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Abstract

Finance is a particularly challenging application
area for deep learning models due to low noise-
to-signal ratio, non-stationarity, and partial ob-
servability.  Non-deliverable-forwards (NDF), a
derivatives contract used in foreign exchange (FX)
trading, presents additional difficulty in the form
of long-term planning required for an effective
selection of start and end date of the contract.
In this work, we focus on tackling the problem
of NDF position length selection by leveraging
high-dimensional sequential data consisting of spot
rates, technical indicators and expert tenor patterns.
To this end, we curate, analyze and release a dataset
from the Depository Trust & Clearing Corporation
(DTCC) NDF data that includes a comprehensive
list of NDF volumes and daily spot rates for 64
FX pairs. We introduce WaveATTentionNet (WAT-
TNet), a novel temporal convolution (TCN) model
for spatio-temporal modeling of highly multivari-
ate time series, and validate it across NDF mar-
kets with varying degrees of dissimilarity between
the training and test periods in terms of volatility
and general market regimes. The proposed method
achieves a significant positive return on investment
(ROJ) in all NDF markets under analysis, outper-
forming recurrent and classical baselines by a wide
margin. Finally, we propose two orthogonal in-
terpretability approaches to verify noise robustness
and detect the driving factors of the learned tenor
selection strategy.

1 Introduction

Following recent trends of successful Al adoption, the finan-
cial world has seen a significant surge of attempts at lever-
aging deep learning and reinforcement learning techniques
across various application areas. Slowing down progress in
this field are the particular properties of financial data: low
signal-to-noise ratio [Guhr and Kilber, 2003], partial ob-
servability, and irregular sampling. Furthermore, Al break-
throughs in finance often go unpublished due to monetary in-
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centives. Additional challenges are caused by the scarcity of
datasets available, which are often limited in scope, difficult
to acquire or for some application areas missing altogether.

As an attempt to alleviate some of these concerns, we re-
lease both a curated dataset and a novel model for foreign ex-
change (FX) futures trading. We focus our attention on a par-
ticular class of FX trading methods, non-deliverable-forward
(NDF) contracts, which constitute an important open problem
in finance and can serve as a challenging benchmark for su-
pervised or reinforcement learning models. We formulate the
learning problem as an optimal selection problem in which
the model is tasked with selecting the end date of the forward
contract (tenor) from a rich input containing past human trade
patterns as well as spot rates and technical indicators. In par-
ticular, tenor selection is cast into a direct imitation learn-
ing [Judah, Fern, and Dietterich, 2012] framework, where
the model learns policy directly from a set of expert execution
trajectories without receiving a reward signal from the envi-
ronment. The demonstrations are derived in a greedy fashion
from spot rate data and the resulting input-output tuple is uti-
lized to perform standard supervised learning.

A key difference of our approach compared to existing
FX trading algorithms lies in the type of data relied upon
for learning, which includes expert tenor patterns in addition
to standard technical indicators. Such patterns are extracted
from a large dataset containing trades from competitive mar-
ket players assumed to be informed about market state and to
act rationally in order to achieve higher returns. Leveraging
this additional information allows the models to differentiate
between profitable and non-profitable market conditions with
improved accuracy, ultimately leading to higher returns.

Fundamentally important for finance are models capable of
capturing inter and intra-dependencies in highly multivariate
time series. Many, if not most, of such interaction terms are
nonlinear and thus challenging to analyze with standard sta-
tistical approaches. A direct consequence has been the new-
found popularity of data-driven models for financial forecast-
ing tasks, in particular recurrent neural networks (RNN) and
their variants. Recurrent models, while offering an intuitive
approach to time series modeling, lack an explicit module to
capture inter-dependencies and perform relational reasoning
[Santoro et al., 2018]. A different approach to time series
modeling relies on temporal convolutions (TCN) as its fun-
damental computational block. Particularly successful in this



