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Abstract

Aiming to improve the performance of exist-
ing reversion based online portfolio selection
strategies, we propose a novel multi-period strat-
egy named ‘“Vector Autoregressive Weighting Re-
version” (VAWR). Firstly, vector autoregressive
moving-average algorithm used in time series pre-
diction is transformed into exploring the dynamic
relationships between different assets for more ac-
curate price prediction. Secondly, we design the
modified online passive aggressive technique and
advance a scheme to weigh investment risk and
cumulative experience to update the closed-form
of portfolio. Theoretical analysis and experimen-
tal results confirm the effectiveness and robust-
ness of our strategy. Compared with the state-of-
the-art strategies, VAWR greatly increases cumula-
tive wealth, and it obtains the highest annualized
percentage yield and sharp ratio on various public
datasets. These improvements and easy implemen-
tation support the practical applications of VAWR.

1 Introduction

The past decade has seen the rapid development of machine
learning in business application. A hot research topic in this
area is to develop machine-learning techniques for portfo-
lio selection (PS). The goal of PS is to maximize some re-
lated performance measures, for example, cumulative return
or risk-adjusted return, with the wealth invested in some fi-
nancial markets in the long run [Li et al., 2011]. One of the
most important events in 1952 is that Markowitz first car-
ried out a systematic analysis of PS problem [Markowitz,
1952]. Then in 1956, Kelly presented the “Capital Growth
Theory” [Kelly, 19561, which is suitable for multi-period se-
quential PS. These are two major schools for investigating PS
problem. Online learning algorithms devised to learn models
for data in a sequential manner are in good agreement with the
feature of data sequence in the financial field. So, it can be ap-
plied to portfolio research to deal with online PS problem. Re-
lated framework can be seen in [Ordentlich and Cover, 1996;
Das et al., 2014; Li and Hoi, 2014].

Recently, considerable literature has grown up around the
theme of online PS, such as follow-the-winner, follow-the-
loser, meta-learning algorithms, and so on [Li and Hoi, 2014].
[Li er al., 2012; 2013] first proposed single-period reciprocal
strategies, which adopt passive aggressive online learning al-
gorithm [Crammer et al., 2006] to produce the next portfo-
lio. One major problem in this research concerned is that the
information of only one period is inadequate, and it cannot
satisfy the operation of real market. After that, some multi-
period strategies [Li and Hoi, 2012; Huang et al., 2016] have
been advanced, but these are challenged by applying equal
consideration to all considered periods. To overcome this
drawback, [Ye et al., 2017] presented the strategy of Gaus-
sian weighting reversion, and related performance has been
greatly improved. Such approaches, however, have failed to
address the correlation between different assets. Meanwhile,
these reversion based strategies just tend to focus on cumula-
tive return, while investment risk as an essential aspect has not
been particularly optimized. When investors face the risk ad-
justment in financial markets, their trading portfolios may be
different. Therefore, how investors should trade in the pres-
ence of trading risks remains an open yet important question.

The key innovations of our paper lie in these aspects: on
the one hand, considering that the previous reversion based
strategies do not take the relationships between assets into ac-
count, and vector autoregressive moving-average (VARMA)
algorithm as one of the most mainstream models of multi-
variate time series directly studies the correlation of varieties,
we first associate these two points to apply VARMA to online
PS problem for exploring the dynamic relationships of differ-
ent assets. Parameter identification of the traditional VARMA
model is done in a batch manner. Here, we combine it with
online learning algorithm to realize dynamic parameter up-
dating. So, the parameters of prediction model can be adap-
tively changed with the market, and this can effectively im-
prove the accuracy of the next price prediction. On the other
hand, concerning determining the portfolio, based on passive
aggressive online technique, we propose a modified method-
ology through introducing the term of risk minimization to
the objective function for a trade-off between cumulative ex-
perience and investment risk under a certain constrain of ex-
pected return. This new strategy is named “Vector Autore-
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gressive Weighting Reversion” (VAWR). To validate the pro-
posed strategy, we led extensive experiments on various real
datasets. Our experimental results show that VAWR outper-
forms the existing strategies including state-of-the-art ones.

