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Abstract

As a matter of fact, it is usually taken for grant-
ed that the occurrence of unauthorized behaviors is
necessary for the fraud detection in online payment
services. However, we seek to break this stereotype
in this work. We strive to design an ex-ante anti-
fraud method that can work before unauthorized
behaviors occur. The feasibility of our solution is
supported by the cooperation of a characteristic and
a finding in online payment fraud scenarios: The
well-recognized characteristic is that online pay-
ment frauds are mostly caused by account compro-
mise. Our finding is that account theft is indeed pre-
dictable based on users’ high-risk behaviors, with-
out relying on the behaviors of thieves. According-
ly, we propose an account risk prediction scheme to
realize the ex-ante fraud detection. It takes in an ac-
count’s historical transaction sequence, and outputs
its risk score. The risk score is then used as an early
evidence of whether a new transaction is fraudulent
or not, before the occurrence of the new transac-
tion. We examine our method on a real-world B2C
transaction dataset from a commercial bank. Ex-
perimental results show that the ex-ante detection
method can prevent more than 80% of the fraudu-
lent transactions before they actually occur. When
the proposed method is combined with an interim
detection to form a real-time anti-fraud system, it
can detect more than 94% of fraudulent transaction-
s while maintaining a very low false alarm rate (less
than 0.1%).

1 Introduction

Online payment services bring convenience to people’s dai-
ly lives. Meanwhile, they also face many challenges, e.g.,
transaction fraud, where a fraudster might have stolen an ac-
count and intends to transfer its funds quickly by purchasing
some merchandises at online shopping platforms. Transac-
tion fraud has caused huge economic loss to financial plat-
forms every year [Yang et al., 2014; Mittal and Tyagi, 2020].
It is really imperative to build effective online fraud detection
systems for financial platforms to lock fraudsters out.
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Most existing methods for transaction fraud detection usu-
ally depend on real-time online payment behaviors. These
methods actively examine every transaction when a user s-
tarts a payment, and try to detect and terminate any fraudu-
lent transaction before fraudsters finish the transfer of fund-
s. Among these methods, the rule-based system was once
commonly used [Jarovsky et al., 2018]; it is generally built
on business experiences and character statistics of historical
risk events. Nowadays, machine learning techniques are in-
creasingly applied to active fraud detection and have shown
great effectiveness [Nami and Shajari, 2018]. Thereinto,
supervised learning models have been widely used in real-
time transaction fraud detection [Jing er al., 2019]. They
are often combined with the usage of transaction aggregation
[Kim er al., 2019]. In the meantime, unsupervised and semi-
supervised learning methods also have been taken into con-
sideration [Porwal and Mukund, 2019; Elshaar and Sadaoui,
2020]. In addition, deep learning techniques, such as Recur-
rent Neural Networks (RNN) [Wang et al., 2017] and Convo-
lutional Neural Networks (CNN) [Pozzolo et al., 2018], have
shown their great advantages on transaction fraud detection.

All of these methods can be regarded as interim detection
methods, which work passively and take effect only when a
transaction occurs. We take a different point of view, how-
ever, to ask whether transaction fraud can be detected in an
ex-ante manner. That is to say, can we predict a fraudulent
transaction before its occurrence?

We start our investigation for solutions on the basis of a
fact that most transaction frauds in the online payment ser-
vices are caused by account compromise. Thus, we resort to
the prediction of account theft based on user behaviors. By
examining the collected real-world transaction data, we find
that account compromise is highly associated with risky pay-
ment behaviors of users. In Figure 1(a), we show the percent-
ages of time intervals between adjacent legal and fraudulent
transactions in a real dataset of a commercial bank. For more
than a quarter of the compromised accounts, each of them
has time intervals of less than half an hour between its last le-
gal transaction and the first following fraudulent transaction.
This indicates that there is possibly a relation between a user’s
historical payment behavior and his/her account compromise.
Figure 1(b) shows the percentages of time intervals between
adjacent fraudulent transactions of the same account. It re-
veals the behavior patterns of fraudsters to some extent. To
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Figure 1: (a) The percentages of different intervals between adja-
cent legal and fraudulent transactions of the same account. (b) The
percentages of different intervals between adjacent fraudulent trans-
actions of the same account.
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be concrete, once a fraudster gets hold of an account, he/she
will transfer the funds as quickly as possible.