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on Al in FinTech

area of research is WaveNet [Oord et al., 2016], originally
developed as a generative model for speech data. However,
vanilla WaveNet and its derivative models are primarily de-
signed to handle univariate time series and thus are ill-suited
for highly multivariate financial time series. To bridge this
gap, we introduce a new TCN model called WaveATTention-
Net (WATTNet) that incorporates computationally efficient
dilated convolutions for temporal learning of autoregressive
effects, and self-attention modules to learn spatial, inter-time
series interaction terms.
We summarize our main contributions as follows:

e We curate, analyze, and release a new dataset con-
taining spot rates for 64 FX currencies, along with
technical indicators and hourly frequency NDF con-
tract trade data spanning the period from 2013 to
2019. Several models, including classical baselines
(Momentum-1, Momentum-90) and recurrent baselines
(GRUs, LSTMs) are evaluated against expert benchh-
marks obtained from NDF data.

e We introduce WATTNet, a novel temporal convolution
(TCN) architecture for spatio-temporal modeling. WAT-
TNet is designed to extend WaveNet models to settings
with highly multivariate time series data.

e We provide two orthogonal approaches to evaluate noise
robustness and explain driving factors of the learned
trading strategy, along with examples to highlight their
efficacy.

2 Background and Related Work

Foreign Exchanges Trading in forex (FX) markets is gen-
erally done via spot exchanges or forward exchanges, where
spot rate indicates the present expected buying rate. The spot
market can be volatile and is affected by news cycles, specu-
lation, and underlying market dynamics. On the other hand,
forward exchanges contain a long-term planning component:
two parties fix a binding amount and date of exchange and
the profits are calculated by comparing currency rates at the
start date and fix date. The difference between start date and
fix date is commonly referred to as fenor.

Non-Deliverable-Forward An NDF operates similarly to
forward exchange contracts and exists as a replacement to
forward FX trades in closed markets. NDF markets are over-
the-counter, meaning they operate directly between involved
parties without supervision, and are generally more volatile
due to limited market-depth. In NDF trades the parties agree
on notional amounts of primary and secondary currency (e.g.
dollar USD and korean won KRW) which define the forward
rate. The currency amounts are not exchanged at the end of
the contract: instead, NDF trades are cash-settled in USD,
and the cash flow is computed as R, o = (2444 —%¢)v; Where
x; is the spot rate at time ¢, x4, the spot rate at time ¢ 4 a, a
is the tenor and v is the notional amount.

2.1 Related Work

Deep Learning for FX trading Earlier attempts at uti-
lizing the expressivity of neural networks in forex (FX)
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trading [Chan and Teong, 1995] predict technical indica-
tors via shallow fully-connected neural networks. More
recently [Czekalski, Niezabitowski, and Styblinski, 2015;
Galeshchuk and Mukherjee, 2017; Petropoulos et al., 2017;
Pathberiya, Tilakaratne, and Hansen, 2017] have leveraged
various deep learning modeling techniques. However, these
approaches focus on regular forex markets and short-term
predictions and rely only on spot rates and technical indica-
tors as informative features. Incorporating additional sources
of data has been explored in [Nassirtoussi et al., 2015;
Vargas, De Lima, and Evsukoff, 2017; Hu et al., 2018], par-
ticularly text extracted from financial news articles.

While the literature has no shortage of works in which re-
inforcement learning is applied to portfolio management [Yu
et al., 2019], the FX markets remain comparatively unex-
plored. [Carapugo, Neves, and Horta, 2018] develops a short-
term spot trading system based on reinforcement learning and
obtains positive ROI in the EURUSD market. [Sornmayura,
2019] offers an analysis of deep Q-learning (DQN) perfor-
mance on two FX instruments. We are not aware of any pub-
lished work where deep learning or reinforcement systems
are introduced to tackle FX trading in an NDF setting.

