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Abstract
Networked observational data presents new op-
portunities for learning individual causal effects,
which plays an indispensable role in decision mak-
ing. Such data poses the challenge of confound-
ing bias. Previous work presents two desiderata to
handle confounding bias. On the treatment group
level, we aim to balance the distributions of con-
founder representations. On the individual level,
it is desirable to capture patterns of hidden con-
founders that predict treatment assignments. Ex-
isting methods show the potential of utilizing net-
work information to handle confounding bias, but
they only try to satisfy one of the two desiderata.
This is because the two desiderata seem to contra-
dict each other. When the two distributions of con-
founder representations are highly overlapped, then
we confront the undiscriminating problem between
the treated and the controlled. In this work, we for-
mulate the two desiderata as a minimax game. We
propose IGNITE that learns representations of con-
founders from networked observational data, which
is trained by a minimax game to achieve the two
desiderata. Experiments verify the efficacy of IG-
NITE on two datasets under various settings.

1 Introduction
Networked observational data grants us a new source of learn-
ing individual treatment effects (ITEs), which plays a crucial
role in rational decision making across a myriad of influential
fintech related applications (e.g., economics, marketing, and
advertising etc.). For example, in a social network with blog
service, a blogger who aims to attract readers to adopt fin-
tech products (e.g., investment apps like Robinhood1 or on-
line payment platforms like Alipay2) may want to determine
which browsing device is more suitable to promote her arti-
cles. This requires us to learn the causal effect of browsing

1https://robinhood.com/
2https://www.alipay.com/

devices (treatments) on the number of readers who adopt fin-
tech products after reading her articles (outcomes).

Learning ITEs from networked observational data requires
controlling confounding bias. Confounding bias is the in-
fluence of confounders – the variables causally influencing
treatment assignments and outcomes simultaneously. How-
ever, these confounders are extremely difficult to measure as
they will induce the confounding bias even if observed fea-
tures have been properly adjusted for [Pearl, 2009; Kallus and
Zhou, 2018; Veitch et al., 2019; Guo et al., 2020a].

For example, measuring a blogger’s writing style (con-
founders) can be extremely difficult, but it often causally in-
fluences (1) which type of browsing device is more frequently
by readers used to read her blogs; and (2) readers’ adoptions
of fintech products resulting from her articles. Without be-
ing properly controlled, hidden confounding bias can result
in overestimated or underestimated causal effects.

From existing methods, we find two desiderata that are
used to handle confounding bias. On the group level, it is de-
sirable to balance treatment groups with control groups w.r.t.
the distributions of confounder representations [Shalit et al.,
2017; Yao et al., 2018]. On the individual level, it is shown
to be helpful to capture patterns of hidden confounders that
can predict each individual’s treatment assignment [Louizos
et al., 2017; Rosenbaum and Rubin, 1983]. Regarding net-
worked observational data, a line of recent work [Veitch et
al., 2019; Guo et al., 2020c] found that network information
can be utilized to mitigate hidden confounding bias. For ex-
ample, even though it is hard to measure the writing style of
a blogger, we can partially catch it by considering her net-
work patterns such as centrality measures and which commu-
nity she is likely to belong to. This is often achieved through
learning representations of hidden confounders from network
structure among observational data. However, most of the
existing methods can only satisfy one of the two desiderata.
The main reason behind this is that the two desiderata seem
to contradict each other. Balancing the distributions of con-
founder representations often makes it more difficult to dis-
criminate the treated instances from the controlled ones. We
notice that confounders’ representations and predicted treat-
ments are often computed by two separate components.
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This fact implies that we can develop a minimax game
to optimize each component alternatively toward the two
desiderata. In this game, we train a confounder representa-
tion function through playing against a discriminator func-
tion. The confounder representation function seeks to balance
the distributions of confounders’ representations. At the same
time, the discriminator function aims to distinguish between
instances under treatment and those under control.

