
An End-to-End Optimal Trade Execution Framework based on Proximal Policy
Optimization

Siyu Lin and Peter A. Beling
University of Virginia, Charlottesville, VA, USA

{sl5tb, pb3a}@virginia.edu

Abstract
In this article, we propose an end-to-end adaptive
framework for optimal trade execution based on
Proximal Policy Optimization (PPO). We use two
methods to account for the time dependencies in the
market data based on two different neural network
architecture: 1) Long short-term memory (LSTM)
networks, 2) Fully-connected networks (FCN) by
stacking the most recent limit orderbook (LOB) in-
formation as model inputs. The proposed frame-
work can make trade execution decisions based on
level-2 limit order book (LOB) information such as
bid/ask prices and volumes directly without manu-
ally designed attributes as in previous research. Fur-
thermore, we use a sparse reward function, which
gives the agent reward signals at the end of each
episode as an indicator of its relative performances
against the baseline model, rather than implementa-
tion shortfall (IS) or a shaped reward function. The
experimental results have demonstrated advantages
over IS and the shaped reward function in terms of
performance and simplicity. The proposed frame-
work has outperformed the industry commonly used
baseline models such as TWAP, VWAP, and AC
as well as several Deep Reinforcement Learning
(DRL) models on most of the 14 US equities in our
experiments.

1 Introduction
In the modern financial market, electronic trading has gradu-
ally replaced the traditional floor trading and is constituting a
majority of the overall trading volumes. Nowadays, brokerage
firms compete intensively with each other to provide better
execution quality to retail or institutional investors. Optimal
trade execution, which concerns how to minimize trade ex-
ecution costs of trading a certain amount of shares within a
specified period, is a critical factor of execution quality.

From the regulatory perspective, brokers are legally required
to execute orders on behalf of their clients to ensure the best
execution possible. In the US, such practices are monitored
by the Securities and Exchange Commission (SEC) and Fi-
nancial Industry Regulatory Authority (FINRA). In Europe,
MiFID II, a legislative framework instituted by the European

Union, regulates financial markets and improves protections
for investors.

1.1 Related Work
Bertsimas and Lo are the pioneers in the realm of optimal trade
execution. They use a dynamic programming approach to find
an explicit closed-form solution by minimizing trade execution
costs of large transactions over a fixed trading period [Bertsi-
mas and Lo, 1998]. Huberman, Stanzl [Huberman and Stanzl,
2005] and Almgren, Chriss [Almgren and Chriss, 2000] ex-
tend their work by introducing transaction costs, more complex
price impact functions, risk aversion parameters. The closed-
form analytical solutions, however, have strong assumptions
on the underlying price movement or distributions. In addition
to the closed-form solutions, the time-weighted average price
(TWAP) strategy and volume-weighted average price (VWAP)
strategy are prevalent among practitioners in financial markets
[Berkowitz et al., 1988]. The TWAP and VWAP strategies
have few assumptions; however, both strategies are not able to
learn from historical data.

Reinforcement learning (RL) seems to be a natural choice
for the optimal trade execution problem, as it enables the
trading agent to interact with the market and to learn from its
experiences and has fewer assumptions on the price dynamics
than the closed-form solutions. Nevmyvaka, Feng, and Kearns
have published the first large-scale empirical application of RL
to optimal trade execution problems [Nevmyvaka et al., 2006].
Hendricks and Wilcox propose to combine the Almgren and
Chriss model (AC) and RL algorithm and to create a hybrid
framework mapping the states to the proportion of the AC-
suggested trading volumes [Hendricks and Wilcox, 2014].

To address the high dimensions and the complexity of
the underlying dynamics of the financial market, Ning et
al. [Ning et al., 2018] adapt and modify the Deep Q-Network
(DQN) [Mnih et al., 2015] for optimal trade execution, which
combines the deep neural network and the Q-learning, and
can address the curse of dimensionality challenge faced by
Q-learning. Lin and Beling [Lin and Beling, 2019] analyze
and demonstrate the flaws when applying a generic Q-learning
algorithm and propose a modified DQN algorithm to address
the zero-ending inventory constraint.

However, the researchers in previous research all use man-
ually designed attributes which adds a further burden to the
system development in the real-world, since feature engineer-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4548

ing requires significant domain knowledge and efforts. We
desire an end-to-end optimal trade execution system without
feature engineering.

