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Abstract
Traditional modeling on the mean-variance port-
folio selection often assumes a full knowledge on
statistics of assets’ returns. It is, however, not al-
ways the case in real financial markets. This pa-
per deals with an ambiguous mean-variance port-
folio selection problem with a mixture model on
the returns of risky assets, where the proportions
of different component distributions are assumed
to be unknown to the investor, but being constants
(in any time instant). Taking into consideration the
updates of proportions from future observations is
essential to find an optimal policy with active learn-
ing feature, but makes the problem intractable when
we adopt the classical methods. Using reinforce-
ment learning, we derive an investment policy with
a learning feature in a two-level framework. In the
lower level, the time-decomposed approach (dy-
namic programming) is adopted to solve a family
of scenario subcases where in each case the series
of component distributions along multiple time pe-
riods is specified. At the upper level, a scenario-
decomposed approach (progressive hedging algo-
rithm) is applied in order to iteratively aggregate
the scenario solutions from the lower layer based on
the current knowledge on proportions, and this two-
level solution framework is repeated in a manner of
rolling horizon. We carry out experimental studies
to illustrate the execution of our policy scheme.

1 Introduction
The modern portfolio selection theory has started to play an
important role in both academia and industry of finance, af-
ter the seminal work of [Markowitz, 1952] who proposed
the renowned mean-variance (MV) portfolio selection frame-
work. After almost half century of struggle, [Li and Ng,
2000] succeeded in extending the Markowitz’s static model
into a multi-period setting and derived an analytical optimal
portfolio policy through a novel way that embeds the time-
inconsistent dynamic MV portfolio selection problem into
a series of time-consistent control problems that are able to
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be solved by dynamic programming (DP). Most of the exist-
ing results in portfolio selection, including the dynamic MV
problem with no-shorting constraint [Cui et al., 2014] and
mean-CVaR [Strub et al., 2019], are based on the assumption
that the investors have a full knowledge about the statistics of
returns, while in the pure MV case, the knowledge of means
and covariances of returns of risky assets will be sufficient.
However, this assumption is not often the case in the real
investment practice. In fact, the market condition is always
time-varying and even for a short stationary time period, its
statistical nature could still be unclear to investors. Therefore,
the portfolio policy with a learning feature becomes more de-
manding than the classical one relying only on the histori-
cal market information. Especially we can invoke nowadays,
for this purpose, the type of reinforcement learning (RL) al-
gorithms which have been rapidly developed on solving dy-
namic decision-making problems ([Sutton and Barto, 2018;
Bertsekas, 2019]).

In this paper, we consider an ambiguous MV portfolio se-
lection problem with a mixture distribution on the returns of
risky assets, where the proportions of different component
distributions are assumed to be unknown to the investor, but
being constants (in any time instant). It is reasonable to adopt
such a framework where all component distributions in the
mixture model are known to the investor in advance while
the proportions are not, as each component distribution could
be linked with a certain market mode (such as bull, bear, or
neutral), and investors could have knowledge on each specific
market mode from their past experience. On the other hand,
it is usually difficult to estimate the probability by which a
certain mode will occur in the future. Such an assumption
has been already adopted in the literature, see, for example,
[Zhu et al., 2014] who focused on a robust mean-CVaR prob-
lem. Moreover, given the prior belief of the investor, updat-
ing the proportions through foreseeable future observations
during the process of solving such an ambiguous problem
is indispensable for deriving an optimal policy with an ac-
tive-learning feature. Unfortunately, such a coupling makes
the solution process intractable by traditional methods such
as DP, due to the very nonlinear and nonseparable nature of
learning techniques in, for example, the expectation maxi-
mization (EM) algorithm [McLachlan and Peel, 2004] about
upgrading the components’ weights. We instead develop in
this paper a two-level framework in order to derive an invest-
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ment policy with a learning feature through the combination
of i) the time-decomposed approach DP in the lower level
for solving in parallel a family of modified scenario subprob-
lems where all the possible sequences of component distri-
butions are enumerated and listed in different scenarios and
ii) a scenario-decomposed method, progressive hedging al-
gorithm of [Rockafellar and Wets, 1991], in the upper level
in order to iteratively aggregate the scenario solutions from
lower layer based on the ambiguous proportions. Learning is
finally achieved in a manner of rolling horizon.