2 Related Work

Much of current literature on PS pays attention to the prin-
ciple of Kelly’s investment [Kelly, 1956]. The most common
benchmark is Market, in which one invests wealth among dif-
ferent assets with an initial portfolio and holds until the end.
Constantly Re-balanced Portfolios (CRP) is another bench-
mark, and it keeps a fixed portfolio on each asset for all pe-
riods. Best CRP (BCRP) [Cover, 1991], over a whole mar-
ket sequence, is an optimal strategy if market is i.i.d. Succes-
sive CRP (SCRP) and Weighted SCRP (WSCRP) [Gaivoron-
ski and Stella, 2000] implicitly predict the next price ratio by
all historical data with a uniform probability.

Some algorithms do not focus on price prediction. The
pioneering study of online PS was reported by [Ordentlich
and Cover, 1996], and they put forward Universal Portfo-
lios (UP). [Huang et al., 2015] pointed out that the effec-
tiveness of avoiding re-balancing the portfolio when transac-
tion costs outweigh trading benefit, whose strategy is called
Semi-universal Portfolio (SUP). After that, [Li e al., 2018]
proposed a novel framework named Transaction Cost Opti-
mization (TCO) to futher improve the strategy’s performance
in the case of non-zero transaction costs. Considering portfo-
lio risks, many papers focus on Markowitz’s mean-variance
framewor. However, when portfolio’s size increases, the es-
timation for the mean and variance of assets return becomes
less reliable [Shen et al., 2019]. So related work devotes to
eliminating the estimation risks caused by the uncertainty of
parameters [Huang er al., 2011; Shen and Wang, 2017].

Besides, there is increasing literature on predicting the next
price ratio by partial historical data. Exponential Gradient
(EG) [Helmbold er al., 1998] uses the last price ratio as the
prediction to next price ratio. Passive Aggressive Mean Re-
version (PAMR) [Li et al., 2012] and Confidence Weighted
Mean Reversion (CWMR) [Li et al., 2013] predict the next
price ratio with the inverse of the last price ratio, which ex-
ploits in essence the mean reversion principle. Online Moving
Average Reversion (OLMAR) was advanced by [Li and Hoi,
2012], and it is based on the moving average of historical
data in a fixed window to predict the next price and explores
average reversion. [Huang et al., 2016] proposed Robust Me-
dian Reversion (RMR) using L1-median of stock prices to
explore the reversion mechanism. [Ye et al., 2017] presented
Gaussian Weighting Reversion (GWR), which adopts a fixed
Gaussian function to exploit the “time validity” of historical
data and achieves Gaussian average reversion.

Recently, deep learning (DL) in portfolio management is
popular [Selvin ef al., 2017; Liang et al., 2018]. Neverthe-
less, DL is hugely dependent on the structure of neural net-
work and needs large-scale datasets for training [Cai and Ye,
2019]. Many existing methods in this field are not tested on
public datasets yet and lack theoretical analysis for perfor-
mance guarantee [Liang er al., 2018]. It still has much room
for further development in the application of DL in this field.

4470

3 Problem Formulation

3.1 Problem Setting

The financial market with d assets for n trading periods to be
invested is considered. At the end of the #*" period, the prices
of assets are represented as a vector of closing price p, €
Ri, and each element p! means the closing price of asset 1.
The price ratio vector x; € Ri represents the variation of
each asset price, where each element x% indicates the ratio of
current closing price (corresponding to the t** period) to the
previous closing price (corresponding to the (t — 1)!" period)
of asset i, i.e., i=pi/pi_,. Denote X} = (x1,...,X,) as a
sequence of price ratio from the first to the nt" period.

At the beginning of the ¢ period, the capital is allocated
in d assets through a portfolio vector by, and each element of
b, is used as the proportion of wealth invested in each asset.
Generally, because we assume the portfolio is self-financed
and no margin/short is inadmissibility, it implies each ele-
ment of portfolio vector is non-negative and the sum of a
portfolio is one, that is, b; € Ad, where Ad = {b; : b; €
R%, Z?Zl bi = 1}. The investment procedure is represented
as a portfolio strategy, which means blzéf following a se-
ries of mappings by: (R4)"™1 — Ad,t = 2,3,..., where
b;=b;(x:™!) is the portfolio adopted for the ¢! trading pe-
riod, given the past market sequence X}~ = (x1,...,%X;_1).

" =(by,...,b,) is the strategy from the first to n*" period.