From the above observation, our objective is to check out to
what extent an account is in risk after its holder has generated
a series of transactions. Accordingly, we propose a fraud risk
prediction method based on transaction sequences. The fraud
risk of an account can be determined by only several recent
transactions performed by its holder. Obviously, in contrast to
typical fraud detection techniques, which are mainly interim
or ex-post, ours is an ex-ante one.

We firstly adopt a feature aggregation method to deal with
transaction sequences, and then feed the aggregated features
into some state-of-the-art machine learning models to pre-
dict account risks. Surprisingly, upon doing so, our ex-ante
method can achieve nearly the same detection performance as
those interim ones on a real B2C transaction dataset from a
commercial bank. In addition, to exploit the complementary
effects, we design an anti-fraud scheme by combining the ex-
ante and interim paradigms in order to further improve the
effectiveness.

The rest of the paper is organized as follows. Section 2 pro-
vides the related works on transaction fraud detection. In Sec-
tion 3, we propose the method. In Section 4, we present the
experimental evaluation, and devise an enhanced anti-fraud
scheme in Section 5. We conclude the work in Section 6.

2 Related Work

With the advent of large-scale e-commerce platforms and on-
line payment platforms, transaction fraud detection has be-
come a widely studied research area, and attracts a lot of at-
tention from researchers. Existing studies on real-time trans-
action fraud detection mainly work in an interim manner.

Interim fraud detection tries to discover and identify fraud-
ulent activities as they enter the detecting systems and report
them to a system administrator [Wang et al., 2019]. Rule-
based expert system used to be the most widely used tech-
nique, which incorporates various areas of knowledge like
economics, finance and business practices [Jarovsky et al.,
2018; Milo et al., 2018]. However, the capability of this ap-
proach is limited because it heavily depends on predefined
rules. These rules can only be maintained by domain experts,
which is quite labor-intensive. Moreover, statistical proper-
ties of transactions may change over time, making the rules
obsolete.
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Fraud detection methods based on machine learning and
artificial intelligence techniques are becoming increasingly
popular. Supervised learning techniques make use of user-
s’ behavior data to create a classification model to deter-
mine whether a user’s ongoing behavior deviates from the
global behavior [Nami and Shajari, 2018]. From the point
of view the fraudster, Jing et al. [Jing ef al., 2019] have
found some behavior patterns of fraudsters from raw data.
They combined these behavior patterns with machine learn-
ing models. As it is not always possible to label all da-
ta, unsupervised learning approaches are utilized to over-
come this defect [Porwal and Mukund, 2019]. Later, deep
learning techniques were increasingly applied to financial
transaction fraud detection scenarios [Wang er al., 2017,
Pozzolo erf al., 2018]. Recently, Zhang et al. [Zhang et al.,
2019] applied the deep forest to the task of fraud detection.
Zheng et al. [Zheng et al., 2019] proposed one-class adversar-
ial nets for fraud detection with only benign users as training
data to detect the malicious users. Fraud detection methods
based on network and knowledge graphs have also attracted
more and more attentions [Cao et al., 2017; Ying et al., 2018;
Liu et al., 2019; Sangers et al., 2019].

The most similar work to ours was done by [McGlohon et
al., 2009]. Tt proposed an account risk evaluation system us-
ing link analysis, and achieved great success in pinpointing
misstated accounts from their dataset. Their method is offline
in nature, and needs to be updated periodically for predictive
effectiveness. Ours is a real-time method of risk prediction,
so the risk of an account could be evaluated every time it gen-
erates a transaction. The evaluated risk can be further utilized
to predict fraudulent transactions.