Previously, most researchers use Implementation Shortfall
(IS) as the immediate reward signal. Lin and Beling [Lin and
Beling, 2019] point out the disadvantages of IS as a reward
signal and propose a shaped reward structure. Even though
they claim that the proposed reward function generalizes rea-
sonably well on the stocks, we prefer a much simpler reward
structure, which requires minimal domain knowledge and ef-
forts on designing its structure and tuning its parameters with
less risk of overfitting.

1.2 Our Contribution
Our main contributions are: 1) We propose an end-to-end
optimal trade execution framework which can account for
temporal correlations and make decisions based on raw level-
2 market microstructure data1 instead of manually designed
attributes. 2) We propose a sparse reward signal and demon-
strate its advantage over IS and the shaped reward structure
proposed in previous research. 3) We perform an extensive
experiment to demonstrate the advantages of our framework
over several DRL agorithms including Ning et al’s [2018] and
Lin and Beling’s [2019] algorithms and their variants as well
as three commonly used algorithms in the financial industry:
TWAP, VWAP, and AC model.

2 A PPO Formulation to Optimal Trade
Execution

The PPO algorithm is a policy gradient algorithm proposed
by OpenAI [Schulman et al., 2017], and it becomes one of
the most popular RL methods due to its state-of-the-art perfor-
mance as well as its sample efficiency and easy implementa-
tion. To optimize policies, it alternates between sampling data
and optimizing a ”surrogate” objective function.

2.1 Preliminaries
PPO is an on-policy algorithm and applies to both discrete and
continuous action spaces. PPO-clip updates policies via

θk+1 = arg max
θ

Es,a∼πθk [L(s, a, θk, θ)] (1)

where π is the policy, θ is the policy parameter, k is the kth
step, a and s are action and state respectively. It typically
takes multiple steps of SGD to optimize the objective L

L(s, a, θk, θ) =

min(
πθ(a|s)
πθk(a|s)

Aπθk(s, a), clip(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε)Aπθk(s, a)) (2)

where Aπθk(s, a) is the advantage estimator. The clip
term in Equation 2 clips the probability ratio and prevents the
new policy going far away from the old policy 2 [Schulman
et al., 2017].

1top 5 levels bid/ask prices and volumes
2https://spinningup.openai.com/en/latest/algorithms/ppo.html

Ticker Trading Shares Ticker Trading Shares
FB 6000 GS 300

GOOG 300 CRM 1200
NVDA 600 BA 300
MSCI 300 MCD 600
TSLA 300 PEP 1800
PYPL 2400 TWLO 600

QCOM 7200 WMT 3600

Table 1: # of shares to trade for each stock in the article

2.2 Problem Formulation
In this section, we provide the PPO formulation for the optimal
trade execution problem and describe the state, action, reward,
and the algorithm used in the experiment.

States
Previously, researchers use manually designed attributes to
represent the financial market state, which can be inefficient
and time-consuming in real-world applications. In this article,
we propose to use 1) Public state: market microstructure vari-
ables including top 5 bid/ask prices and associated volumes;
2) Private state: remaining inventory and elapsed time.

Actions
In this article, we choose different numbers of shares to trade
based on the liquidity of the stock market. As the purpose
of the research is to evaluate the capability of the proposed
framework to balance the liquidity risk and timing risk, we
choose the total number of shares to ensure that the TWAP
orders3 are able to consume at least the 2nd best bid price on
average. The total shares to trade for each stock are illustrated
in Table 1. In the optimal trade execution framework, we set
the range of actions from 0 to 2TWAP and set the minimal
trading volume for each stock, respectively.

Rewards
In previous work [Nevmyvaka et al., 2006][Hendricks and
Wilcox, 2014][Ning et al., 2018], researchers use the IS4, a
commonly used metric to measure execution gain/loss, as
the immediate reward received after execution at each non-
terminal step. There is a common misconception that the IS is
a direct optimization goal. The IS compares the model perfor-
mance to an idealized policy that assumes infinite liquidity at
the arrival price. In the real world, brokers often use TWAP
and VWAP as benchmarks. IS is usually used as the opti-
mization goal because TWAP and VWAP prices could only
be computed until the end of the trading horizon and cannot
be used for real-time optimization. Essentially, IS is just a
surrogate reward function, but not a direct optimization goal.
Hence, a reward structure is good as long as it can improve
model performance.