2 Problem Formulation
Consider a financial market with N risky assets and one
risk-free asset, and a finite investment horizon T . For t =
0, 1, . . . , T − 1, the total return of the riskless asset at time
t, denoted by rt, is deterministic and known, while the total
return of risky assets, denoted by et = (e1t , . . . , e

N
t )′ ∈ RN ,

is random and assumed to be independently and identically
distributed with a finite mixture model of M components,

et ∼
M∑
m=1

p∗mDm, (1)

where Dm stands for the mth component distribution with
given mean µm and covariance Σm, and all p∗m ∈ [0, 1] as the
corresponding mixed proportions satisfying

∑
m p
∗
m = 1 are

assumed to be fixed but unknown to the investor, leading to an
uncertain statistics of the random returns. In this ambiguous
situation, an MV investor seeks to develop some investment
strategy ut = (u1t , . . . , u

N
t )′ ∈ RN , where each unt repre-

sents the dollar amount invested in the risky asset n (hence
(xt − 1′ut) goes to the risk-free asset for the wealth level xt
and 1 ∈ RN is the all-one column vector), so that the follow-
ing dynamic MV problem with ambiguity is optimized,(

AMV (ε)
)

min
ut,∀t

Vare,p(xT |I0)

s.t. Ee,p[xT |I0] ≥ ε
xt+1 = rtxt + P′tut

pt+1 = g(It+1), t = 0, 1, . . . , T − 1,

where ε is the threshold of the expected final wealth specified
by the investor, Pt = (e1t−rt, . . . , eNt −rt)′ = et−rt1 ∈ RN
is known as the random excess total return at time t, and the
notations Vare,p and Ee,p are used to emphasize that the vari-
ance and expectation are conducted not only on the random-
ness from the returns but also on the ambiguity from the pro-
portions of the underlying mixture distribution. Note that the
former uncertainty is irreducible as it is inherent in the risky
asset by nature, while the latter is due to the lack of knowl-
edge of the investor thus being reducible through learning.
Besides, I0 = {(Dm)m, x0, p0} represents the initial infor-
mation set at time 0 which are given and contains knowledge
of each component distribution, the initial wealth, and the
prior belief of the investor, denoted by p0 = (p01, . . . , p0M )′,
on the ambiguous component proportions. For example, the
investor may start with p0m = 1/M for all m = 1, . . . ,M .
During the whole investment period, the wealth level and
assets’ prices will be observed. Given the pairs of newly-
observed asset’s price Snt+1 and the previous one Snt for every

risky asset n, the total return at time t + 1 can be computed
through

et+1 =
(S1

t+1

S1
t

, . . . ,
SNt+1

SNt

)′
∈ RN . (2)

For simplicity, the new information set will directly include
the realized return instead of the observed asset price and thus
it satisfies the dynamics It+1 = {It, et+1, xt+1,ut}. The
posterior belief on the ambiguous proportions, denoted by
pt+1, is then updated based on It+1 as in the nonlinear func-
tion g through EM algorithm that has been widely adopted to
numerically estimate the unknown parameters (here for the
unknown proportions) in the mixture model.

To solve
(
AMV (ε)

)
, we first borrow the idea from [Li and

Ng, 2000] to convert the problem into an equivalent form,(
AE(ε)

)
min
ut,∀t

Ee,p[(xT − ε)2|I0]

s.t. Ee,p[xT |I0] = ε, (3)
xt+1 = rtxt + P′tut, (4)
pt+1 = g(It+1), (5)
t = 0, 1, . . . , T − 1.