Spatio temporal modeling SNAIL [Mishra et al., 2017]
obtains improvements over vanilla WaveNet [Oord et al.,
2016] by adding a temporal attention layer between dilated
convolutions. However, both vanilla WaveNet and SNAIL
are originally designed to process univariate time series data
and are thus unable to learn interaction terms between time
series. ConvLSTM [Xingjian et al., 2015] introduce a convo-
lution operation inside the LSTM cell to capture spatiotempo-
ral information. A weakness of ConvLSTMs and similar ap-
proaches [Lai et al., 2018] is given by the prior assumption of
structure in the spatial domain where features closer together
are prioritized by the convolution operation, as is the case for
example with video data. In general applications, the time
series are arbitrarily concatenated as input data and locality
assumptions do not hold. A more recent approach to spatio-
temporal modeling based on Graph Neural Networks (GNNs)
is Graph WaveNet [Wu et al., 2019] which utilizes dilated
convolutions in the temporal axis and proposes a data—driven
approach to estimate the adjacency matrix when unavailable.

3 NDF Tenor Selection

We begin by a formal description of the NDF tenor selection
task, then discuss NDF dataset construction.

Notation A multivariate time series of dimension M and
length T is indicated as {X}. We use {x;} for individual
time series indexed by ¢. x; ; selects a scalar element of time
series ¢ at time index ¢ . In particular, we indicate a slice
across all time series at time ¢ with {z1 ;... 2+ }. Whenever
the operations on {X} are batched, we add superscript j for
single samples in the batch: {X7}. With batch size N, the
resulting tensor {X'}...{X"} has dimensions N x T x
M. We define the set of admissible tenor choices as A :=
[1,...,90].

Problem statement The NDF tenor selection task involves,
for each trading day ¢ in a period 7, finding a maximally
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profitable position for the NDF market under scrutiny, namely

ay = argmax (Tyyq — Tt) (1
acA
where a represents the tenor, or position length in days, A the
set of admissible tenor choices and x; the spot rate for the cor-
responding FX instrument. Longer tenors are generally more
profitable at the expense of a higher volatility, commonly re-
ferred to as risk-premia. A successful trading agent thus has
to find a difficult balance between risky, high return and safer,
low return actions. We propose a solution that incorporates
expert human agent knowledge into the system, distilled from
historical NDF trade records.

3.1 NDF Dataset

The NDF dataset is utilized in several ways: historical data
provides the extraction of valuable benchmarks based on ex-
pert trader actions. These benchmarks, named Expert and
Expert oracle, are introduced to further contextualize the ex-
perimental performance.

Dataset description The NDF trade records have been col-
lected from the The Depository Trust & Clearing Corporation
(DTCC) database, containing historical records for 6 major
NDF markets: USDCNY, USDIDR, USDINR, USDKRW,
USDTWD. These records include start and end dates of each
NDF contract, along with currency amounts for the period
spanning 2013 to 2019. For each NDF market under con-
sideration and each admissible tenor a € A, we generate
a time series of volumes v, which includes a summation
of the currency amounts over all NDF records at a specific
day t. Since |A| = 90, each NDF pair contributes with a
90-dimensional multivariate volume time series to the input,
containing total currency amount v, , at day ¢ for each of the
90 tenors. This high—dimensionality further emphasizes the
need for a model capable of processing and aggregating in-
formation across highly multivariate time series.

Expert benchmarks We refer to Expert as a trading agent
that chooses tenors corresponding to maximum volumes a; =
argmax,c 4 Ut,q- In addition to Expert we obtain a fictitious
agent based on NDF records which is assumed to have partial
future knowledge of the market dynamics, which we refer to
as Expert oracle. Expert oracle is a filtered version of Expert:
at each trading day t it selects the shortest tenor with positive
return:

a; = argmin {a|(x44q — x) > 0} )

acA

In particular, Expert oracle is designed to select shortest
tenors to avoid a perfect accuracy exploitation of risk-premia
which would set an unrealistic benchmark for any model. The
choice of Expert and Expert oracle has been carried out to
contextualize results against typical market players, whose
positions are derived directly from NDF historic dataset. Both
Expert and Expert oracle are used as a benchmark during the
evaluation phase.