Lin and Beling [Lin and Beling, 2019] point out that IS
reward is noisy and nonstationary, which makes the learning
process difficult. They propose a shaped reward structure and
fine-tune it on Facebook training data. Although their pro-
posed reward structure seems to generalize reasonably well on

3TWAP order = Total number of shares to trade
Total # of periods

4Implementation Shortfall=arrival price×traded volume - exe-
cuted price×traded volume.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4549

the rest equities as demonstrated in their article, the designing
of a complicated reward structure is time-consuming and has
a risk of overfitting in real-world applications.

In contrast to previous approaches, we use a sparse reward,
which only gives the agent a reward signal based on its relative
performance compared against the TWAP baseline model.

f(x) =


−1, if t = T − 1 and ISPPO(T) < ISTWAP(T)

0, if t = T − 1 and ISTWAP(T) <= ISPPO(T) < 1.1 ∗ ISTWAP(T)

1, if t = T − 1 and ISPPO(T) >= 1.1 ∗ ISTWAP(T)

0, if 1 <= t < T − 1

Zero Ending Inventory Constraint
In the real world business, the brokers receive contracts or
directives from their clients to execute a certain amount of
shares within a specific time. For the brokers, it is mandatory
to liquidate all the shares by the end of the trading period. Lin
and Beling [Lin and Beling, 2019] modify the Q-function up-
date to combine the last two steps for Q-function estimation to
incorporate the zero-ending inventory constraint. We leverage
their methods by combining the last two steps.

Assumptions
The most important assumption in our experiment is that the
actions that DRL agent takes have only a temporary market
impact, and the market is resilient and will bounce back to
the equilibrium level at the next time step. This assumption
also suggests that the DRL agent’s actions do not affect the
behaviors of other market participants. The market resilience
assumption is the core assumption of this article and also all
previous research applying RL for optimal trade execution
problems [2006][2014][2018]. The reason is that we are train-
ing and testing on the historical data and cannot account for the
permanent market impact. However, the equities we choose
in the article are liquid, and the actions are relatively small
compared with the market volumes. Therefore, the assumption
should be reasonable.

Secondly, we ignore the commissions and exchange fees
as our research is primarily aimed at institutional investors,
and those fees are relatively small fractions and are negligible.
The ignorance of such fees is also the practice of previous
research [2006][2014][2018]. Thirdly, we apply a quadratic
penalty if the trading volume exceeds the available volumes
of the top 5 bids. Fourthly, the remaining unexecuted volumes
will be liquidated all at once at the last time step to ensure the
execution of all the shares. Fifthly, we also assume direct and
fast access to exchanges with no order arrival delays. Finally,
if multiple actions result in the same reward, we choose the
maximum action (trading volumes). The rationale is that we
would like to trade as quickly as possible while not encounter-
ing too much loss.

Most of the assumptions are also the core assumptions in
previous research [2006][2014][2018] because we need a high-
fidelity market simulation environments or data collected by
implementing the DRL algorithm in the real market rather
than historical data to account for these factors such as order
delays, permanent market impact, and agent interactions, etc..

2.3 PPO Architecture
Unlike the DQN algorithm, the PPO algorithm optimizes over
the policy πt directly and finds the optimal state-value function

(1) FCN + LSTM (2) FCN + Stacked Inputs

Figure 1: PPO Architectures.

Figure 2: LSTM Modules.

V∗
t . We leverage Ray’s Tune platform to select the network

architecture and hyperparameters by comparing model perfor-
mances on Facebook data only, which is equivalent to ablation
studies. The selected network architectures are illustrated in
Figure 1.

Network Architecture
In the PPO algorithm, we have implemented two network
architectures: 1) FCN with two hidden layers, 128 hidden
nodes in each hidden layer, and ReLU activation function in
each hidden node. The input layer has 22 nodes, including
private attributes such as remaining inventory and time elapsed
as well as the LOB attributes such as 5-level bid/ask prices and
volumes. After that, we concatenate the model output and the
previous reward and action and feed them to a LSTM network
with cell size of 128. The LSTM outputs the policy πt and
the state-value function V∗

t . 2) FCN with the same settings
as 1), except that we stack the most recent LOB attributes as
model inputs. We choose the Adam optimizer for weights
optimization.