We summarize the main contributions of this work as:

• We formulate the two desiderata of handling confound-
ing bias as a minimax game.

• We propose the mInimax Game based Network ITE es-
timator (IGNITE). It learns ITEs from networked obser-
vational data. By playing the proposed minimax game,
IGNITE balances confounder representations between
the treated and the controlled and learns confounder rep-
resentations to predict the observed treatments.

• Extensive experiments show that IGNITE consistently
outperforms 9 state of the art baselines across datasets
under various settings.

2 Problem Statement
In this section, we start with technical preliminaries. Then
the problem statement is presented.

In networked observational data, each instance is observed
with its features xi, treatment ti, and outcome yi. Each in-
stances is connected with its neighbors by a underlying net-
work represented by its adjacency matrix A. Let n denote the
number of instances, then A ∈ {0, 1}n×n. Ai,j = Aj,i = 1
(0) means there is an (no) edge between the i-th and the j-th
instance. Thus, the tuple ({xi, ti, yi}ni=1,A) denotes a net-
worked observational dataset. In this work, we consider re-
alistic scenarios where the weight of an edge (the importance
of the edge between the two instances) may not be accurately
measured. This implies that there exists an unseen weighted
network Ã which represents the importance of edges in terms
of their influence on confounders3. For simplicity, we adopt
the setting of [Shalit et al., 2017; Louizos et al., 2017;
Yao et al., 2018] where the treatment takes binary values, i.e.,
t ∈ {0, 1}. Then ti = 1 (ti = 0) means the i-th instance is
under treatment (control).

To define the individual treatment effect (ITE), follow-
ing [Rubin, 2005], we assume that, for each instance-
treatment pair (i, t), there exists a potential outcome yti .
Thus, the observed outcome can be written as a function
of the observed treatment and the potential outcomes, i.e.,
yi = tiy

1
i + (1 − ti)y0i . The unobserved outcome y1−tii is

often referred to as the counterfactual outcome. Then the ITE
of instance i is defined as:

τi = y1i − y0i , (1)

which measures the improvement in outcome caused by the
treatment for instance i. Then the average treatment effect
(ATE) is defined as 1

n

∑n
i τi. Following [Veitch et al., 2019;

3Without loss of generality, we assume that the observed network
is undirected.

Guo et al., 2020c], we adopt a real-world setting where hid-
den confounders exist. This means the unconfoundedness as-
sumption [Rubin, 2005; Pearl, 2009] does not hold as:

y1, y0 6⊥⊥ t|x. (2)

Instead, similar to [Veitch et al., 2019; Guo et al., 2020c], we
assume the existence of latent confounders h such that:

y1, y0 ⊥⊥ t|h. (3)

This means controlling the influence of latent confounders
hi leads to unbiased estimates of ITEs. Note that we cannot
observe the latent confounders from networked observational
data. But we can approximate them by learning representa-
tions of them from networked observational data. Finally, we
present the problem statement:

Learning ITEs from Networked Observational Data.
Given the networked observational data ({xi, ti, yi}ni=1,A)
with hidden confounders and unknown edge weights, we aim
to develop a causal inference framework which maps each
instance (xi, ti, yi) along with the network information A to
learn the ITE τi of each instance i.

3 Methodology
This section presents the two desiderata of handling con-
founding bias and the description of the proposed framework.

3.1 Two Desiderata of Handling Confounding Bias
Hidden confounders pose the main challenge of learning ITEs
from networked observational data. To handle confounding
bias, existing methods present two desiderata.