However, (5) is still intractable mainly due to the very nonlin-
ear and nonseparable characteristics in the EM learning pro-
cess. Thus, we bypass the difficulty by dropping this learning
constraint (5) and replacing it with a rolling-horizon way for
proportions updating. The two-level framework we are going
to propose in the next section is designed to solve a series of
truncated problems starting from time τ , τ = 0, 1, . . . , T −1,
to the fixed terminal time T as given below,(

AETτ (ε)
)

min
ut,∀t

Ee,p[(xT − ε)2|Iτ ]

s.t. Ee,p[xT |Iτ ] = ε

xt+1 = rtxt + P′tut

t = τ, τ + 1, . . . , T − 1.

3 A Two-level Portfolio Policy Scheme
The core feature of the two-level idea generally lies in sepa-
rating the ambiguity on proportions from the randomness in
returns, instead of coupling them together when dealing with
the overall problem. Since the two-level policy scheme relies
not only on the well-known DP for solving portfolio prob-
lems under each specific scenario but also on the progressive
hedging algorithm (PHA) with which some readers may not
be familiar, we will first provide some preliminaries on both
topics and for more details we suggest referring to [Li and
Ng, 2000] and [Rockafellar and Wets, 1991], respectively.

3.1 Classical Mean-variance Portfolio Policy
If there is no ambiguity on the proportions p∗m,

(
AMV (ε)

)
reduces to a classical problem with sufficient knowledge on
the returns (i.e., the mean and covariance of the mixture dis-
tribution), and can be solved analytically by following [Li and
Ng, 2000] directly. Obviously, each scenario subproblem of(
AET0 (ε)

)
under our ambiguous setting can be just counted

as one special case of [Li and Ng, 2000]. More precisely, a
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scenario j in our paper represents a sequence of component
distributions along the time horizon of length T . For instance,
one extreme scenario could be that the first component distri-
bution happens T times, of which the scenario probability is
(p∗1)T if we know its exact proportion in the underlying mix-
ture distribution. On top of that, we actually do not know at
time 0 which scenario will really occur in the future. How-
ever, once given a specific scenario j, we are fully aware of
the values of Ej [et] and Ej [ete′t] for all t as we assume, and
the scenario subproblem we are facing is(

AEj(ε)
)

min
ut,∀t

Ej [(xT − ε)2|I0]

s.t. Ej [xT |I0] = ε (6)
xt+1 = rtxt + P′tut, t = 0, 1, . . . , T − 1,

where the notation Ej is used to emphasize that the expecta-
tion on each et is computed under the scenario j. We continue
to follow the steps in [Li and Ng, 2000] to attach the equality
constraint (6) of the final wealth into the objective function
and generate the corresponding Lagrangian problem with a
Lagrangian multiplier λj > 0,(

Lj(ε, λj)
)

hj(λj ; ε) :=

min
ut,∀t

Ej [(xT − ε)2|I0]− λj(Ej [xT |I0]− ε)

= Ej
[
x2T − (2ε+ λj)xT |I0

]
+ ε2 + λjε

s.t. xt+1 = rtxt + P′tut, t = 0, 1, . . . , T − 1.

Solving
(
Lj(ε, λj)

)
is a standard application of DP that can

be found in [Li et al., 1998]. Furthermore, due to the convex-
ity of the problem, maximizing the dual function hj(λj ; ε)
w.r.t. λj would give rise the optimal feedback policy to(
AEj(ε)

)
. We list the final results as follows,

utj(xt; ε, λ
∗
j ) = −Ktjxt + Vtj(2ε+ λ∗j ), (7)

where
Ktj = E−1j [PtP

′
t]Ej [Pt]rt, (8)

Vtj =
E−1j [PtP

′
t]Ej [Pt]

2
(∏T−1

t̃=t+1 rt̃

) , with
T−1∏
t̃=T

(·) := 1, (9)

λ∗j =
ε (1− θj)− δjx0

θj/2
, and (10)

δj =
T−1∏
t=0

rt

(
1− Ej [P′t]E

−1
j [PtP

′
t]Ej [Pt]

)
,

θj =
T−1∑
t=0

[
Ej [P′t]E

−1
j [PtP

′
t]Ej [Pt]

·
T−1∏
t̃=t+1

(
1− Ej [P′t̃]E

−1
j

[
Pt̃P

′
t̃

]
Ej [Pt̃]

)]
,

Besides, Ej [Pt] = Ej [et]−rt1 and Ej [PtP
′
t] = Ej [ete

′
t]−

rtEj [et]1′ − rt1Ej [e′t] + r2t 1 · 1′.
However, the above results are in general not the feasible

solutions to
(
AET0 (ε)

)
, as they already presume the realiza-

tions of component distributions hereafter as if “stealing” the
future information. The PHA we are going to introduce next
is a general method to fix this issue.