Long Short-Term Memory
Unlike the feedforward neural networks, LSTM has feedback
connections, which allows it to store information and identify
temporal patterns. LSTM networks are composed of a number
of cells, and an input gate, an output gate, and a forget gate
within each cell regulate the flow of information into and out
of the cell, as demonstrated in Figure 2. It was proposed

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4550

by Sepp Hochreiter and Jürgen Schmidhuber to solve the
exploding and vanishing gradient problems encountered by
the traditional recurrent neural network (RNN) [1997]. Instead
of manually designing attributes to represent the temporal
patterns, we leverage LSTM to process the sequential LOB
data and automatically identify temporal patterns within the
data.

2.4 Experimental Methodology and Settings
In our experiments, we apply the proposed PPO algorithms
on 14 stocks including Facebook (FB), Google (GOOG),
Nvidia (NVDA), Msci (MSCI), Tesla (TSLA), PayPal (PYPL),
Qualcomm (QCOM), Goldman Sachs (GS), Salesforce.com
(CRM), Boeing (BA), Mcdonald’s Corp (MCD), PepsiCo
(PEP), Twilio (TWLO), and Walmart (WMT) which cover
technology, financial and retail industries. We tune the hyper-
parameters on FB only and apply the same neural network
architecture to the remaining stocks due to limited computing
resources. The experiment follows the steps below.

1. We obtain one-year millisecond Trade and Quote (TAQ)
data of 14 stocks above from WRDS and reconstruct it into the
LOB. Then, we split the data into training (January-September)
and test sets (October-December). We set the execution hori-
zon to be 1 minute, and the minimum trading interval to be 5
seconds.

2. The hyperparameters5 are tuned on FB only due to the
limited computing resources. After fine-tuning, we apply the
PPO architecture and hyperparameters to the rest stocks.

3. Upon the completion of training, we check the average
episode rewards’ progression. Then, we apply the learned
policies to the testing data and compare the average episode
rewards and the distribution of rewards against TWAP, VWAP,
and AC models as well as several DRL algorithms.

Algorithm Implementation
In our experiment, we implement a distributed version of the
PPO algorithm in Ray RLlib and fine-tune the hyperparam-
eters such as the neural network architecture, learning rate,
etc. using Tune, a research platform developed by Liaw et al.
[2018].6

3 Experimental Results
In this section, we present the proposed framework’s perfor-
mance and compare it with the TWAP, VWAP, AC model as
well as several DRL models. Our proposed framework con-
verges fast and has significantly outperformed the baseline
models on most stocks during the backtesting. In our experi-
ment, we apply DeepMind’s framework to assess the stability
in the training phase and the performance evaluation in the
backtesting [Mnih et al., 2013].

3.1 Data Sources
We use the NYSE daily millisecond TAQ data from January
1st, 2018 to December 31st, 2018, downloaded from WRDS.
The TAQ data is used to reconstruct the LOB. Only the top 5
price levels from both seller and buyer sides are kept and ag-
gregated at 5 seconds, which is the minimum trading interval.

5Please refer to the appendix for the chosen hyperparameters
6https://ray.readthedocs.io/en/latest/rllib.html

3.2 Algorithms
TWAP: The shares are equally divided across time.
VWAP: The shares are traded at a price which closely tracks
the VWAP [2004].
AC: AC is defined in [2000]. For a fair comparison with AC,
we set its permanent price impact parameter to 0.
DDQN (Ning2018): This is a variant of [2018] with 51 states
defined in [2019]. The neural network architecture is also
different and has been tuned for optimal performances. It uses
the same reward function and training process as [2018].
DQN (Lin2019): The modified DQN algorithm proposed by
[Lin and Beling, 2019].
DQN Sparse (Lin2019): A variant of DQN (Lin2019) which
uses the sparse reward function defined in Section 2.2.
PPO Dense: The PPO algorithm uses the 51 states and
shaped rewards defined in [2019].
PPO Stack: The PPO algorithm stacks the most recent LOB
states as model inputs.
PPO LSTM: The PPO algorithm uses LSTM to extract
temporal patterns within market data.

3.3 Training and Stability
Assessing the stability and the model performance in the train-
ing phase is straightforward in supervised learning by evaluat-
ing the training and testing samples. However, it is challenging
to evaluate and track the RL agent’s progress during training,
since we usually use the average episode rewards gained by
the agent over multiple episodes as the evaluation metric to
track the agent’s learning progress. The average episode re-
ward is usually noisy since the updates on the parameters of
the policy can seriously change the distribution of states that
the DRL agent visits.