First, on the group level, it is desirable to balance the distri-
butions of confounders (or their representations) between the
treated and the controlled. A variety of representation balanc-
ing methods for learning ITEs from observational data have
been developed based on this principle [Shalit et al., 2017;
Yao et al., 2018]. Let ĥi denote the approximated latent
confounders’ representation of instance i, the representation
balancing methods that follow the first desideratum mini-
mize a divergence metric (e.g., Wasserstein distance) between
P (ĥi|xi, ti = 1) and P (ĥi|xi, ti = 0). The second desider-
atum, on the individual level, aims to capture the patterns of
hidden confounders that are useful in predicting treatments.
Following this idea, methods proposed in [Louizos et al.,
2017; Veitch et al., 2019] learn a function that predicts the ob-
served treatment of each individual based on the confounders’
representations. Intuitively, this treatment prediction func-
tion mimics the treatment assignment mechanism that gen-
erates the data. Therefore, through learning the treatment
prediction function, we can capture the information of hid-
den confounders that explains how the observed treatments
are assigned. However, none of the existing methods can sat-
isfy the two desiderata together because they seem to con-
tradict each other. Intuitively, when the divergence between
P (ĥi|xi, ti = 1) and P (ĥi|xi, ti = 0) becomes smaller, it
becomes more difficult to distinguish between a treated in-
stance and a controlled one by their confounders’ representa-
tions. We introduce how to resolve this issue with a minimax
game in the next section.
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3.2 The Proposed Framework: IGNITE
We observe that confounders’ representations and treatment
predictions are often computed by two separate modules.
This implies we can develop a minimax game where they
are iteratively optimized toward satisfying the two desider-
ata. We propose IGNITE to learn ITEs from networked ob-
servational data. Here, we first introduce the components of
IGNITE, then we formulate its loss function including the
minimax game for handling confounding bias.

Components of IGNITE. IGNITE has three components:
the confounder representation function, the treatment group’s
critic function, and the outcome inference function.

Confounder Representation Function. Here, we define the
confounder representation function g : X × A → Rd. This
function maps the features and the adjacency matrix of the
network structure into a d-dimensional representation space
to approximate the confounders. To quantify the importance
of each edge in its influence on the confounders, we extend
the Graph Attention Network layers (GAT) [Veličković et al.,
2018]. The i-th instance’s confounder representation is a
function of its features and network structure. For the sim-
plicity of notation, we formulate the confounder representa-
tion function g with a single GAT layer:

ĥi = g(xi,A) =‖Kk=1 δ(
∑
j∈Ni

αkijW
kxj) (4)

where ‖ denotes concatenation. Ni is the set of neighbors
of the i-th instance in the network A. K is the number of
attention heads. Each head of the attention mechanism is
a weighted aggregation of information from the neighbors.
Wk ∈ Rd×m is the weight matrix of the k-th attention head.
δ is the ELU unit. We compute the normalized attention co-
efficients αkij as:

αkij =
exp(δ′(aT [Wkxi ‖Wkxj ]))∑
l∈Ni

exp(δ′(aT [Wkxi ‖Wkxl]))
, (5)

where δ′ denotes the LeakyReLU unit and a ∈ R2d denotes
a weight vector. Stacking multiple GAT layers can help us
capture Multi-hop relations.

Treatment Group Critic Function. The critic function D :
Rd → R maps the confounders’ representation of an instance
to a real value. Larger value of D(ĥi) indicates that instance
i is more likely to receive treatment. Following [Gulrajani
et al., 2017], we parameterize it with a neural network that
consists of fully connected layers and LeakyReLU units.

Outcome Inference Function. We infer outcomes of an in-
stance based on its confounders’ representation. We define
the output function f : Rd × {0, 1} → R. We parame-
terize the output function of each treatment with fully con-
nected layers with ELU units (except the last layer). We can
set t = ti or 1 − ti to let the corresponding layers infer the
factual or counterfactual outcome.

With these three components, given the features of the i-
th instance xi, the treatment t, and the adjacency matrix A,
outcomes are inferred as ŷti = f(g(xi,A), t), where ŷti is
the inferred outcome of instance i under treatment t. After
training, it can infer the ITE of instance i as τ̂i = ŷ1i − ŷ0i and
estimate the ATE as 1

n

∑
i τ̂i.