When the t*" trading period finishes, the portfolio b; brings
portfolio’s period return s;, which shows the wealth grows by
afactor of s, =h;-x; =3 ¢ bixi. As we reinvest, the wealth
will get multiplicative increase. So, after n trading periods,
the portfolio strategy b}" generates the portfolio’s cumulative
wealth S,,, which achieves I1}*_; b, -x; times the initial wealth,
namely, S, (b7, x}) = SoII?_; (b; - x;), where Sy is initial
wealth and set to one in this paper. The critical goal of a port-
folio manager is to play a strategy b’ to get the maximization
of portfolio’s cumulative wealth .S,,.

In the above model, we ideally presume no transaction
costs, perfect market liquidity, and zero market impact. These
are common in the existing work [Li er al., 2012; 2013;
Huang et al., 2016; Ye et al., 2017; Cai and Ye, 2019], and
we will analyze the effect of transaction costs in Section 5.5.

3.2 Analysis of Existing Work
As stated in Section 2, Kelly’s portfolio selection formula is
the foundation of related strategies:

k

by 1 = argmax Z(Ii log(b - Xi,). ey
beA, i=1

Generally, a portfolio manager predicts X;11 with k pos-

. ~1 ~k . . .
sible values X; , ¢, ..., X, 1, and their corresponding possibili-
ties are qi, ..., gy, Tespectively. Here, X, 1 Means one possible

combination vector of the next price ratio prediction. Differ-
ent methods adopted by portfolio manager will produce dif-
ferent X; ; and ¢;, which will also cause different portfolios.
Hence a precise and effective prediction method is essential
to the success of a PS strategy. Also, some constraints can be
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added to the process of generating portfolios with the con-
sideration of the optimization of other indicators while maxi-
mizing cumulative return.
Among the related reversion strategies, PAMR implicitly
1 Piy1 _ Py

s _ 1 A —
assumes Xy 1 = - = iy = Pir1 = Pi—1s that

is, PAMR supposes that the next prices p,,, will revert to
the last prices p,_,. It is a single-period strategy and does
not make full use of market information. OLMAR improves
PAMR by predicting the next prlces with moving average,

ie, Py = avg(L) = 1 Z p,> where L denotes the
i=t—L+1

size of moving window. Then, L1-median is used by RMR

as the estimator, which is the point with minimal sum of Eu-

clidean distances to L given points of price data. In math,

Pip1 = arg min Z llp;_; — ||, where || - || denotes the Eu-

clidean norm OLMAR and RMR use multi-period historical
data, whereas attaching equal importance. In GWR, a Gaus-
sian function is adopted to weight the historical data in a slid-
ing window for all assets, the aim of which is paying more at-
tention to recent data. The next predicted prices are expressed

i _ <t+1—1t>2
. SiTi e 272 p,
as Py, = === —igz - Where T is a parameter of

YTt e 27
Gaussian functlon aﬁd L is the size of sliding window. In ad-
dition, the method of double estimations is developed to miti-
gate the effect of noise and outliers. But the weights in GWR
are fixed for all periods and assets. These estimators do not
adequately take the statistical nature of the data and predic-
tion model into account.

Next, we conduct the analysis of competing experimen-
tal results about the above multi-period strategies. The way
of OLMAR using historical information leads to its disad-
vantages in return and risk-adjusted return. For GWR, it is
meaningful to consider historical information in a non-equal
weighting way, and its return has an order of magnitude
growth compared with the previously state-of-the-art RMR.
However, they all ignore the relationships of assets in predic-
tion model. The information of this correlation is important
for price prediction. We try to fully exploit the property of
“time validity” and explore the relationships of price trend
among different assets. This is considering the influence fac-
tors of asset prices from two dimensions. Moreover, although
GWR performs well in terms of cumulative wealth, it is not
as good as RMR in risk-related indicators. These strategies
all do not take specific action to decrease trading risks during
producing a portfolio. These drawbacks of existing strategies
encourage us to design a new and effective online PS strategy.

4 The VAWR Strategy

4.1 Methodology

The proposed VAWR explores the dynamic relationships be-
tween different assets in different historical periods to obtain
next price ratio X;4, via online time series prediction tech-
nology VARMA, which is different from the traditional way
of updating model parameters in batch. Then VAWR adopts
modified passive aggressive online learning to exploit the re-
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versal property of financial market, which means to maximize
the expected return b - X, 1 while trying to keep the last port-
folio information and minimize the portfolio risks.