Figure 1: Permutation scenario tree

3.2 Brief Introduction on Progressive Hedging
Algorithm

Let us consider an optimization problem expressed in a multi-
scenario form,

(P) min F (y) =
∑
j∈S

sjfj(y(j)) over all y ∈ A ∩N ,

where S represents a finite-scenario set and fj is a spe-
cific objective function if the scenario j happens. A pol-
icy y is defined as a mapping from S to RNT , and y(j) =
(y′0(j), y′1(j), . . . , y′T−1(j))′ denotes the actions taken at
each time under the scenario j. The overall objective is ad-
justed by the scenario probabilities sj’s that are evaluated at
the beginning. For the mixture distribution with M mem-
bers, the scenario set in rolling horizon is time-varying but
always contains a permutation of all components randomly
allocated to returns of (T − τ ) periods, therefore we have
|Sτ | = MT−τ at each time τ , and the scenario probability
is nothing but just the product of the estimated proportions
of corresponding components due to the statistical indepen-
dence of returns among different time periods. Figure 1 ex-
hibits a permutation scenario tree at τ = 0 from an example
of two-period problem with a three-component mixture distri-
bution thus nine scenarios, where the numbers in each circle
node represent the indices of the components that returns fol-
low at related times. It is clear that, for example, the scenario
j6’s probability is sj6 = p02 · p03.

The key feature of a qualified policy of multistage decision-
making problems, compared with those from static cases,
is that apart from satisfying the admissible set A as usual,
it must avoid leveraging on the anticipative message since
the information flow comes by time, i.e., it should also sat-
isfy the non-anticipative constraint N so that it can be im-
plemented in reality. The approach used in PHA to force
scenario-specific policies into an implementable one is to take
conditional expectations based on the subtree starting from
each node within each scenario bundle. To see this, let us re-
visit the problem in Figure 1. The scenario-based solution,
denoted by y0, satisfies y0(j) = arg min (Pj) for every
j ∈ S = {j1, . . . , j9}, where (Pj) := {miny fj(y) over y ∈
Aj} is the scenario subproblem (without foreseen restric-
tion) and Aj constitutes A := {y | y(j) ∈ Aj ∀j ∈ S}.
Then the implementable policy in this example, denoted by
ŷ0 = ((ŷ00)′, (ŷ01)′)′ : S → R2N , is computed such that i)
when t = 0, ŷ00(j) =

∑
k∈S sky

0
0(k) for each j ∈ S and
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ii) when t = 1 there are three bundles (subtrees) and for the
scenarios belonging to the first bundle j ∈ J1 = {j1, j2, j3},
we have ŷ01(j) =

∑
k∈J1

[sk/(sj1 + sj2 + sj3)]y01(k), and
similar procedures to obtain the values of ŷ01 on the bundles
J2 = {j4, j5, j6} and J3 = {j7, j8, j9}.

Based on the implementable policy ŷ0 aggregated from
the scenario-specific solutions, PHA then starts to iteratively
(ν = 0, 1, . . .) solve the augmented Lagrangian problems,

(Pνj ) min fj(y)+y′wν(j)+
1

2
η|y− ŷν(j)|22 over y ∈ Aj ,

for every j ∈ S, where wν serves as the Lagrangian mul-
tiplier with initial value w0(j) = 0 ∀j, | · |2 denotes the
2-norm, and η > 0 is the predetermined penalty parameter.
The optimal solutions of all (Pνj ) form yν+1, which will be
aggregated again into an implementable policy ŷν+1 used in
(Pν+1

j ) for all j in the next iteration. The Lagrangian mul-
tiplier is then updated via wν+1 = wν + η(yν+1 − ŷν+1).
Eventually, ŷν+1 will converge to the real optimum y∗ of the
primal problem (P) if fj(y) is convex w.r.t. y for every j.