A Minimax Game for Handling Confounding Bias.
Note that function g is used to compute confounders’ rep-
resentations ĥi. Here, we formulate the two desiderata of
handling confounding bias as a minimax game:

min
g

max
D
LCB =

1

n1

∑
i:ti=1

D(ĥi)−
1

n0

∑
i:ti=0

D(ĥi), (6)

where n1 and n0 are the number of instances under treatment
and control. In the maximization stage, the critic function
D is trained to maximize the difference between the value it
assigns for the treated instances and those for the controlled
ones. In the minimization stage, the confounder represen-
tation function g is used to fool the treatment group critic D.
This step balances the distributions of confounders’ represen-
tations because it makes it more difficult to distinguish the
confounders’ representation of a treated instance from that of
a controlled one. To avoid difficulty in training (e.g., vanish-
ing gradients), we follow [Gulrajani et al., 2017] to limit the
functional space of the treatment group critic D to a subset
of 1-Lipschitz functions. To achieve this, we add a gradient
penalty term to the maximization stage. It is computed on n′
randomly sampled pairs of treated and controlled instances:

LGP = − 1

n′

n′∑
i=1

λ(|| 5h̃i
D(h̃i)||2 − 1)2, (7)

where h̃i = εĥj + (1− ε)ĥk, (j, k) is one of the n′ randomly
sampled pairs. Each pair contains a treated instance and a
controlled one. || · ||2 denotes L2 norm and ε ∼ U [0, 1]. We
set the parameter λ = 10 as in [Gulrajani et al., 2017]. In
addition, we aim to achieve accurate inference of factual out-
comes. We minimize the mean squared error on the inferred
factual outcomes:

LFO =
1

n

∑
i

(ŷtii − yi)
2, (8)

Finally, we present the objective functions of the proposed
minimax game in two stages:

max
D
LD = β(LCB + LGP ),

min
g
Lg = LFO + β(LCB),

(9)

where β ≥ 0 is a hyperparameters controlling the trade-off
between the objectives. IGNITE is trained with backpropa-
gation by iteratively optimizing LD and Lg .

4 Experiments
In this section, we investigate the two following research
questions: RQ1. In learning ITEs from networked obser-
vational data, is the proposed minimax game more effective
in handling confounding bias than representation balancing,
treatment prediction or a combination of them? RQ2. How
does the hyperparameter β affect the performance of the pro-
posed framework, IGNITE?
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4.1 Dataset Description
It is extremely challenging to collect ground truth of ITEs
because each instance can only be observed with one of the
potential outcomes. For instance, we can only observe y1i
of the i-th blogger if she has more readers using mobile de-
vices. Thus, we follow previous work [Veitch et al., 2019;
Guo et al., 2020c] to create semi-synthetic datasets. To mimic
real-world situations, we consider hidden confounders and
unobserved edge weights. We include the steps to repro-
duce the semi-synthetic datasets from the publicly available
datasets (BlogCatalog and Flickr).

BlogCatalog (BC) is a social network with blog service.
Each instance is a blogger. Each edge signifies the friendship
between two bloggers. The features are the keywords of each
blogger’s articles. We extend the BlogCatalog dataset [Li et
al., 2019a] by synthesizing (a) the outcomes – the number of
readers who adopt fintech products after reading each blog-
ger’s work; and (b) the treatment assignments – whether work
of a blogger is browsed more on desktops or on mobile de-
vices. The following assumptions are made: (1) Readers ei-
ther read on mobile devices or desktops. A blogger is treated
(controlled) if her blogs are more popular on mobile devices
(desktops). (2) A blogger’s articles are either more popular
on mobile devices or desktops. (3) A blogger’s treatment and
outcomes can be influenced by her topics and her neighbors’
topics. To synthesize treatments and outcomes, we train an
LDA topic model on a large corpus. Then the centroids of
the two treatment groups are defined as: (i) the topic distri-
bution of a randomly selected blogger is the centroid of the
treatment group, denoted by r̄1; (ii) the centroid of the con-
trolled, r̄0, is the average topic distribution of all the bloggers.
Then the treatments and outcomes are generated based on the
similarity between the topic distributions of bloggers and the
two centroids. Let r(xi) denote the topic distribution of the
i-th blogger, we model the readers’ preference of browsing
devices on the blogger’s content:

Pr(t = 1|xi, Ã) =
exp(p1i )

exp(p1i ) + exp(p0i )
, (10)

where pti is calculated as:

pti = κ1r(xi)
T r̄t + κ2(Ãr(xj))

T r̄t, (11)

where t ∈ {0, 1}. κ1 ≥ 0 (κ2 ≥ 0) signifies the strength of
the confounding bias resulting from a blogger’s (her neigh-
bors’) topics. When κ1 = κ2 = 0 the treatment assignment
is random and the greater the value κ1 and κ2 are, the more
significant the bias of device preference is. Ã denotes the
weighted adjacency matrix, where each entry Ãij denotes
the importance of an edge with related to the influence on
confounding bias. To emphasize the fact that in many real-
world networks the edge weights are unknown, we only let
the unweighted adjacency matrix A be observed in the data.
However, the unobserved weighted adjacency matrix Ã is the
one that influences the values of treatments and outcomes.
Thus, an ideal causal inference approach needs to catch the
weights of each edge. If Aij = 1, we sample Ãij = Ãji ∼
U(0.8, 1.2); otherwise, we set Ãij = Ãji = 0. Outcomes of

Dataset Instances Edges Features κ2 Average ATE± STD

BC 5,196 173,468 8,189
0.5 6.079± 2.962
1 9.012± 3.602
2 20.003± 8.132

Flickr 7,575 239,738 12,047
0.5 5.130± 0.892
1 7.576± 0.715
2 13.445± 2.093

Table 1: Statistics of the Datasets

a blogger are simulated as:

yt(xi) = C(p0i + tp1i ) + ε, (12)

where C is a scaling factor and ε ∼ N (0, 1). We set C =
5, κ1 = 10, κ2 ∈ {0.5, 1, 2}. 50 LDA topics are learned from
the training corpus. Then we reduce the vocabulary by taking
the union of the most probable 100 words from each topic,
which results in 2,173 bag-of-word features.

Flickr is an image and video sharing service. Each in-
stance refers to a user and each edge represents the social
relationship between two users. The features of each user
represent a list of tags of interest. We adopt the same settings
and assumptions as we do for the BC datasets. Thus, we study
the ITE of being viewed on mobile devices on the number of
readers’ adoptions of fintech products recommended by the
user’s images and videos. We learn 50 topics from the train-
ing corpus using LDA and concatenate the top 25 words of
each topic which reduces the feature dimension to 1,210. We
set the parameters the same as the BC datasets.

In Table 1, we present the statistics of the semi-synthetic
datasets. The average and standard deviation of ATE are cal-
culated over the 10 runs under each setting of parameters.
The ATE varies because the true edge weights are randomly
sampled from the uniform distribution U(0.8, 1.2).

4.2 Experimental Settings
We randomly split the data into training (60%), valida-
tion (20%), and test sets (20%), which is repeated ten
times for each simulated dataset. We train IGNITE with
Adam [Kingma and Ba, 2014] optimizer with weight de-
cay set to 10−4. We iteratively optimize the two objectives
in Eq. (9). Grid search finds the optimal set of hyperpa-
rameters for IGNITE and the baselines. For IGNITE, we
search learning rate in {5 × 10−3, 10−3, 5 × 10−4, 10−4},
the number of GAT layers and fully connected layers of the
functions g, D and f in {1, 2, 3}, the number of hidden
units of the GAT layers and the fully connected layers in
{16, 32, 64, 128}, the number of attention heads in {2, 4, 8},
β in {10−4, 10−3, 10−2, 10−1}. Then, we list the baselines:
• Network Deconfounder (ND) [Guo et al., 2020c]