In order to estimate the closing prices of the t*" period, the
traditional VARMA(k, [) model is given [Yang et al., 2018]:

k l
p; = Z(I)jpt*j +Z@j€t,j + €. 2)
=1 j=1

Here, VARMA(k,[) model is characterized by two hori-
zon terms k, I, and coefficient matrices ®; € R?*? and
©;€R¥*4, Find that p, is hard to predict, because the noise
terms €;_; are unknown at any time, and coefficient matrices
are required to be optimized. Therefore, for simplifying the
problem, we use the below equation to follow the underlying
VARMA model, which can be seen as a modified VARMA
model with horizon term L:

L
p=WP_,=) Wi, 3)
j=1

where W = [W{, W5, ... W{], W is weighting matrix,

WEeR™ and Py_y = [p{ |, p{ 5, ....,p{_,]". The price
prediction for asset ¢ can be given:
Z Wi, )p,_j, &)

where W (i,:) is the ith row of WY and represents the
weighting values for asset ¢. Therefore, the problem of fore-
casting price is transformed into the problem of solving the
modified VARMA model.

Next, the modified VARMA model is solved by online
learning. When the ¢'" period finishes, the real closing price
of each asset is revealed, and we receive the loss of each as-
set. According to equation (4), the formula definition of the
loss for asset ¢ is given as follows:

LW (i, ) = le(p}. pt) =

ZWt

where W(i,:) is the i’ row of W' and represents the
weighting matrix related to asset ¢ in the sliding window af-
ter the (t — 1)"" iteration updates, and W(i,:) € R*4L,
The above formula shows the difference between predicted
and real value of asset . For online convex optimization,
loss function should satisfy «-exp-concavity property, that
is, there is an exp-concavity parameter o« > 0 such that
exp(—aly) is concave for all t. Our goal is to minimize the
loss of each asset:

WL, W (i,2)). (6)

Through experiencing losses, the weighting matrix of mod-
ified VARMA model is updated, and the next prediction
P;,; can be made. During this process, we apply a first-
order online convex optimization solver, Online Gradient De-
scent [Zinkevich, 2003]. Every time updates the weighting
matrix, it takes steps which are proportional to the negative of

) NN E)

1) = arg min I4(
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Algorithm 1 PriceRatioPrediction(P;, W?, L, n)

Input: historical data P;, weighting matrix W*¢, parameter
L, learning rate ), and the number of assets d.
Output: predicted X; 1
: Procedure:
s fori=1—ddo
Predict p; = Zle Wi, )p; -
Release p! and suffer a loss [;(W'(i,:)).
= vlf(wt(la ))
WG = [, (Wi, ) = nv7e)

Ptt1
Pt

A _ t+1 $ —
N pt+1 =W + Pt, and Xt+1 =
return X1

©ERUE WY
d

the gradient of loss function at the current point. Algorithm 1
shows the price prediction for general convex loss function.
The notation [, refers to the Euclidean projection onto the
nearest point in k;, i.e.[], (y) = argmin,, [x —yl,.
and k; is defined as:

dL
Ki= {W(z’, ) e RN Wi, k)=1, W(i, k) > o} )

k=1

Based on the prediction p,, ;, the portfolio b; is figured
out according to the modified passive aggressive online learn-
ing algorithm, which can exploit the reversal phenomenon in
financial markets and minimize the portfolio risks. Passive
aggressive online learning algorithm [Crammer et al., 2006]
is generally used for classification. When the classification
is correct, this algorithm passively keeps unchanged and ag-
gressively obtains a new solution when it is wrong.

Optimize the following problem to form next portfolio:

byy1 = argmin ||b — b,[|> + Ab” b
beAd (8)

s.t. b- itJr] > (5, be =1
Here, || - || means the Euclidean norm, ¥ is co-variance ma-
trix calculated by historical closing prices of assets, and A is
a trade-off factor. X;11 is worked out by Algorithm 1, § is
the given threshold of expected return, and 1 is a vector with
dimension d, that is, 1cRe

The optimization objective (8) consists of two parts: the
term about cumulative experience ||b — by||? and risk term
b”'¥b. The goal of the above problem is to find an optimal
portfolio by minimizing the deviation from the last portfo-
lio b; as well as trading risks under the designed constraint
b-X;11 > ¢. Specifically, if this constraint is satisfied, namely,
the expected return is higher than the threshold § and the last
portfolio can minimize current risks, the resulting portfolio
passively keeps the same as the last. If not, a new portfolio
will be aggressively calculated to promise that the expected
return is higher than §, and new portfolio is as close as pos-
sible to the previous. Such formulation explains the idea of
market reversion. Actually, X, is the predicted price ratio
via online modified VARMA, while the constraint b-x; 1 > ¢
implies that the next prices will reverse to our prediction.

