instance, bidSpeed = 1 and
askSpeed = 0 indicate a sell-heavy market, which might
be followed by a decrease of market (bid and ask) prices;
thus it is suggestive to place limit sells and cancel limit buys.
The avgmidChangeFrac measures the magnitude and di-
rection of mid price changes, which provide signals about
whether orders should be placed on the bid or ask side. The
invSign indicates if there is a high mismatch between the
amount bought and sold, and could be used to restrict order
placement on the overbought/oversold side, even when condi-
tions are favorable otherwise. Lastly, the cum PnL monitors
the decision-maker’s profitability in real time, and could in-
duce more conservative behavior in the face of large losses, or
more risky behavior in the face of large gains. Overall, there
are three parameters that must be configured: f, I, and P.

®We choose mid price rather than market bid and/or market ask
prices to represent the state of the book due to the fact that the market
bid and ask prices always move in the same direction.
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4.2 Q-learning Model

Given an LOB state R; € R defined in Section 2.1, inventory
value tnv; defined in (7), and cumulative PnL pnl; defined
in (9), the state space aggregation function is

(.B;S't7 ASt, MFt, ISt, CPt), forallt € T.
(10)
Let ran(G) be the range of the state space aggregation func-
tion G, and denote the aggregated state space by G :=
ran(G). Then, it is straightforward that the size of the aggre-
gated state space is 2 X 2 X 5 x 5 x 2 = 200, which is small
enough that the Q-learning algorithm has good performance.
We restrict the admissible action space in Section 2.2 to
prevent placing orders when the invSign is either +2 or —2,
meaning we have had many more limit buy orders execute
than limit sell orders or vice versa. This is because there is a
high level of risk associated with such imbalance. For a given
aggregated state s € G, let s;g denote the fourth component
of the right-hand-side of (10). The restricted admissible ac-
tion space is

G(Ry,invg, pnly) ==

{(070)a (170)}7 lf S1s = 727
As = { {(0,0),(0,1)}, if s;g =42, (11)
{(0,0),(0,1),(1,0),(1,1)}, otherwise.

As in [Watkins and Dayan, 1992], the @) factor Q(s, a) rep-
resents the value of taking action @ when in aggregated state
5. The recommended action when in state s is

a*(s) = argmax Q(s, a), (12)
aC€As

and we record these in a lookup table called () table. The
resulting size of the @ table used to look up the recommended
action associated with any given state is 2 X 2 X 5 X 3 X 2 X
44+2x2x5x%x2x2x2=0640.

4.3 Algorithm

The core of a Q-learning algorithm is the iterative updates of
@ factors based on sample paths. However, since we have no
information about real-time inventory and PnL in our dataset,
for a given aggregated state, we select a sample path in the
dataset based on the first three dimensions of the state and
randomly set an inventory level and PnL value consistent with
the invSign term and the cumPnL term, respectively. For
ease of exposition, we define a sampling-related aggregation
function by, for all R; € R,

F(Rt) = (BSR“ASR“MFRJ- (13)

For any aggregated state s € G, define M := {R; € R :
F(Rt) e (835, SAS, SMF)}, where sgg, sas, Sy denote
the first three components of the right-hand-side of (10), to
be the set of full states that can be mapped into aggregated
state s. Let 75 := {t : Ry € M} be the set of timestamps at
which the full state of the order book is an element of the set
M. Suppose a sample path w starts at time ¢ € 75. Then, we
denote the immediate exogenous information (i.e., adds, can-
cels, and trades) in the following one second by O(w), C'(w),

DMB (), and DMS(w). Let Q° be the set of all possible
sample paths for aggregated state s.
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Algorithm 1 Q-learning algorithm pseudocode

1: Imitialization: Set Qo(s,a) = 0, ap(s,a) = «o,
Koy(s,a) =0, forall s € G, a € A,, and stopping crite-
rion IV; and set n = 0.

2: whilen =0,1,2,... do

3:  Randomly select S¢ C {(s,a)|s € G,a € A.};

4:  for(s,a):s€G,a€ Asdo

5.

6

if (s,a) € SY then

(i) Randomly select a sample path w; € 2°, and
denote its initial full state by R;. Randomly set
an exact value for inventory level and cumulative
PnL based on s;g and scp, denoted by ¢nv;, and
pnly,. (ii) Update the full state to I2},, as de-
tailed in equations (1)—(4) in Section 2. Denote
the updated inventory level and cumulative PnL.
by inv, ; and pnl; ;. (iii) Translate the up-
dated full state (R}, , ,inv;, 1, pnl; ) into ag-
gregated state by 5 = G(R;, |, inv;, 1, pnl} ).
(iv) Update K, (s,a) = K,—1(s,a) + 1.

(v) Compute Qn+1 by Equation (14) with
an(s,a) =

m
7: else
8: Qn+1( s,a) = Qn(s,a);
K, (s,a) = Ko_1(s,a).
9: end if
10:  end for
11:  if n > N then
12: break while.
13:  else
14: n=n++1.
15:  endif

16: end while

17: return For any R; € R in which the decision-maker’s
current inventory and PnL is ¢nv and pnl, the optimal
action is: argmax,c 4 Qn41(G(Ry, inv, pnl), a).