In Figure 3, we observe that the DRL agents converge fast in
less than 200,000 steps7. The PPO+LSTM and the PPO+Stack
converge to higher average IS values on most stocks, while
having shorter trading lengths. It indicates that not only do they
reduce the execution costs, but also they trade more quickly
to avoid timing risks. Ning et al’s method has demonstrated
great oscillations on some stocks which could be dangerous in
real world applications.

3.4 Main Evaluation and Backtesting
To evaluate the performance of the trained PPO algorithms, we
apply them to the test samples from October 2018 to December
2018 for all the 14 stocks and compare their performances
with TWAP, VWAP, and AC model as well as several DRL
models. We report the mean of ∆IS = ISModel − ISTWAP

(in US dollars), standard deviation of ISModel, and gain-loss
ratio (GLR)

GLR =
E[∆IS|∆IS > 0]

E[−∆IS|∆IS < 0]
(3)

The statistical results for all the stocks are summarized in
Table 2. We observe that the proposed PPO LSTM/Stack al-
gorithms outperform the other models most of time, while

7Odd index represents the learning curves for the IS, while even
index represents for the learning curves for the total # of steps to
complete the trades

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4551

MeanModel Name BA CRM FB GOOG GS MCD MSCI NVDA PEP PYPL QCOM TSLA TWLO WMT
TWAP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VWAP 49.66 -141.42 -4,040.78 -65.41 -12.58 -7.89 34.94 -31.46 -77.54 -459.28 -6,737.10 -65.04 -41.27 -1,376.78
AC -0.78 -3.34 -40.26 -0.92 -0.16 -0.13 -0.34 -1.32 -0.34 -8.88 -127.87 -1.21 -2.96 -2.24
DQN (Ning2018) 91.35 16.65 -545.49 183.63 42.41 104.18 -770.09 70.33 -15,074.82 -30.81 -1,056.94 46.03 49.77 140.32
DQN (Lin2019) 16.21 9.05 54.08 28.43 2.40 11.86 -770.24 19.50 38.45 47.35 152.02 3.30 4.63 99.56
DQN Sparse (Lin2019) -6.82 -4.09 -110.18 -13.79 -1.58 2.17 -2.83 -3.31 -21.55 -73.89 -78.97 1.04 -0.83 -43.13
PPO Dense -3.35 -0.19 -33.32 -0.75 -0.02 0.00 -0.18 0.00 -132.48 -0.26 -52.88 -11.12 -28.31 -171.49
PPO Stack 13.35 22.06 451.80 147.44 13.49 -46.56 36.09 -60.70 122.09 66.11 412.20 30.12 16.08 224.23
PPO LSTM 72.53 101.87 128.23 18.06 -1.81 -178.71 35.50 71.32 76.78 114.38 321.43 46.96 21.94 153.58

Standard DeviationModel Name BA CRM FB GOOG GS MCD MSCI NVDA PEP PYPL QCOM TSLA TWLO WMT
TWAP 335.05 885.62 4,154.47 707.03 92.74 221.72 159.14 478.18 1,058.16 681.91 2,913.72 203.00 196.88 1,442.92
VWAP 503.64 1,366.18 14,936.29 1,394.18 190.89 420.70 220.25 726.23 2,389.84 2,587.93 27,131.03 462.24 341.32 6,699.03
AC 335.80 894.99 4,517.32 707.40 93.19 222.10 159.59 479.65 1,058.48 776.66 4,724.56 210.49 215.42 1,456.07
DQN (Ning2018) 506.22 1,086.15 5,298.78 962.25 64.98 183.17 641.79 629.95 5,082.65 1,242.17 6,890.66 239.12 204.75 1,758.85
DQN (Lin2019) 326.62 830.79 4,117.55 696.35 91.07 214.50 642.64 454.73 1,033.27 631.29 2,821.33 226.80 196.34 1,386.26
DQN Sparse (Lin2019) 343.27 842.26 4,245.49 719.14 96.03 223.89 161.44 503.98 1,071.55 753.93 3,091.98 226.49 196.58 1,479.68
PPO Dense 345.79 836.57 4,379.35 708.64 92.68 221.73 159.47 478.18 1,153.07 672.30 3,795.95 244.20 204.27 1,599.52
PPO Stack 322.24 812.22 3,929.08 630.45 93.08 344.90 149.68 573.88 1,013.80 610.21 2,551.04 200.54 206.20 1,405.03
PPO LSTM 294.09 859.73 4,462.66 690.63 113.71 576.29 145.73 431.11 997.11 624.24 2,654.01 183.42 186.11 1,355.22