Algorithm 2 The VAWR algorithm

Input: market sequence X7, reversion threshold ¢, learning
rate 1), window size L > 2, and parameter \.
Output: cumulative wealth after the n'" period S,,.
1: Procedure: .
2: Initialization: by = 1, Sy = 1. Set W'(i,:) € k;,i =
1,2, ..., d arbitrarily.

3: fort=1—>ndo

4: Pii1 = Py - X1

5: end for

6: fort=1—ndo

7: Receive stock price ratio: x;

8: Update cumulative return:

9: St:bt - Xt, and St :St,1 * St

10: Predict the vector of next price ratio:

11 X;11 = PriceRatioPrediction(P;, W, L, n)

12: Update the portfolio by 1:

13: bi 41 = argmin |[b — b¢||?> + AbT Eb
beAd

14: st.  b-%4, >4,  bI1=1

15: end for

Problem (8) is a standard quadratic programming (QP)
problem, which has the optimum solution because co-
variance matrix is positive semi-definite. The algorithm used
for solving QP problem can be primal-dual path-following
method based on the Nesterov-Todd scaling. For more back-
ground, history, and analysis of related algorithms, refer
to [Andersen et al., 2003]. The portfolio solved by the above
methods may go out of the simplex domain. Therefore, to en-
sure that the portfolio is non-negative, the resulting portfolio
is finally projected to the simplex domain [Duchi et al., 2008].

Therefore, the whole solving process of VAWR divides
into two steps: the first is predicting the next closing price
ratio based on online VARMA; the second is determining the
portfolio by modified passive aggressive online learning. And
the complete process of online PS following the problem set-
ting in Section 3.1 for VAWR is outlined in Algorithm 2.

4.2 Theoretical Analysis

Before analysis, related definitions should be given. We de-
fine the regret of asset ¢ as:

T T
= L(W'(i,:)) — mi L(W (i, 9
T Z t( (Z7 )) VI&I(IZI})Z t( (Zv ))7 ©))
t=1 t=1
where W (4, :) is fixed coefficient parameter from hindsight
and it can produce the smallest total loss. We set

D= W (i, ) = W(ig,:)l[,,  (10)

max
W(il,:),W(iz,:)Em

where D identifies the diameter of x;. The upper bound of
|V1,(W'(i,:))| for all ¢ is denoted by G, and W'(i,:) €
ki. We use 7, as learning rate at time point ¢. According to

these definitions, we can prove the following theorem about
bounding the regret of Algorithm 1.

Theorem 1 For any market data {Pt}thp Algorithm 1 gen-
erates a sequence of online weighting matrix {W¢ (i, :)}thl,
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which guarantees

T
Ry=>_1:(W'(i,:))
t=1

We can get the above from the result of Online Gradient De-
scent in [Zinkevich, 2003], relying on the fact that our loss
function is a-exp-concave. Then according to the work [Yang
et al., 2018] about the regret bound of VARMA model used in
multivariate time series, we can bound the regret for all asset,

D> G2 <
— E Le( —t— .
mln +( )< 20 + D) nt

t=1

T D2 G2 T
RT:th(W manlt ) < d( 74‘7 ne)-
t=1 t=1
Besides, if we set ; = \[, then
T
Zm: _<1+/ —<1+[2\f] <2VT — 1.
t=1 t=1

So, we can get the regret bound of all assets

2
Ry <d(D 2\/T+G2(\/Tf

1) < O(/T)

5 Performance Evaluation

5.1 Datasets

The datasets involved in the experiments are four real public
datasets, which have been widely used in the test of online PS
strategies [Li et al., 2012; 2013; Huang et al., 2016; Ye et al.,
2017; Cai and Ye, 2019], and are summarized in Table 1.