Auxiliary features In order to learn how to effectively
choose NDF tenors, we augment the volume features de-
scribed above with technical indicators and spot rates for 64
major and minor FX currency pairs. Daily FX spot rates serve
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as contextual market information and provide a frame of ref-
erence that aids the model in identifying profitable states.
Raw financial market data is often augmented with hand-
crafted features to help combat noise and non-stationarity
[Ntakaris et al., 2019]. To this end, we choose: simple moving
average (SMA), exponential moving average (EMA), moving
average convergence divergence (MACD), rolling standard
deviation (RSD), Bollinger bands (BB), ARIMA 1-day spot
rate forecast.

3.2 The Imitation Problem

Selecting a profitable tenor is challenging since it requires
the model to balance between short tenors with smaller re-
turns or long, risky tenors with a potentially greater return.
One approach to training a tenor selection model is perform-
ing imitation learning on Expert or Expert oracle labels. Both
have advantages and disadvantages; training on Expert allows
for daily online training and thus reduces the need for the
model to extrapolate to periods further into the future. This
aspect can be particularly beneficial for turbulent markets that
display frequent regime switches. Expert oracle labels, on
the other hand, require information from up to N days in
the future, with NV being the maximum allowed tenor, since
positive return filtering can only be performed by leverag-
ing spot rate data. Expert oracle labels can be advantageous
since they teach the model to be risk-averse; however, both
approaches potentially include unwanted human-bias in the
learned strategy. We propose an alternative approach in which
the model learns from optimal greedy tenor labels obtained
directly from market data. More specifically, we extract opti-
mal tenor label a} defined in (1) at time ¢ from raw data, ef-
fectively turning future spot rate information into training la-
bels for the model. As a result, the knowledge of expert NDF
traders is not injected into the labels, but is instead leveraged
by the model through the input NDF volume features v; .

4 The WATTNet Model

Spatio-temporal modeling with WATTNet WaveATTen-
tionNet (WATTNet) is a novel model designed for highly
multivariate time series inputs. WATTNet includes temporal
modules, tasked with independently aggregating information
across time steps of univariate time series {x} € {X} and
spatial modules which aggregate features across slices of all
time series at a specific time ¢ {z1, ... 2 ¢ }. Temporal and
spatial modules are alternated and allow for learning a hier-
archical spatio-temporal representation. As is customary, we
refer to the width of multivariate timeseries as the spatial di-
mension. An overview of the model is given in Figure 1.

Temporal learning Temporal learning is achieved by ap-
plying temporal dilated convolutions (TCN) to univariate
time series {x} € {X}. Given a convolution with kernel size
k and dilation coefficient d, we compute the output at time ¢
of a dilated convolution of {x} as z; = f(ZfZl Wi * Tt—jwd)
where wj is the i weight of the convolutional kernel and f
a non-linear activation function. Each univariate time series
has access to its own set of convolutional weights w as tem-
poral convolution operations are carried on independently.
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Figure 1: WATTNet overview: dilated TCNs are independently applied to each univariate input time series. A single dot-product attention
head subsequently aggregates information across slices {z1,+ . . . za,¢ } and the result {Z} is passed to the next WATTBlock or used directly.

We note that independence between convolutions is neces-
sary to provide the model with enough flexibility to treat time
series with different characteristics. The outputs of the TCN
operation are then concatenated as to form a multivariate la-
tent time series {Z}. In particular, WATTNet includes gated
convolutions, a standard architectural component for sequen-
tial data. Two dilated TCNs are applied to { X} and the results
{Z},{Z} 3 are passed to non-linear activation functions and
then multiplied element-wise:

{2} = 0({Z}a) © tanh({Z} ) 3)
where o indicates a sigmoid activation. The output {Z} is
then fed into a spatial learning module after which the process
repeats for a number of times depending on WATTNet’s layer
depth.