3.3 Two-level Reinforcement Learning Framework
Now it is ready to come up with our two-level (TL) portfo-
lio policy algorithm. It is actually an online rolling-horizon
scheme. Since the policy considered in this paper belongs
to the type of pre-committed ones, we fix at each time τ the
value of λ, the Lagrangian multiplier to deal with the equal-
ity constraint (3), at λ0 that will be decided by a special sce-
nario j0 using only the prior knowledge of the investor. More
specifically, let λ0 = λ∗j0 in (10), where δj0 and θj0 are cal-
culated based on Ej0 [et] =

∑
m p0mµm and Ej0 [ete

′
t] =∑

m p0m(µmµ
′
m+Σm) for all t = 0, 1, . . . , T −1. Note that

p0m is the prior belief of the investor on the mth component
of the mixture distribution. The TL procedure is presented
through multiple steps as follows:

Step 0: Importing Initial Information
We specify x0 and ε, configure λ0, and set τ = 0.

Step 1: Solving the Truncated Problem at Time τ
This is the key part of the TL idea in order to solve

(
AETτ (ε)

)
.

Step 1.1: lower level for scenario subproblems. We solve
the problem

(
AEj(ε)

)
subject to t = τ, τ + 1, . . . , T − 1 by

the classical techniques as summarized in the Subsection 3.1
for each scenario j. Let us denote the feedback solution by

u0
tj(xt; ε, λ0) = −K0

tjxt + V0
tj(2ε+ λ0). (11)

Step 1.2: upper level for iterative aggregations. These are
done in terms of policies’ coefficients:

Step 1.2.0: initialization. Set ν = 0, the penalty parame-
ter η, and the tolerance level tol. The initial implementable
feedback policy at time t, û0

t , is just given by

û0
t (xt; ε, λ0) = −K̂0

txt + V̂0
t (2ε+ λ0), (12)

where
K̂0
t =

∑
j∈Jt

(sτj/
∑
j̃∈Jt

sτ j̃)K
0
tj , (13)

V̂0
t =

∑
j∈Jt

(sτj/
∑
j̃∈Jt

sτ j̃)V
0
tj , (14)

and K0
tj and V0

tj are coming from the lower level in (11), and
sτj is the scenario probability calculated based on the belief
pτ of the proportions at time τ , and Jt is a scenario bundle at
time t of a (T − τ )-stage permutation scenario tree. In fact,
there is no difference for the aggregated results on different
bundles from the same time stage of the permutation scenario
tree structure, since the remaining subtrees starting from any
node at the same time stage are actually identical. Therefore,
we do not need to specify a bundle-oriented subscript for the
coefficients K̂0

t and V̂0
t in (13) and (14), while only a time

index t is enough for them. For simplicity, we could always
select Jt as the first scenario bundle at each time stage t. The
initial w0

tj is set to be 0 for all t and all j. In fact, wν
tj can be

deemed as an affine function w.r.t. xt given the parameters ε
and λ0, that is, wν

tj(xt; ε, λ0) = Wν
tjxt +Xν

tj(2ε+λ0) with
W0

tj and X0
tj being zero vectors for ν = 0.

Step 1.2.1: solve and aggregate. In the following we are
going to deal with the scenario-based augmented Lagrangian
problem formed at time τ for different scenarios (note that we
have already attached the equality constraint Ej [xT |Iτ ] = ε
into the objective by the Lagrangian multiplier λ0 and simpli-
fied the expression of the following),(

LAEνj (ε)
)

min
ut,∀t

Ej
[
x2T − (2ε+ λ0)xT |Iτ

]
+ ε2 + λ0ε

+

T−1∑
t=τ

u′tw
ν
tj +

T−1∑
t=τ

1

2
η|ut − ûνt |22

s.t. xt+1 = rtxt + P′tut,

t = τ, τ + 1, . . . , T − 1.