Model Name GLR
BA CRM FB GOOG GS MCD MSCI NVDA PEP PYPL QCOM TSLA TWLO WMT

TWAP - - - - - - - - - - - - - -
VWAP 0.59 0.46 0.16 0.46 0.46 0.49 0.72 0.51 0.40 0.22 0.08 0.40 0.41 0.17
AC 0.04 0.02 0.00 0.10 0.16 0.11 0.15 0.06 0.18 0.00 0.01 0.10 0.05 0.02
DQN (Ning2018) 0.69 0.66 0.57 0.78 2.96 2.27 0.08 0.73 0.01 0.44 0.33 1.40 1.16 1.14
DQN (Lin2019) 1.47 1.18 1.04 1.28 1.40 2.00 0.09 1.54 1.49 2.13 1.53 1.27 1.11 1.94
DQN Sparse (Lin2019) 0.46 1.00 0.96 0.44 0.99 1.01 0.55 0.98 0.49 0.36 0.98 1.01 1.03 0.30
PPO Dense 0.21 0.26 0.41 0.26 0.96 0.52 0.34 - 1.01 0.45 0.65 0.88 0.47 0.87
PPO Stack 1.11 1.46 2.07 1.63 0.93 0.39 1.39 0.67 1.35 1.49 2.38 1.69 0.84 1.22
PPO LSTM 1.54 1.43 0.63 1.34 0.58 0.23 1.55 1.21 1.30 1.64 1.63 1.35 1.49 1.32

Table 2: Model Performances Comparison. Mean is based on on ∆IS (in US dollars) and STD is based on IS (in US dollars).

maintaining relative smaller standard deviations. In the ex-
periments, we also find out that DQN does not work well
with the sparse rewards (see DQN (Lin2019) vs DQN Sparse
(Lin2019)). We highlight the top 2 performers in bold font.
Also, we highlight the extreme divergence in red. Although
Ning et al.’s method has good performances on a few stocks,
it has demonstrated great oscillations and even divergence
on some stocks. Such oscillations and instabilities could be
dangerous in real-world applications, and should be avoided.

We exclude the methods proposed by [Nevmyvaka et al.,
2006] and [Hendricks and Wilcox, 2014] from the perfor-
mance comparison for several reasons: 1) Traditional Rein-
forcement Learning is not scalable to high dimensional prob-
lems. 2) Both articles are using market data quite a while
ago8. It’s difficult to evaluate the effectiveness of their meth-
ods, since the dynamics of market microstructure have already
changed dramatically in the past few years.

4 Conclusion and Future Work
In this article, we propose an end-to-end optimal trade ex-
ecution framework based on PPO. In our experiments, we
have demonstrated that the proposed framework is able to
outperform TWAP, VWAP, AC model as well as other DRL
models using raw level-2 market data. Additionally, we have
also demonstrated that DRL agents are able to learn good
execution strategies even with the sparse rewards. The exper-

8Nevmyvaka et al.’s method was tested on three NASDAQ stocks,
AMZN, NVDA, and QCOM, before 2006. Hendricks and Wilcox’s
method was tested on three South Africa’s stocks, SBK, AGL, and
SAB, in 2012

imental results are significant and indicate the possibility of
learning optimal trade execution policies from the raw market
microstructure data without feature engineering.

In the future, we are planning to relax the assumption that
the DRL agent’s actions are independent of other market par-
ticipants’ actions and model the interactions of multiple DRL
agents and their collective decisions in the market.

A Hyperparameters
We fine-tuned the hyperparameters on FB only, and we did
not perform an exhaustive grid search on the hyperparameter
space, but rather to draw random samples from the hyperpa-
rameter space due to limited computing resources. Finally, we
choose the hyparameters listed in Table 3.

Hyperparameter PPO LSTM PPO Stack
Minibatch size 32 32
Sample batch size 5 5
Train batch size 240 240
Discount factor 1 1
Learning rate linearly annealing between

5e-5 and 1e-5
linearly annealing between
5e-5 and 1e-5

KL coeff 0.2 0.2
VF loss coeff 1 1
Entropy coeff 0.01 0.01
Clip param 0.2 0.2
Hidden layers 2 hidden layers with 128

hidden nodes each
2 hidden layers with 128
hidden nodes each

Activation functions Relu for hidden layers and
linear for output layer

Relu for hidden layers and
linear for output layer

input/output nodes Input: 22; output: 51 Input: 82; output: 51
Maximum sequence length 12 None
LSTM cell size 128 None
Stack steps None 4