3 Fraud Prediction

We present a real-time account risk prediction method to pre-
vent the occurrence of future fraudulent transactions.

3.1 Transaction Sequence Window

Given an account of a user, we can use a sequence in chrono-
logical order, i.e., T = {(z1,y1), (z2,¥2), ..., (T¢,yt)}, tO
represent its historical transaction records, where x; is the
i-th transaction of the account, y; is the label of transac-
tion xz;, x; is the latest completed transaction of the ac-
count, and the risk value of the account is r;. The risk
of the account is closely related to the user’s recent trans-
action behaviors. We devise a transaction sequence win-
dow W for each account. The size of the window is w.
The so-called transaction sequence window of an account,
denoted by W' = {x4_(_1),...,Z¢—1, 2}, contains a se-
quence of w transaction records generated by this account
recently. We formulate here risk prediction problem to eval-
uate the probability of fraud in the next transaction, where
re = Pr(yep1 = 1UW = {&4_ w1y, s T—1, 74 }) -

When an account finishes a transaction, its transaction se-
quence window is updated by maintaining a first-in-first-out
transaction queue. In order to make real-time fraud risk pre-
dictions on the account, every time when the transaction se-
quence window of an account is updated, the predicted risk of
this account is immediately re-estimated. Based on the updat-
ed risk value, we can judge the risk of the account continuing



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on Al in FinTech

Xtw  Xew-1)  Xt-w-2) Xt-(w-3)

----- 006 6-10

[] transaction 0 sequence window

Figure 2: The process of updating transaction sequence window and
account risk.

to trade and prevent the occurrence of fraudulent transactions
in advance. If the risk is beyond a given threshold RT', we
immediately lock the account and prevent any of its subse-
quently requested transactions.

Figure 2 provides an illustration for the updating process
of the window. The current status of the window is W; =
{®1—(w—-1), -, Tt—1,2¢}, and the risk of the account is 7,
when a transaction x4 is completed, the window is updated
as Wit1 = {24—(w—2), - Tt, Te41}, We need to re-estimate
the fraud risk of the account

rir1 = P (Yra2 = UWis1 = {Z4_(w_2), -, Tt, Te41}) -

If r441 is bigger than the threshold RT', the account is im-
mediately locked, and the transaction x;,2 will not happen;
otherwise, the transaction x4 is allowed to occur.

We vary the amount of transaction records in a transaction
sequence window by choosing the different window sizes.
We examine the performance of diverse window sizes ranging
from 1 to 5, respectively. Note that the transaction sequence
window is a rolling window and is updated with every trans-
action. This scheme ensures the feasibility of real-time fraud
prediction. That is, we no longer have to wait for some peri-
ods of time until the next transaction is actually generated.

3.2 Feature Engineering

Feature Selection
A transaction record z = (!, ... ) is a feature vector
x € RM_ which contains various types of features, where
x® is the i-th feature of the transaction z. However, the data
sparsity is often a big challenge in fraud detection task. Peo-
ple are becoming more and more aware of the importance of
privacy and information security. As a result, platforms are
not allowed to collect or utilized some sensitive information
about users.

To assess the importance of different features, we introduce
the mean decrease impurity (MDI, [Breiman ef al., 1984]) as
a standard metric. The metric is defined as

1
MDI (@) = 3 > . ZeT:m p(i) & f(si,0),

where x™ is a feature, Nt is the number of trees within a
Random Forest, s; is the selected feature of one of splitting

, ggjw
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Time Amt Aut Merchant Addr
7:50 100.00 Face 7 25
8:27 20.50 12 25
11:15 500.00 Password 7 25
11:17 125.35 Fingerprint 25
20:37 135.00 Password 25

Table 1: The Example of Transaction Records.

node i in tree T, p(i) is the proportion of samples reaching
node ¢, and f(s;,4) is an impurity decreasing measure. In
our work, Gini index [Busa-Fekete ef al., 2017] is adopted
as the impurity decreasing measure. The larger of the MDI,
the more important the feature is. We retain features of high
importance and remove features of low importance from all
transaction records.