learns confounders’ representations using GCN
layer(s) [Kipf and Welling, 2016]. It minimizes the
Wasserstein distance between the two confounder
representation distributions.
• GATD is a variant of ND with GAT layer(s) [Veličković

et al., 2018] for fair comparison. GATD+ and GATDT.
To show the advantage of the proposed minimax game
over a simple combination of representation balancing
and treatment prediction, we further create two variants
of GATD. GATD+ balances confounder representations
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and predicts treatments based on these representations.
GATDT predicts treatments to handle confounding bias.
• CNE [Veitch et al., 2019] learns confounders’ represen-

tations by predicting observed outcomes, treatments and
edges. It does not utilize observed features. CNE uses
AIPW [Robins et al., 1994], therefore, only infers ATE.
• CNE-. We create a variant of CNE w/o AIPW, which

can infer both ATE and ITEs.
• Counterfactual Regression (CFR) [Shalit et al., 2017]

is a ITEs estimator for i.i.d. data. It minimizes errors on
inferred factual outcomes and balances representation
distributions. We report the optimal results of the three
CFR models: representation balancing with Wasserstein
distance, that with Maximum Mean Discrepancy and no
representation balancing.
• CEVAE [Louizos et al., 2017] is a deep latent-variable

model for learning ITEs. It learns the joint distribu-
tion of features, latent confounders, treatments, and out-
comes to infer ITEs.
• Causal Forest [Wager and Athey, 2018] is an ensem-

ble model trained by predicting observed treatments.
For the evaluation metrics, the Rooted Precision in Estima-

tion of Heterogeneous Effect (
√
εPEHE) and Mean Absolute

Error on ATE (εATE), are used. They are defined as:

√
εPEHE =

√√√√ 1

n

∑
i=1

(τ̂i − τi)2, εATE = |
1

n

∑
i=1

(τ̂i)−
1

n

∑
i=1

(τi)|, (13)

where τ̂i and τi = y1i − y0i denote the inferred ITE and the
ground truth ITE for the i-th instance.

4.3 Experimental Results
Effectiveness. Here, we compare the effectiveness of IG-
NITE with the baselines in the task of learning ITEs from
networked observational data. Table 2 shows the results eval-
uated on the BC and Flickr datasets with C = 1, κ1 = 10 and
κ2 ∈ {0.5, 1, 2}. We summarize the observations made from
these experimental results as follows:
• IGNITE outperforms the baselines consistently in al-

most all cases. One-tailed T-tests show that the bold-
faced results are significantly better than others with a
significant level of 0.05.
• IGNITE shows consistent superior performance than

GATD+. This verifies that the proposed minimax game
does a better job in satisfying the two desiderata than
a simple combination of representation balancing and
treatment prediction.
• The fact that IGNITE outperforms GATD and GATDT

implies that the proposed minimax game handles con-
founding bias better than doing representation balancing
or treatment prediction alone.
• We observe that GATD+ fails to outperform GATD and

GATDT in a majority of cases. This implies that a naı̈ve
combination of representation balancing and treatment
prediction may not achieve the two desiderata together.
Instead, it may perform worse than representation bal-
ancing or treatment prediction alone.

• GATD outperforms ND under various settings. This is
because GAT layers can capture the unobserved edge
importance. Note that the unobserved edge importance
plays may have a significant influence on the values of
treatments and outcomes.

• The improvement of IGNITE over CNE and CNE- re-
sults from two aspects. First, the proposed minimax
game shows better efficacy in dealing with confounding
bias than treatment prediction alone. Second, the GAT
layer(s) capture unobserved edge weights and incorpo-
rate observed features.

• Compared to the methods for i.i.d. data – CFR, CEVAE,
and CF, IGNITE achieves better performance because it
is trained by the proposed minimax game for handling
confounding bias and it utilizes the network information
to recognize patterns of latent confounders.