Spatial learning A single-head scaled-dot product atten-
tion mechanism [Vaswani et al., 2017] is placed between di-
lated TCN layers and allows the model to exchange informa-
tion across different input time series at a specific time slice.
We compute key Ky, query Q; and value V, by consider-
ing aslice {z1,...2nm,} € {Z} of latent time series at time
t as the input of learnable linear transformation of the type
({z1,4 ... 2m4}) with weights Wy, W, and W,,. The re-
sulting matrices K, Q;, and V; are then used in the standard
scaled-dot product attention to return M weighted averages of
values V:

Q:K/
Vi
where dj is a scaling factor given by the second dimen-
sion of K. The process is repeated for latent feature slices
{z1t...2m1}, t = 1,...T and the results are concatenated
into {Z}, a spatio-temporal latent representation of input data
{X}. Weights W, W, and W, are shared across the en-
tire sequence length 7', allowing the attention head to cap-
ture time-invariant features that incorporate information from

{Z1¢t-..2m¢} = softmax( YV, 4
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multiple time series. Output {Z} can be used directly for
different tasks to perform decision—making conditioned on
multivariate time series data; alternatively, if the task at hand
benefits from deeper models, {Z} can instead be passed to the
following TCN layer to perform additional cycles of temporal
and spatial learning.

Hierarchical representation A single temporal and spatial
module constitute a full WATTNet layer of computation and
is referred to as WATTBlock. WATTBlocks can be stacked,
in which case output {Z} becomes a hierarchical spatio-
temporal representation of {X}. As is the case with other
TCN-based models, the dilation coefficient is doubled each
temporal module as to provide an increasing receptive field
which allows for a computationally inexpensive way to model
long sequences. An additional benefit of the gradual dilation
increase is the slow introduction of interaction terms between
time series which include less lagged values for early WAT-
TBlocks and more for later ones. We observe that a gradu-
ally increasing the size of this interaction window is key in
learning a hierarchical representation of the data that strongly
intertwines spatial and temporal causal effects.

Prediction model The model ¢ is connected to a fully-
connected head which takes as input the latent representation
{Z} of a length T input sequence {X[t—7:4} and outputs a
probability distribution over tenor actions via softmax. The
training procedure is then carried out by minimizing, for each
trading day t, the cross—entropy loss of ¢({Xp_r.}) and
tenor labels a; .

S Experimental Results

The experimental evaluation covers the following 3 major
NDF markets: Chinese Yuan (USDCNY), Korean Won (US-
DKRW), Indonesian Rupiah (USDIDR). The selection has
been carried out to test the proposed method on markets with
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USDCNY USDKRW USDIDR
Model ROI opt.acc nn.acc ROI opt.acc. nn.acc. ROI  opt.acc. nn.acc.
Optimal 759.8 100 100 844.2 100 100 1260.0 100 100
Expert (oracle) 71.6 21.6 100 139.4 13.7 100 152.0 3.6 100
Expert 0.0 1.4 47.8 12.7 1.9 49.9 230.0 0.4 67.0
Momentum-1 14.6 1.4 48.3 10.7 0.9 49.7 201.0 0.7 66.5
Momentum-90 4.9 6.7 54.1 9 2.6 56.2 338.0 1.9 69.2
GRU-I 26.7.£485 49+£0.7 54.7+£1.0 —-98.7£354 1.5+£05 521+14 83.5+£33.1 0.6+0.1 62.9+2.6
LSTM-I 74.3+£373 3.7£09 58.7+£22 746+300 2.6+£06 56.0£2.5 1464+404 1.1+0.3 66.5+1.1
WATTNet 2191 +£255 67+0.7 595+1.6 1424+169 27+0.2 59.5+1.0 280.2+39.9 1.3+£0.3 69.5£0.9

Table 1: Test results in percentages (average and standard error). Best performance is indicated in bold.