Feature Aggregation
Within a transaction sequence window for each account, there
are several independent transaction records there. We need to
perform feature transformations on the contained transaction
records. A user’s payment behavior changes across different
transactions. The values of the same feature may be differ-
ent for different records in the transaction sequence window.
Therefore, we need aggregate several records into one record
in the window to feed the machine learning model.

We adopt different feature extraction methods for different
categories of features.

Discrete features. A discrete feature can be denoted by
i { F S } where z? is the i-th feature of a

transaction record, and f; is the j-th value of the feature. We
aggregate each feature by replacing its values with its occur-
rence frequencies in the window. For features with too many
values, we need to group the values of features, and coun-
t the number of occurrences of different groups separately.

We reassign the j-th value of feature z° to be count fij Jw,
where w is the size of transaction sequence window.

Continuous features. We do some mathematic operations
on transaction amount and time which are continuous fea-
tures, including calculating the sum, average, variance, max-
imum and minimum.

Other features. We simply digitize users’ demographic or
registering information whose values usually do not change
across different transactions of the same account.

Table 1 presents an example of transaction sequence in the
window (w = b) of an account. There are 5 features for
each transaction, including transaction time (Time), transac-
tion amount (Amt), authentication method (Aut), online mer-
chant (Mer), and account registration address (Addr). These
five features can be divided into three different types: Time
and Amt are the continuous features, Aut and Merchant are
the discrete features, and Addr is the registering information.
The values of Merchant and Addr are represented by num-
bers, which means that the values of these features have been
grouped, and the number denotes the group id of the value.
Table 2 provides the results of feature aggregation.
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Min(Interval) Sum(Amt) Avg(Amt)

Face

Password  Fingerprint Mer7 Mer12 Addr

2 880.85 176.17 0.2

04 0.2 04 0.2 25

Table 2: The Example of Feature Aggregation.
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Figure 3: A real-time ex-ante risk prediction system.
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3.3 Sampling

Highly imbalanced data is a practical challenge that we are
faced in fraud detection [Wu et al., 2017; Mohammed et al.,
2018]. Usually, there are much more non-fraudulent transac-
tions than fraudulent ones. This problem seriously declines
the performance of classifiers, as they are inclined to be over-
whelmed by the majority class and thus ignore the minority
class. Besides, the fraudulent transactions usually occur in a
small number of accounts. As a matter of fact, we need to bal-
ance class labels in training data before feeding it to machine
learning models.

We under-sample the legitimate transaction samples by
random-skipping, and keep all the fraudulent samples. We
define a class ratio C'g. It represents the fraction of the num-
ber of legal transactions and fraudulent transactions. For dif-
ferent classifiers, the ratio C'y is different.

3.4 Ex-ante Risk Prediction System

We devise an architecture of ex-ante risk prediction system,
as illustrated in Figure 3, that is composed of an offline train-
ing procedure and an online prediction procedure.

Offline Training

Given all transactions of each account stored in a chrono-
logical order, we design a sliding window of fixed size for
each account. Every time the window slides on the histori-
cal transaction sequence of an account, a training sample can
be generated. When a training set is generated, we use the
under-sampling technique to balance the ratio of legitimate
and fraudulent transaction records. Afterwards, the data pre-
processing, feature selection and feature aggregation modules
are sequentially performed on all training samples. Finally,
we use the aggregated features to train a classifier, e.g., XG-
boost [Chen and Guestrin, 2016], as the risk prediction mod-
el.

Online Prediction

When a user completes a transaction with his/her account, the
system would update its transaction sequence in the window
immediately, and re-generate desired features for the avail-
able classifier. The classifier will output a risk value that rep-
resents the risk of the account caused by its recent transaction
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operations. When the risk value is higher than a predefined
threshold, the system will immediately lock the account and
disable its following-up transactions.