It turns out that, given ûνt = −K̂ν
t xt + V̂ν

t (2ε + λ0) and
wν
tj = Wν

tjxt + Xν
tj(2ε + λ0), the optimal solution of(

LAEνj (ε)
)

can be obtained analytically by DP 1 again, lead-
ing to the following result, denoted by uν+1

tj (xt; ε, λ0), which
is treated as the scenario-specific policy from

(
AEνj (ε)

)
,

uν+1
tj (xt; ε, λ0) = −Kν+1

tj xt + Vν+1
tj (2ε+ λ0), (15)

and the two coefficients satisfy the backward recursions de-
rived from adopting DP on solving

(
LAEνj (ε)

)
,

Kν+1
tj =

(
2aν(t+1)jEj [PtP

′
t] + ηI

)−1
·(2aν(t+1)jrtEj [Pt] + Wν

tj + ηK̂ν
t ), (16)

Vν+1
tj =

(
2aν(t+1)jEj [PtP

′
t] + ηI

)−1
·(bν(t+1)jEj [Pt]−Xν

tj + ηV̂ν
t ), (17)

where I is an identity matrix with size N , and aν(t+1)j and
bν(t+1)j are two elements in our optimal cost-to-go function
of
(
LAEνj (ε)

)
with the terminal conditions aνTj = bνTj = 1

1We ignore the derivation details and only list some necessary
recursive formulas here, as this is a standard application of DP.
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for all j and all ν, and they satisfy the backward recursions

aν+1
tj = aν(t+1)j

[
r2t − 2rtEj [P′t]K

ν+1
tj

+(Kν+1
tj )′Ej [PtP

′
t]K

ν+1
tj

]
+

1

2
η
[
(Kν+1

tj )′Kν+1
tj − 2(Kν+1

tj )′K̂ν
t

+(K̂ν
t )′K̂ν

t

]
− (Kν+1

tj )′Wν
tj ,

bν+1
tj = 2aν(t+1)j(K

ν+1
tj )′Ej [PtP

′
t]V

ν+1
tj + η(Kν+1

tj )′Vν+1
tj

−2aν(t+1)jrtEj [P
′
t]V

ν+1
tj + (Kν+1

tj )′Xν
tj

−(Vν+1
tj )′Wν

tj − η(Kν+1
tj )′V̂ν

t

−η(Vν+1
tj )′K̂ν

t + η(K̂ν
t )′V̂ν

t

−bν(t+1)jEj [P
′
t]K

ν+1
tj + bν(t+1)jrt.

Based on uν+1
tj in (15), we then get the related implemented

policy denoted by ûν+1
t with coefficients similar as in (12),

ûν+1
t (xt; ε, λ0) = −K̂ν+1

t xt + V̂ν+1
t (2ε+ λ0), (18)

where K̂ν+1
t =

∑
j∈Jt

(sτj/
∑
j̃∈Jt

sτ j̃)K
ν+1
tj , and V̂ν+1

t =∑
j∈Jt

(sτj/
∑
j̃∈Jt

sτ j̃)V
ν+1
tj . Finally, the Lagrangian mul-

tiplier wν+1
tj is updated through

wν+1
tj (xt; ε, λ0) = Wν+1

tj xt + Xν+1
tj (2ε+ λ0), (19)

where coefficients satisfy Wν+1
tj = Wν

tj +η(K̂ν+1
t −Kν+1

tj )

and Xν+1
tj = Xν

tj + η(Vν+1
tj − V̂ν+1

t ).
Step 1.2.2: check the stopping criteria. Let us calculate

the distance dis between two iterative results defined by co-
efficients dis :=

∑T−1
t=τ [ |K̂ν+1

t − K̂ν
t |2 + |V̂ν+1

t − V̂ν
t |2 +

1/η2(|Ŵν+1
t −Ŵν

t |2+ |X̂ν+1
t −X̂ν

t |2) ]. If dis > tol, we go
back to the Step 1.2.1 by replacing ν with ν + 1; otherwise,
we stop and execute the resulted time-τ policy only, that is,
the action outputted by our TL scheme at time τ based on the
current wealth xτ is

uTLτ (xτ ; ε, λ0) = −KTL
τ xτ + VTL

τ (2ε+ λ0), (20)

where KTL
τ = K̂ν+1

τ and VTL
τ = V̂ν+1

τ are given in (18).