Parameter Study. Then we investigate how the variation
in values of the important hyperparameter β affects the per-
formance of IGNITE. β controls the trade-off between more
accurate outcome inference and better confounding bias han-
dling. We set β to {10−4, 10−3, 10−2, 10−1}. The following
settings are applied: learning rate is 5× 10−3, the number of
epochs is 300, the number of GAT layer is 2 and the numbers
of fully connected layers for D and f are 2 and 1, the num-
ber of attention head is 8, the number of hidden units of each
attention head and each fully connected layer of D and f are
128, 64 and 32. Due to space limit, we only show the results
of this parameter study on the BC datasets in Table 3 as we
have similar observations on the Flickr datasets. We observe
that IGNITE maintains reasonably consistent performance in
terms of both evaluation metrics when β ∈ [10−4, 10−1].
In addition, IGNITE often achieves the optimal performance
when β ∈ [10−3, 10−2].

5 Related Work
Here, we introduce the related work in the causal inference
literature. Limited by space, we could not present the work
related to minimax games and graph neural networks.

Causal Inference with Network Data. Researchers aim
to utilize networks to approximate hidden confounders us-
ing observational studies. Shalizi et al. [Shalizi and Mc-
Fowland III, 2016] propose a two-stage approach to esti-
mate causal effects in networks based on predefined genera-
tive models. To avoid misspecified generative models, Veitch
et al. [Veitch et al., 2019] propose causal network embed-
ding (CNE) which learns node embeddings from pure net-
work data to represent confounders. However, CNE relies
on treatment prediction alone to handle confounding bias. In
addition, CNE requires observable edge weights, only infers
ATE and cannot effectively use the observed features. The
Network Deconfounder [Guo et al., 2020c] learns represen-
tations of confounders from both features and network struc-
tures. It handles confounding bias through representation bal-
ancing. None of the existing methods can satisfy the two
desiderata together. Networks can propagate the treatment
received by an instance to interfere the outcomes or treat-
ments of its neighbors. This phenomena can be referred to
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BC Flickr
κ2 = 0.5 κ2 = 1 κ2 = 2 κ2 = 0.5 κ2 = 1 κ2 = 2√

εPEHE εATE
√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

√
εPEHE εATE

IGNITE 4.415 0.506 6.163 0.971 10.998 2.514 6.938 1.242 10.725 2.006 18.864 2.643
GATD+ 5.132 0.666 8.442 2.159 17.167 10.74 7.731 1.394 13.201 2.903 27.105 7.088
GATD 5.170 1.070 7.989 1.779 16.574 5.942 7.605 1.688 13.092 2.436 26.846 7.196

GATDT 5.165 1.055 8.017 1.863 16.578 5.940 7.602 1.681 13.075 2.452 26.781 7.099
ND 5.386 2.070 10.403 4.811 20.286 10.350 7.337 2.000 14.006 3.046 28.379 5.817

CNE – 7.314 – 13.212 – 24.298 – 8.103 – 16.058 – 33.94
CNE- 10.323 8.194 18.839 14.991 33.607 26.531 14.109 9.001 26.536 17.275 54.906 35.262
CFR 10.073 5.000 15.229 9.631 36.680 16.481 9.826 3.619 16.859 7.240 45.150 12.787

CEVAE 6.812 3.129 12.055 2.700 24.128 14.576 11.836 2.678 22.171 3.493 48.840 7.360
CF 5.941 3.349 10.413 3.336 19.145 16.812 8.406 1.938 14.485 1.821 31.111 6.520

Table 2: Results on the two datasets with κ2 ∈ {0, 1, 2} measured by the two evaluation metrics
√
εPEHE and εATE , the smaller the better.