4 Experimental Evaluation

We evaluate the performance of our method at differen-
t benchmark classifiers, and evaluate the influence of different
setting parameters in our method. Furthermore, We verify the
performance of our ex-ante prediction method by comparing
it with the interim detection methods using the state-of-the-art
classifiers.

4.1 Data Description and Analysis

We collect 3.5 million real-world B2C transaction record-
s from a commercial bank. The transaction records have a
time interval from April 1, 2017 to June 30, 2017 generated
by 0.1 million accounts. All these records have been labelled
as legitimate/fraudulent manually, and the whole data is en-
crypted and desensitized for security and privacy issues. Each
transaction consists of 54 features, which include 17 user fea-
tures (users’ demographic information and accounts’ register-
ing information) and 37 online payment behavior features.
Although the adopted dataset has 54 features, many of
them have invalid values for most transaction records, due to
the limited permission offered by users and payment carries.
From Figure 4, we can observe that more than half of the data
records have a feature missing rate over 60%. We apply the
random forest feature importance to rank the other 52 features
except account ID and merchant ID. The features (with the
corresponding types) selected in this way include Account ID
(Int), Transaction Amount (Float), Transaction Time (Date-
time), Card Type (Int), Authentication (Int), Frequent-Used
IP (Bool), Registered Addr (String), and Merchant ID (Int).
Data imbalance is another big challenge. In our data, there
are only 65291 fraudulent transactions, which means that on-
ly 1.8% of transactions are fraudulent transactions. Further-
more, only 8% of the accounts have been compromised in
our all accounts. Additionally, the numbers of transaction-
s and fraudulent transactions approximately follow pow-law
distributions. As shown in the left side of Figure 5, most of
the accounts completed very few transactions, while only few
accounts completed most of transactions. The right side of
Figure 5 presents the distribution of fraudulent transaction-
s in the 8% fraud accounts, and shows that the occurrence
fraudulent transactions concentrate on a few accounts.

4.2 Experiment Setting

We partition the dataset into two parts, with transaction
records from April 1, 2017 to May 31, 2017 as the training
data, and transaction records from June 1, 2017 to June 30,
2017 as the testing data.

The objective is to make a real-time prediction of accoun-
t risk based on historical transaction sequences. Clearly, the
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Figure 5: The imbalanced distributions of transactions and fraudu-
lent transactions.

size of transaction sequence windows, denoted as w, is a crit-
ical parameter. It not only decides how much historical in-
formation of an account is used, but also determines the start
point of the risk prediction task.

For each account, we set a fixed sequence window size w.
Then, for each user, we only start predicting the risk of ac-
count after the user completes its w — th transaction. For ex-
ample, if we set w = 3, we can predict the risk of an account
only after it generates three transactions.

4.3 Evaluation Metrics

In general, there are many metrics to evaluate the per-
formance of binary classifiers, such as AUC (area Under
the ROC curve) score, F-measure, and KS (Kolmogorov-
Smirnov) score. However, these metrics cannot directly re-
flect the economic influence of models, especially in the case
of imbalanced data. With the consideration of practical us-
age, we use precision, recall, false positive rate and FI-score
as evaluation metrics. As a classification model often out-
puts the numerical probability of a transaction being fraudu-
lent, we need to set a threshold to determine whether fraud
occurs. The threshold actually provides a tradeoff between
precision and recall, and may be different for different clas-
sifiers. We adopt false positive rate (FPR) as a principle for
choosing thresholds.