Market Htrain ~ Otrain ~ Mtest  Otest
USDCNY 1.13 23.16 -0.30 23.29
USDIDR  2.20 50.62 0.35 33.57

USDKRW 0.05 47.12 -1.27 38.75

Table 2: Statistics of daily percent returns, reported in basis points.

different characteristics as shown in Table 2.

Classical baselines
ing baselines:

We include the following classical trad-

e Momentum-1: 1-day lag of expert tenor actions. Effec-
tive in markets where monotonic behavior in the spot
rate is frequent and persists for several trading periods.

o Momentum-90: best performing tenor from 90 days
prior. Effective in markets with trends whose duration
is longer compared to the maximum tenor.

Model hyperparameters GRU and LSTMs are used as ad-
ditional baselines for tenor and referred to as GRU-I and
LSTM-I. GRU-I and LSTM-I share the same structure, which
has been optimized for the task at 2 recurrent layers with
latent vector dimension of 512. The WATTNet model is
composed of 8 WATTBIlocks with the dilation coefficients
for temporal learning set to 2, 4, 8, 16, 2, 4, 8, 16 for
WATTBIlock-1 to 8. All models are connected to a 2-layer
fully-connected head of dimensions 512, 256, 90 which trans-
forms the spatio—temporal, latent representation of {X} pro-
duced by the model in its last layer and produces a probability
distribution over tenor actions via softmax. We further aug-
ment A with a no-buy position, yielding a 91-dimensional
set of available actions.

Training setup The models are implemented in PyTorch
and trained using Adam [Kingma and Ba, 2015] with batch
size 32 and a learning rate cosine decay schedule from 6e~*
down to 3e~%. To avoid overfitting uninformative noisy pat-
terns in stale data input sequence length is set to 30 days.
In addition, to enable a fair comparison and avoid additional
overfitting we employ an early stopping scheme based on
training loss that is motivated by different convergence times
of different models. We use a static testing approach with a
long period of 446 out-of-sample trading days to test robust-
ness of the learned trading strategy under turbulent market
conditions and a wider distributional shift between in-sample
and out-of-sample data. The training dataset ranges from
2013 to 2017, whereas test data spans 2017 to 2019.

Metrics The following metrics are used to benchmark the
performance of trading models and baselines:

e Return on investment (ROI): given a tenor action a at
time ¢ and spot rate value x;, the percent non—risk ad-

justed ROI is calculated as ROI, = 100 (u)

Zt

e Optimal accuracy: accuracy of model outputs a; versus
optimal tenor labels a; .

e Non-negative return accuracy: accuracy of model out-
puts a; compared to tenor actions with positive or zero
return. At time ¢, there are generally multiple tenor
actions with non-negative return, thus rendering non-
negative accuracy a less strict metric compared to op-
timal accuracy. It should be noted that it is possible for
a high ROI trading model to show poor optimal accu-
racy but competitive positive return accuracy since non-
negative accuracy also captures positive ROI strategies
that differ from optimal tenor labels.

Discussion We characterize the 3 NDF markets under eval-
uation based on mean g and standard deviation ¢ of their 1-
day returns and performance of classical baselines. Mean-
variance statistics given in Table 2 show “easier” markets
with similar volatility in training and test periods as well as
markets that appear more erratic and thus challenging to trade
profitably in. From Table 1, we determine USDCNY and US-
DKRW to be challenging for Momentum and recurrent base-
lines, in addition to being barely profitable for expert traders.
GRU-I is unable to consistently get positive ROI and we sus-
pect this is caused by its insufficient ability to exchange infor-
mation between time series. LSTM-I, on the other hand, fares
better by leveraging its memory module to perform rudimen-
tary spatial learning [Santoro et al., 2018].