β 10−4 10−3 10−2 10−1

BC

κ2 = 0.5
√
εPEHE 4.422 4.439 4.415 4.566
εATE 0.526 0.56 0.506 0.642

κ2 = 1
√
εPEHE 6.196 6.163 6.166 6.177
εATE 1.139 0.971 0.993 1.124

κ2 = 2
√
εPEHE 11.934 10.998 12.046 12.385
εATE 2.183 2.514 2.675 3.134

Table 3: Parameter study results on the BC datasets with κ2 ∈
{0.5, 1, 2} in terms of

√
εPEHE and εATE , the smaller the better.

as contagion [Shalizi and Thomas, 2011], treatment entan-
glement [Toulis et al., 2018], or spillover effect [Arbour et
al., 2016; Rakesh et al., 2018]. Different from them, we fol-
low [Veitch et al., 2019; Guo et al., 2020b] to assume that
conditioning on latent confounders decouples each individ-
ual’s treatment and outcome from those of the others.

Causal Inference with Proxy Variables. When hid-
den confounders exist, observed proxy variables can be uti-
lized to approximate them. [Pearl, 2012; Miao et al., 2018;
Louizos et al., 2017; Veitch et al., 2019]. Most of the ex-
isting work assumes that the observed data is i.i.d. and gen-
erated by latent confounders. Theoretically, in [Pearl, 2012;
Kuroki and Pearl, 2014], authors showed that causal effects
can be identified by proxy variables. Miao et al. [Miao et al.,
2018] showed that it is feasible to restore the causal effects
when the size of the latent confounders is known. Louizos
et al. [Louizos et al., 2017] showed that ITE (CATE) can be
identified given the joint distribution P (x, t, y, z) and pro-
posed a deep latent-varibale model to estimate ITEs. Re-
cently, results in [Veitch et al., 2019; Guo et al., 2020c] show
that network information can help mitigate confounding bias.

Learning Individual Treatment Effects from i.i.d. Data.
Learning ITEs from i.i.d. observational data has attracted
great attention. Causal Forest (CF) [Wager and Athey, 2018]
is a method that recursively partitions the original feature
space through treatment prediction. Its hypothesis is that
within each subspace, the instances are very similar in terms
of their estimated propensity score. Therefore, we can think
the treatment assignment in each subspace is random and the
instances in the same subspace share the same ITE. So, CF in-
fers ITEs via applying the naive estimator in each subspace.
CFR [Shalit et al., 2017] is a pioneer method for learning
ITEs by representation learning. Both theoretical analysis
and empirical results indicate that balancing the distributions
of the treated and controlled instances in the representation
space can improve the performance in learning ITE. However,

the methods mentioned above rely on the unconfoundedness
assumption, which is often untenable in observational data.
Louizos et al. [Louizos et al., 2017] proposed to consider
observed features as proxy variables of hidden confounders
and use a deep latent-variable model to learn representation
of confounders via variational inference. A comprehensive
review of these methods can be found in [Guo et al., 2020a].
In [Cheng et al., 2019], a review of the datasets and metrics
for evaluation of ITE estimation is presented. However, this
line of work does not consider to utilize network information
for learning causal effects.

6 Conclusion
In this work, we study the problem of learning ITEs from
networked observational data. To mitigate confounding bias,
previous work presents two desiderata: representation bal-
ancing and treatment prediction. None of the existing meth-
ods aim to satisfy them simultaneously. To overcome this
issue, we propose a novel framework, IGNITE, which is op-
timized to satisfy the two desiderata together. We propose a
minimax game to train IGNITE. The confounder representa-
tion function is trained by playing against the treatment group
critic function. Empirical results corroborate the efficacy of
IGNITE in mitigating confounding bias.

Future work includes: (1) causal inference with complex
data (e.g., dynamic networks [Sarkar et al., 2019; Marin et al.,
2017], temporal sequences [Guo et al., 2018], and complex
treatment variables [Li et al., 2019b]) and (2) inferring the
causal effect of inputs and design choices of deep learning
algorithms for interpretation [Moraffah et al., 2020].
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