With a fixed value of F'P R, we can get different threshold-
s for different classifiers. We can also calculate their recall,
precision and F1-score under the fixed FPR. This can be used
for model selection. For models with the same F'PR value,
large values of the chosen metrics suggest good model per-
formance. In our online payment scenario, F'PR must be
smaller than 0.001, otherwise the model makes no sense.
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‘ FPR Classification Precision ‘ Recall ‘ F1-score
XGB 0.9515 0.9421 0.9468

0.001 RF 0.9511 0.9370 0.9440
LR 0.8885 0.3839 0.5362

DNN 0.9499 0.7637 0.8467

XGB 0.9746 0.9273 0.9504

0.0005 RF 0.9745 0.9208 0.9469
LR 0.9306 0.3201 0.4762

DNN 0.9582 0.4634 0.6247

XGB 0.9879 0.4091 0.5786

0.0001 RF 0.9638 0.3259 0.4871
LR 0.2293 0.0014 0.0028

DNN 0.7529 0.0469 0.0883

Table 3: Comparison of Classifiers at Different FPR.

4.4 Comparison of Benchmark Classifiers

We compare the performance of four popular classification
models, including XGBoost (XGB), Random Forest (RF), L-
ogistic Regression (LR), and Deep Neural Network (DNN).
In the DNN model, the sigmoid function is used as activation
function and there are 3 hidden layers in addition to the input
and output layers; the neurons at the three hidden layers are
20, 30 and 20, respectively. We set the window size w = 2
and repeat this process 3 times. Table 3 shows the average
precision, recall and F1-score on testing data. Note that we
set FPR = 0.001, FPR = 0.0005 and F PR = 0.0001, re-
spectively. We learn that XGBoost not only performs better,
but shows superior stability and robustness. Then, we choose
XGBoost as the classifier of benchmark interim method.

4.5 Impact of Window Size on Prediction

We need to analyze the impact of the transaction sequence
window size on the perdition performance. We increase the
window size w from 1 to 5, and compare the performance of
corresponding models. The size of transaction sequence win-
dow decides when to start the risk evaluation. For example,
when w = 1, we can predict the risk of an account after it
generates one transaction; but when w = 5, we cannot make
a prediction until the account finishes five transactions. In
order to analyze the impact of window size reasonably, our
prediction starts from the sixth transaction for each account
in the testing data.

Figure 6 shows that the window size has a significant im-
pact on performance. The recall and F1-score of all models
increase with the increase of window size given fixed F'PR.
The reason lies in that larger window size ensures more be-
havioral information from account holders. In practice, we
can choose a properly large window size, but for our test-
ing data, when the window size increases by 1, almost 20
thousand transactions are made unpredictable. For example,
when w = 5, there are about 0.1 million transactions that
cannot be predicted in our testing data. As an explanation,
most accounts have only a few transactions. Therefore, in our
experiment, we do not consider window size larger than 5.

4.6 Impact of Class Ratio for Prediction

We compare the effect of class ratio Cr on the performance
of classifiers. In our experiment, we increase the class ra-
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Figure 6: Recall, F1-score at different PR and w (Cr = 30).

tio Cr from 10 to 70, and set the window size w = 2.
We repeat this process 3 times, Figure 7 presents the aver-
age recall, Fl-score of testing data when F'PR = 0.001 and
FPR = 0.0001, respectively, where the x-axis is class ratio.

From Figure 7, we obtain that when F'PR = (.001, the
change of C'r has no significant impact on all models. How-
ever, if we decrease the I'PR to 0.0001, the performance
of XGBoost has hardly changed with the increase of Cg,
but the performance of Random Forest is decreased great-
ly. Although the change of Cp has little effect on Logistic
Regression and DNN, their performance is very poor when
FPR = 0.0001.

4.7 Comparison with Interim Detection

In this part, we compare our ex-ante fraud detection method
with the traditional interim fraud detection method. As stated
before, we adopt XGBoost as the classifier in both methods.

Activation detection on the fly is widely-used fraud detec-
tion method. Different from ours, the interim fraud detection
method examines every currently ongoing transaction of an
account by comparing it with the account’s historical transac-
tions. Once the currently ongoing transaction is determined
to be fraudulent, the system will immediately terminate the
transaction. In order to train an effective interim fraud detec-
tion model, it is important to extract useful features with data
and business experience. The feature extraction process for
interim fraud detection is described as follows:

User historical behaviour features. We use the most re-
cent month and day as the time interval to calculate the pay-
ment behaviour of users in these intervals. We extract a set
of user-behaviour-related features, including the statistics of
transaction volume, the statistics of transaction amount, the
trading period and the statistics of other historical trading
characteristics.