Step 2: Learning and Rolling Horizon
If τ = T − 1, TL process is done; otherwise let us move for-
ward to the time τ + 1. We update the information set Iτ+1.
In other words, we observe the new assets prices and calcu-
late the realized total return eτ+1 by (2). We then update the
wealth level xτ+1 by (4) and proportions belief pτ+1 by Al-
gorithm 1 based on Iτ+1 to achieve the learning process of
the investor, and it is then utilized to calculate the new sce-
nario probabilities s(τ+1)j’s of a new permutation scenario
tree with remaining time length (T − τ − 1). Armed with
the learning results, we are now going to solve the truncated
problem at time τ+1, that is, we go back to the Step 1 and re-
place τ there by τ +1 and take into account the new posterior
belief pτ+1 on the proportions and proceed thereafter.

Algorithm 1 Expectation maximization algorithm on esti-
mating mixing proportions pτ+1 at time τ + 1

Input: Historical total returns Rt till time τ + 1, component
distributions Dm, m = 1, . . . ,M , and the tolerance level ξ
Output: Posterior mixing proportions pτ+1

1: Let κ = 0 and assign an initial value (for example, former
proportions pτ ) to qκ := (qκ1 , . . . , q

κ
M )′.

2: Calculate for every t = 1, . . . , τ + 1 and every m,

γm(Rt|qκ) :=
qκmDm(Rt)∑M
m̃=1 q

κ
m̃Dm̃(Rt)

.

3: Set qκ+1
m = 1

τ+1

∑τ+1
t=1 γm(Rt|qκ) for each m.

4: if |qκ+1 − qκ|2 < ξ then
5: Set pτ+1 = qκ+1, and return pτ+1.
6: else
7: κ ← κ+ 1, and go back to line 2
8: end if

In the above we show our TL policy framework step by
step on solving the ambiguous MV portfolio selection prob-
lem, where we could see a close interaction between the
time-decomposed approach DP and the scenario-decomposed
method PHA. Note that the convex nature of

(
Lj(ε, λj)

)
for

each scenario j guarantees the convergence of the TL method.

4 Experimental Study
In this section, we illustrate how to calculate those key coeffi-
cients that appears in our TL policy through a concrete exam-
ple, and compare with another non-learning (NL) policy on
their gaps from the full-knowledge (FK) policy, in order to
reveal the significance of learning in an ambiguous financial
market. This experimental work is done in MATLAB by the
Monte Carlo simulations of returns from a Gaussian mixture
model (GMM) as the underlying mixture distribution.
Example 1 (Gaussian mixture model). Consider a market
with three risky assets (N = 3) and one risk-free asset, and
an investment plan of forty periods (T = 40). The total return
of risky assets eτ , τ = 0, 1, . . . , T − 1, is assumed to i.i.d.
follow a GMM

∑M
m=1 p

∗
mN (µm,Σm) with three components

(M = 3), where each N (µm,Σm) represents a multivariate
Gaussian distribution with distinct means µ1 = (1.162, 1.246,
1.228)′, µ2 = (1,1,1)′, and µ3 = (0.962, 0.846, 0.828)′ that
could reflect different market modes (bull, neutral, and bear)
but a same covariance for simplicity,

Σm =

[
0.0146 0.0187 0.0145
0.0187 0.0854 0.0104
0.0145 0.0104 0.0289

]
, m = 1, 2, 3.

It is reasonable to do so, since people in practice find that the
means of stock returns fluctuate significantly when the mar-
ket mode changes whereas the variances do not. The true
proportions are set to be p∗1 = 0.5, p∗2 = 0.2 and p∗3 = 0.3 but
are unknown to the investor. The total risk-free rate is rτ =
1.04 for all τ . Suppose the investor’s initial wealth is scaled
to be x0 = 1 and the target expected final wealth is ε = 2.