Dataset | Region Time frame #Days | #Assets
DIJIA usS 1/1/2001-14/1/2003 507 30

NYSE_O us 3/7/1962-31/12/1984 | 5651 36

NYSEN us 1/1/1985-30/6/2010 | 6431 23
TSE CA 4/1/1994-31/12/1998 | 1259 88

Table 1: The summary of four public datasets

The first one “DJIA” consists of Dow Jones 30 composite
shares. The second is from New York Stock Exchange, one
benchmark dataset pioneered by [Cover, 1991], and denote it
by “NYSE_O”. The third is the extension of “NYSE_O” and
collected by [Li et al., 2011]. Tt is set as “NYSE_N”. The final
dataset “TSE” with “DJIA” was both collected by [Borodin et
al., 2004], and is from Toronto Stock Exchange.

5.2 Cumulative Wealth

Table 2 provides the experimental results of cumulative
wealth achieved by different strategies. The concrete parame-
ter settings of these strategies keep the same with the original
papers. With the goal of consistency in the comparison, we
empirically set the size of sliding window L=5, A\=0.1, and
0=50 in the experiments for VAWR. Considering that com-
petitive algorithms start from different initial periods in the
original papers, to be fair, the wealth of all algorithms in Ta-
ble 2 is accumulated from the first period. If the number of
past periods is smaller than the size of sliding window, the
last closing prices are used as the prediction to next period.
In Table 2, VAWR beats all existing strategies on DJIA,
NYSE_O and NYSE_N, and is ranked the 2nd on TSE

Strategies | DJIA | NYSE.O | NYSE.N TSE
Market 0.79 14.30 18.32 1.57
BCRP 1.20 248.75 119.32 6.71

CRP 0.80 22.57 26.09 1.55
SCRP 0.75 18.39 19.92 1.47

UP 0.80 26.44 27.41 1.58

SUP 0.76 18.04 19.03 1.56
PAMR 0.70 | 4.87E+15 | 1.32E+06 | 257.78

OLMAR | 251 | 7.42E+16 | 442E+08 | 60.15
RMR 2.69 | 1.59E+17 | 3.27E+08 | 179.59
GWR 2.50 | 5.45E+17 | 7.18E+08 | 460.60
VAWR 2.99 | 4.14E+18 | 1.10E+09 | 346.31

Table 2: The contrast of cumulative wealth.

Stat. DJIA° | NYSE.O | NYSEN | TSE

Size 507 5651 6431 1259
MER(VAWR) | 0.0025 0.0081 0.0038 | 0.0062
MER(Market) | -0.0005 | 0.0004 0.0004 | 0.0002
o 0.0033 0.0077 0.0034 | 0.0058
J¢] 1.2569 1.0885 1.0734 | 1.4873
t-statistics 2.7634 | 16.9448 7.7557 | 3.4910
p-value 0.0030 0.0000 0.0000 | 0.0002

Table 3: Statistical Test of VAWR.

(only inferior to GWR). Meanwhile, there is a significant
and remarkable growth of cumulative wealth on NYSE_O
and NYSE_N. Compared with ever state-of-the-art strategies
RMR and GWR, the cumulative wealth of VAWR on DJIA,
NYSE_O, and NYSE_N is increased by 11.23%, 658.90%,
and 52.45%, respectively, and completely defeats RMR on
four datasets. So from the perspective of cumulative wealth,
VAWR performs more outstanding than other strategies,
which shows the price prediction model in VAWR is efficient.

In addition, the widely recognized t-test statistics are used
to analyze the relationships between the achieved wealth and
simple luck, which is a common way in the fund management
industry [Li ef al., 2012]. The results of p-value, as listed in
Table 3, indicate that the obtained wealth whether is caused
by simple luck or not. The corresponding chance for getting
excess return by luck is at most 0.0030 on DJIA. This reveals
that our proposed VAWR is reliable, which can be superior
to competitors with high confidence. Therefore, the effective-
ness and practicability of our strategy are further illustrated.