6 Explainability

Model explainability is particularly important in critical
decision—making applications, such as algorithmic trading.
Understanding driving factors behind a trading decision is
necessary to properly assess the risks involved. We tackle
this issue by proposing two orthogonal approaches for evalu-
ating the tenor selection strategy in terms of noise robustness
and driving factors.

6.1 Feature Importance By Input Gradients

Each input feature carries a specific meaning which can be
leveraged by domain experts to confirm whether the model
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Figure 2: Highest impact spot rate features behind 90 day tenor USDCNY actions. Background color shows 20 day rolling standard deviation.
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Figure 3: UMAP embedding of model latents. The points are la-
beled according to the final tenor output of the model.

outputs actions consistent with market dynamics. We pin-
point the driving factors of different tenor actions by sorting
the input features by their per—class input gradient magnitude
[Baehrens et al., 2010]. Input gradients allow the identifica-
tion of features with largest impact on specific model deci-
sions. The proposed approach is validated by an analysis of
the driving factors for long tenor WATTNet positions in the
USDCNY NDF market.

Discussion Fig. 2 shows historical data of the 6 highest im-
pact input features for learned tenors of 90 days. Blue in-
dicates the spot rate itself, whereas the shaded green back-
ground corresponds to the 20 day rolling standard deviation,
highlighting regions of low and high market volatility. We
compute the Pearson’s correlation coefficient p between the
USDCNY spot rate, the NDF market under consideration,
and the time series of each feature. In red, the plot shows
input segments that are mapped by WATTNet to long 90—
day tenor actions. The black dots indicate the exact day in
which a long position was initiated by the model. The model
is confident to choose long positions when currencies that are
positively correlated with USDCNY, such as USDSGD, un-
dergo periods of growth. Similarly, decreasing trend periods
for spot rates negatively correlated with USDCNY are pre-
ferred. Indeed, the degree to which such trends affect the
model is directly reflected in p: USDCHEF, still positively cor-
related with USDCNY, shows a less decisive positive trend,
with additional ups and downs. Moreover, the model learns
to favor trading periods with low volatility. To summarize,
WATTNet correctly identifies trends in the driving features
and utilizes this contextual market landscape information to

determine profitable long positions. The analysis can be ex-
tended by domain experts to additional input features, such as
technical indicators or past tenor actions, boosting confidence
in model decisions.

6.2 Latent Space Representation

Desired properties of the learned trading strategy are input
coherence and robustness. Input coherence is characterized
by similar tenor outputs for similar states. Robustness, on
the other hand, is concerned with how much noise perturba-
tion is required to cause a tenor switch from a certain state.
We perform a visual inspection of these properties via a uni-
form manifold approximation and projection (UMAP) which
excels at capturing both local and global structure of the
high-dimensional data [McInnes, Healy, and Melville, 2018].
Fig. 3 visualizes latent representation of the last layer for each
model, embedded into two-dimensional space. More specifi-
cally, we apply UMAP to the spatio—temporal representation
preceding the fully—connected head defined in Sec. 5. While
Fig. 3 shows latent representations learned for the USDCNY
NDF market, the discussion has been observed to be general.

Discussion WATTNet learns a coherent representation that
smoothly interpolates between tenor actions and covers a
larger volume of the embedding space. On the other hand,
LSTM-I and GRU-I learn a thin lower—dimensional latent
representation that mixes tenor labels abruptly. For recurrent
models, small noise perturbations can then cause wide jumps
in tenor actions and lower the performance, partially explain-
ing the result volatility of GRU-I and LSTM-I observed in
Table 1.

7 Conclusion

We introduced a challenging imitation learning problem,
tenor selection for non-deliverable-forward (NDF) contracts.
With the goal of promoting further research in this direction,
we constructed and released a comprehensive NDF dataset
and designed WaveATTentioNet (WATTNet) a novel deep
learning model for spatio-temporal data which outperforms
expert benchmarks and traditional baselines across several
NDF markets. Finally, we employed two explainability tech-
niques to determine driving factors and noise robustness of
the learned tenor strategy.
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