We analyse the above example from the following aspects.
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Figure 2: Proportions learning in both pre-investing (τ = −19 to 0)
and rolling-horizon (τ = 0 to 40) periods

Prior belief formation and proportions learning. Since
assets’ returns can be directly collected from the market even
without any real investment, a suitable action for the investor
in an ambiguous environment would be waiting and observ-
ing for a while before really entering into it. We adopt a pre-
investing learning period with length T /2 = 20 for the investor
to form the prior belief p0 on the proportions before starting
to do the investment at τ = 0. In our experiment, this is done
by sampling T /2 returns (corresponding to the time from τ =
−(T/2−1) to τ = 0) based on the real GMM and the prior be-
lief is estimated by EM method (Algorithm 1) as well using
these samples. This leads to p0 = (0.3808,0.0251,0.5941)′.
Another set of T samples are also generated for the rolling-
horizon learning period in our TL framework after time 0. In
fact at any time τ , the whole historical observations with size
of τ+T /2 will be used to update the proportions. Figure 2
exhibits these learning outcomes, where each horizontal line
represents the level of true proportion p∗m while the waved
curves represent the value movements of each pτm w.r.t. time
τ based on one series of returns’ samples in our experiment.
The vertical dotted line points out the best estimation at τ =
22. Note that the learning by EM in general will finally con-
verge to their true values as long as T is larger enough.

Comparison among different policies. According to the
market data given in Example 1 and the prior belief obtained
above, we get λ0 = −0.0079. After assigning η and tol, we
calculate KTL

τ and VTL
τ in (20) for τ = 0, 1, . . . , T − 1, the

two core coefficients in our TL policy uTLτ . In order to eval-
uate the TL scheme, another two kinds of policies are also
obtained: the FK policy as a benchmark and the NL policy.
More precisely, KFK

τ and VFK
τ can be computed via Kτj∗

and Vτj∗ in (7) for a special scenario j∗, under which Ej∗ [et]
and Ej∗ [ete

′
t] are determined by real p∗m’s. By replacing j∗

with j0 that depends only on p0, we get KNL
τ and VNL

τ of the
NL policy. Note that the FK policy cannot really be imple-
mented in the ambiguous market and the NL policy treats the
prior proportions as the “true” ones (thus no learning behav-
iors occur ever since). We finally demonstrate the improve-
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Figure 3: Norms of differences of coefficients in the two-level (non-
learning) policy and the full-knowledge policy

ment on the policy derivation with learning. This is done by
calculating 2-norm of differences of key coefficients among
three types of policies above and the results are listed in Fig-
ure 3. We see that our TL framework benefits from learning
in general as it produces in the ambiguous environment a bet-
ter policy that is closer to the benchmark, while the NL case
keeps accumulating errors as time goes by. On the other hand,
however, the TL policy is also easily affected by the learning
outcome, since its closest distance to the FK policy occurs
at the same time when the proportions estimation is the best
(when τ = 22 with p22 = (0.4627,0.2014,0.3360)′), but after
that the performance becomes worse due to the fluctuation on
learning. This phenomenon is also detected when we change
the pre-learning time length or the investment time horizon.

5 Conclusion
In this paper, we deal with an ambiguous mean-variance port-
folio selection problem where the returns of risky assets fol-
low a mixture distribution, and each component distribution
is completely given while their proportions are not. Although
this problem can be formulated as usual, demanding on the
successive learning of the unknown proportions in the solu-
tion process makes it intractable by the conventional meth-
ods. We propose a two-level (TL) scheme from reinforcement
learning prospective to derive suboptimal policies but with
learning feature from a type of amended problems. Our TL
approach combines the exact dynamic programming adopted
in the lower level to deal with the uncertainty from the ran-
dom returns given a certain series of base distributions along
the future times, and a scenario-decomposed method progres-
sive hedging algorithm applied in the upper layer to handle
the uncertainty from the ambiguous proportions, and learn-
ing is achieved in a rolling-horizon way. Although several
experiments have demonstrated the effectiveness of our TL
algorithm, it could still be improved in the future by incorpo-
rating more active learning aspects, in the sense that all pos-
sible future learning results could be considered in advance
when solving the approximated primal problem at time 0.
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