Table 3: Hyperparameters for PPO LSTM and PPO Stack.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4552

(1) Boeing (IS) (2) Boeing (Steps) (3) Salesforce (IS) (4) Salesforce (Steps)

(5) Facebook (IS) (6) Facebook (Steps) (7) Google (IS) (8) Google (Steps)

(9) Goldman Sachs (IS) (10) Goldman Sachs (Steps) (11) Mcdonald (IS) (12) Mcdonald (Steps)

(13) MSCI (IS) (14) MSCI (Steps) (15) NVIDIA (IS) (16) NVIDIA (Steps)

(17) PepsiCo (IS) (18) PepsiCo (Steps) (19) Paypal (IS) (20) Paypal (Steps)

(21) QUALCOMM (IS) (22) QUALCOMM (Steps) (23) Tesla (IS) (24) Tesla (Steps)

(25) Twilio (IS) (26) Twilio (Steps) (27) Walmart (IS) (28) Walmart (Steps)

PPO LSTM PPO Stack PPO Dense DQN Sparse (Lin2019) DQN (Lin2019) DDQN (Ning2018)

Figure 3: Training curves tracking the DRL agent’s average implementation shortfalls in US dollars (y-axis for odd #) and average trading
steps per episode (y-axis for even #) against steps (x-axis): a. Each point is the average IS per episode; b. Average trading steps per episode.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4553

References
[Almgren and Chriss, 2000] Robert Almgren and Neil Chriss.

Optimal execution of portfolio transactions. Journal of Risk,
3:5–40, 2000.

[Berkowitz et al., 1988] Stephen A. Berkowitz, Dennis E.
Logue, and Eugene A. Noser Jr. The total cost of transac-
tions on the nyse. Journal of Finance, 43(1):97–112, March
1988.

[Bertsimas and Lo, 1998] Dimitris Bertsimas and Andrew W.
Lo. Optimal control of execution costs. Journal of Finan-
cial Markets, 1(1):1–50, April 1998.

[Hendricks and Wilcox, 2014] Dieter Hendricks and Diane
Wilcox. A reinforcement learning extension to the almgren-
chriss framework for optimal trade execution. In Proceed-
ings from IEEE Conference on Computational Intelligence
for Financial Economics and Engineering, pages 57–464,
London, UK, March 2014. IEEE.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Huberman and Stanzl, 2005] Gur Huberman and Werner
Stanzl. Optimal liquidity trading. Review of Finance,
9(2):165–200, 2005.

[Kakade et al., 2004] Sham M. Kakade, Michael Kearns,
Yishay Mansour, and Luis E. Ortiz. Competitive algo-
rithms for vwap and limit order trading. In Proceedings of
the ACM Conference on Electronic Commerce, New York,
NY, 2004.

[Liaw et al., 2018] Richard Liaw, Eric Liang, Robert Nishi-
hara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica.
Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118, 2018.

[Lin and Beling, 2019] Siyu Lin and Peter A. Beling. Op-
timal liquidation with deep reinforcement learning. In
33rd Conference on Neural Information Processing Systems
(NeurIPS 2019) Deep Reinforcement Learning Workshop,
Vancouver, Canada, 2019.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518:529–533, February 2015.

[Nevmyvaka et al., 2006] Yuriy Nevmyvaka, Yi Feng, and
Michael Kearns. Reinforcement learning for optimal trade
execution. In Proceedings of the 23rd International Confer-
ence on Machine Learning, pages 673–68, Pittsburgh, PA,
June 2006. Association for Computing Machinery.

[Ning et al., 2018] Brian Ning, Franco Ho Ting Ling, and
Sebastian Jaimungal. Double deep q-learning for optimal
execution. arXiv:1812.06600, 2018.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1811.08540v2, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI in FinTech

4554

	Introduction
	Related Work
	Our Contribution

	A PPO Formulation to Optimal Trade Execution
	Preliminaries
	Problem Formulation
	States
	Actions
	Rewards
	Zero Ending Inventory Constraint
	Assumptions

	PPO Architecture
	Network Architecture
	Long Short-Term Memory

	Experimental Methodology and Settings
	Algorithm Implementation

	Experimental Results
	Data Sources
	Algorithms
	Training and Stability
	Main Evaluation and Backtesting

	Conclusion and Future Work
	Hyperparameters