5.3 APY and SR

Annualized Percentage Yield (APY) is a criterion to measure
return with compound interest effect. This interest effect indi-

Criteria | Strategy | DJIA | NYSE.O | NYSEN | TSE
RMR | 0.6387 | 5.0522 1.1256 | 1.8239
APY GWR | 0.5820 | 5.4005 1.1909 | 2.4093
VAWR | 0.7282 | 6.0182 1.2268 | 2.2203
RMR | 1.1698 | 8.8740 1.9232 | 1.9341
SR GWR | 1.0499 | 9.3376 2.0165 | 2.4771
VAWR | 1.3203 | 10.5940 2.0282 | 2.2752

Table 4: Comparison of APY and SR.
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Figure 1: Sensitivity tests of the parameter .

cates that a strategy can achieve average wealth growth within
one year and APY = S, — 1, where y is the number
of years corresponding to n trading periods. Sharpe Ratio
(SR) is a main indicator to measure wealth and risks synthet-
ically. It is known as “reward-to-variability ratio” and con-
cludes the mean and variance with a simple measure of risk-
adjusted return. Here, we use annualized SR calculated by

SR = @, where Ry is the risk-free return (typically

»
the return of Treasury bills, fixed at 4% [Li et al., 2012]), and
oy is annualized standard deviation of period return.

The comparison results of related criteria are included in
Table 4. Compared with GWR, VAWR gets the largest APY
and the highest SR in DJIA, NYSE_O and NYSE_N datasets,
and beats RMR in all datasets. These results indicate that it
is meaningful to add the minimization item of risk to passive
aggressive online learning technology. And this consideration
makes our strategy capable of achieving a good trade-off be-
tween return and risk.
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Figure 2: The effect of transaction costs on the total wealth.
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5.4 Parameter Sensitivity

The sensitivity of parameter § in VAWR is examined on four
datasets, which shows how various selections of § give effect
on the final wealth achieved. The results are presented in Fig-
ure 1. It reflects that the cumulative wealth first sharply grows
with the increase of §, and then it turns steady when ¢ reaches
a certain threshold, which is related to the specific dataset.
Therefore, VAWR is no longer sensitive when § reaches a
certain threshold. We finally set § =50 in other experiments.

5.5 The Effect of Transaction Costs

Actually, transaction cost is another important and non-
negligible problem, which contains commission fees and
taxes demanded by brokers and governments [Cover and
Thomas, 1990]. It should be pointed out that portfolio can-
not affect transaction costs. We follow the proportional trans-
action cost model proposed by [Blum and Kalai, 1999;
Borodin et al., 2004], which has wide application in the lit-
erature [Li et al., 2012; Huang et al., 2016; Ye et al., 2017].
Specifically, at the beginning of the ¢! trading day, the port-
folio manager adjusts his/her wealth from the last unregu-

lated portfolio Bt,l to a new portfolio by, and this action will

. . _ ¢ d VN
produce transaction costs: Cost(t) = 53 5_, ‘bt —-bi_4|
~ bj xj . .
where b)_, = ==L and c is transaction cost rate changed
t—1 bt—1-x¢—1

from 0% to 1%. The total wealth is calculated: S =
So TTiy [(be - x4) x (1 — Cost(t))).

All experimental results of transaction costs are reported
in Figure 2. When transaction cost rate increases, the cumu-
lative wealth gained by all competing strategies gradually de-
creases. However, the cumulative wealth curve of VAWR is
always above others and only inferior to GWR on TSE, which
shows that our VAWR gains more wealth under the same rate
and can withstand higher transaction costs. The break-even
rate of VAWR with respect to Market ranges from 0.4% to
1.0%. So, even when the trade is not frictionless in practical
application, VAWR can still perform satisfactorily.

6 Conclusion

This paper proposes a novel multi-period online portfolio se-
lection strategy VAWR. Firstly, VAWR learns the dynamic re-
lationships between different assets in different trading peri-
ods based on online VARMA model, which can help take full
advantage of historical data. Then, considering the minimiza-
tion of risks while keeping cumulative experience as much
as possible for producing a portfolio, we propose a modified
passive aggressive online learning technique. The experimen-
tal results show that VAWR is better than GWR and RMR in
cumulative return, APY and SR. Furthermore, VAWR passes
the statistical test and is robust to different parameter settings.
Also it can withstand higher transaction costs. These results
consistently present the feasibility and validity of VAWR.
However, there are still some problems: the performance on
TSE is not as good as GWR, which is likely to be caused by
using a definite size of weighted window. A better solution is
to make the data-driven choice. Also, it needs to explore more
advanced models for further optimizing regret bound.
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