The Q-learning algorithm, more specifically detailed in the
pseudocode in Algorithm 1, follows the steps below. We
set the maximum number of iterations N to be large enough
such that the resulting objective function has become stable.
At each iteration, we make a uniform random selection of
some certain number of state-action pairs to update. For each
aggregated state s of interest, we randomly select a sample
path w € Q° that has initial full state R(w) € M. Then we
update the full state based on the action and exogenous in-
formation from the sample path, calculate the inventory level
inv(w) and cumulative PnL, and further translate the updated
full state into an aggregated version, denoted by S, using ag-
gregation function GG defined in equation (10). Then, we can
update the @) factor according to the update function

Qnt1(s,a) = (1 — an(s,a)) - Qun(s,a) + an(s,a)
(V(R(),0, DMB (), DM (@), inv(w)) + 7 max Qu(5, )
s
where V(R(w), a, DMB (w), DMS (w), inv(w)) is as defined
in equation (8), and the learning rate v, (s, a) is as defined in
the Q-learning algorithm pseudocode.
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4.4 Resulting () Factors

The trading policy learned from the Q-learning algorithm can
be summarized by the following several rules: (1) it is prof-
itable to place limit orders on the more active side—that is,
it is better to add a limit buy order on a sell-heavy market,
and vice versa; (2) market-making is not directional—that is,
movements in the mid price do not affect the decisions regard-
ing where to place an order, which aligns with the market-
making strategy structure in [Menkveld, 2013]; (3) the op-
timal market-making strategy depends on the level of inven-
tory, and maintaining inventory near zero is preferable, which
is consistent with [Guilbaud and Pham, 2013]; (4) market
makers control their cumulative PnL by canceling all orders
in many cases when cumulative PnL is low.

5 Results

5.1 Performance Evaluation

Our dataset provides information on the LOB during time
periods at which our partner market-making firm was trad-
ing, but we do not know the strategies the firm was using.
In other words, we do not know what is called the behavior
policy in the off-policy evaluation literature. The implica-
tion is that we cannot use any of the three main off-policy
evaluation methods: direct method [Bertsekas et al., 1995;
Lagoudakis and Parr, 2003; Sutton and Barto, 2018], impor-
tance sampling[Swaminathan and Joachims, 20151, and dou-
bly robust method [Dudik et al., 2014; Jiang and Li, 2015;
Robins et al., 1994].

Fortunately for evaluation purposes, our partner market-
making firm represents a small percentage of the trades
recorded in the LOB. As a result, it is reasonable to assume
that the orders placed by our partner market-making firm are
not unduly influencing the other players in the market, and
so the information we see recorded in the LOB regarding the
arrival of market buy and sell orders, and the arrival of limit
buy and sell orders, as well as cancellations, by other market
participants should not change too much when our partner
market-making firm trades according to a different strategy.
This suggests that a straightforward backtest evaluation of the
profit that would have been made, and the associated Sharpe
ratio, is a representative test of the performance of our pro-
posed trading strategy, in which orders are executed accord-
ing to the ()-table output from the Q-learning algorithm.

Our partner market-making firm developed its own back-
tester to evaluate any proposed trading strategy. This is ac-
complished by using historical data to reconstruct the trades
that would have occurred in the past using the proposed trad-
ing strategy, and recording the resulting cumulative PnL and
associated Sharpe ratio. We first used the backtester to con-
duct in-sample experiments, and to use the results of those ex-
periments to set algorithm parameters (specifically, the f, I,
and P thresholds defined in Section 4.1). We further used the
backtester to set two external controls, one that forces closing
all open positions if the PnL. becomes too negative, and an-
other that forces closing if the maximum drawdown becomes
too large. After finalizing our algorithm’s parameters and the
aforementioned external control parameters, we tested once
on the out-of-sample data in the backtester.
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The out-of-sample performance results of our algorithm in
the backtester resulted in an average daily PnL with three or-
ders of magnitude, and a Sharpe ratio above 3. This passed
the firm’s test standards. Consequently, our partner market-
making firm desired to put our algorithm into production.

5.2 Benchmarks

To further anchor the performance of our algorithm in the
literature, we compare with a set of benchmarks as below.

From [Spooner et al., 2018], [Lim and Gorse, 2018] and
[Doloc, 20191, common benchmarks include fixed spread-
based strategies, random strategies, and the Avellaneda-
Stoikov strategy [Avellaneda and Stoikov, 2008]. The fixed
spread-based strategy that provides the most relevant bench-
mark is the one that at all times has limit orders resting at the
best bid and ask prices. The most natural random strategy
benchmark is the one that flips two fair coins in each time
period, one to decide whether or not to have an order resting
at the best bid price and the other for the best ask price. The
Avellaneda-Stoikov strategy is not relevant for us because or-
ders may be placed at prices other than the best bid and ask
prices.

Figure 3 compares our Q-learning algorithm against the
aforementioned two common benchmarks, as well as against
our partner firm’s implemented trading strategy. For this,
there is no need to conduct in-sample testing because the pa-
rameters of the benchmark strategies are all fixed, and we
use the same external controls’ for the benchmark strategies
as we used when we implemented our Q-learning algorithm.
Figure 3 clearly shows that our algorithm attains the high-
est cumulative PnL over the one-month out-of-sample trading
period. As for the Sharpe ratio, the only benchmark strategy
for which the Sharpe ratio is positive is our partner firm’s im-
plemented trading strategy; however, the ratio is still smaller
than our proposed Q-learning strategy.
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Figure 3: Out-of-Sample Cumulative PnL, with re-scaled y-axis to
protect confidentiality

"Recall from Section 5.1 that the two external controls force
trading to stop if the PnL becomes too negative or if the maximum
drawdown becomes too large.
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6 Future Work

From Figure 3, we note that under our Q-learning algorithm,
we may encounter the following phenomenon: several days
in a row we lose money, followed by one day in which we
make a large amount of money. This is not ideal from a risk
management perspective and motivates our main desire in fu-
ture work, to smooth out the resulting equity curve. On the
days with losses, often we could have been profitable on that
day had we locked in the profit earlier, and closed down trad-
ing. However, we are still working to develop an algorithmic
approach to decide when to close down trading, resulting in
the length of the time horizon 7" being a random variable.
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