4616

1.0 1.0

0.9+ 0.9

0.8} O T T
% -~y 50.8
00.7+ o —=— XGBoost
0] —=— XGBoost 0o0.7 —«— RandomForest
Yo.6t —e— RandomForest — LogisticRegression

—— LogisticRegression| lJ_O 6 —v—DNN
0.5+ —v— DNN ’
04F , o 0.5

10 20 30 40 50 60 70 10 20 30 40 50 60 70
CR CR
(a) FPR = 0.001
06

0.5 e,
04} 0.5 S~ g
e Se—o—o
=03 e 004
o e 80 3 —=— XGBoost
8 —=— XGBoost n —e— RandomForest
10.2 r +— RandomForest <02 LogisticRegression
LogisticRegression L ——DNN
0.1} v DNN 01f vy e
v—+47*77f’/'77'
0.0 0.0

10 20 30 40 50 60 70 10 20 30 40 50 60 70
Cr Cr
(b) FPR = 0.0001
Figure 7: Recall, F1-score at different /PR and Cr (w = 2).

Merchant historical behaviour features. Similar to the
users’ historical behaviour feature extraction, we extract 9 s-
tatistical features related to merchants.

User-merchant features. We extract 2 features related to
user-merchant, including the number of transactions per user
in different merchants and the average amount per transac-
tion.

Ongoing payment features. To extract features of an on-
going transaction, we digitize its non-numeric fields, and cal-
culate the difference between the ongoing transaction and its
previous transaction, such as the time intervals and amount
differences. We extract 12 features related to ongoing trans-
action in all.

Figure 8 illustrates the comparison of the receiver operat-
ing characteristic (ROC) between two methods. Although the
interim fraud detection method outperforms ours, the advan-
tage is very limited. The strong point of our method is that
it can prevent fraudulent transactions from occurring, while
still keeping very good performance. This enables financial
platforms to inform users of account risks in advance, and
remind them to protect their accounts timely.

5 Enhanced Anti-Fraud Scheme

As the fraud prevention and fraud detection are the two most-
ly used schemes to combat fraud in practice, we design a hy-
brid anti-fraud system that combines both methods.

5.1 Hybrid System Architecture

As depicted in Figure 9, the enhanced scheme consists of two
modules as follows:

Ex-ante risk prediction module. When an account finish-
es a transaction x;, the system immediately uses the ex-ante
risk prediction method to predict the risk of account. If the
risk is too high, the system will immediately lock the account
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Figure 8: ROC Curves.

and prohibit all subsequent transactions. Otherwise, the sys-
tem will allow the occurring of next transaction, say ;.

Interim fraud detection module. If the ex-ante module
does not lock the account and the account is making a new
transaction x4, 1, the system will use the interim fraud detec-
tion module to check the ongoing transaction x;y1. If x4y is
determined to be fraudulent by this module, it will be termi-
nated immediately and the account will be locked. Otherwise,
it will wait for the ongoing transaction until it completes, up-
date the transaction sequence of the account, and re-estimate
its fraudulent risk using the ex-ante risk prediction module.

5.2 Anti-Fraud Performance Evaluation

We have applied the system to the bank’s one-month B2C
transaction data. There are 1028437 transaction records
in this month, including 1003539 normal transactions and
24898 fraudulent transactions. In the ex-ante risk prediction
module, we set w = 2. The core of our anti-fraud system
is to select an appropriate risk threshold (RT) for the ex-ante
risk prediction model. Figure 10 presents the recall and F'PR
with different RT, from which we can observe that the small-
er the risk threshold, the larger the recall and F'PR. It means
that we can prevent and detect more fraudulent transactions at
the cost of interrupting more legitimate ones. When RT' = 1,
it means that we only use the interim fraud detection method,
without predicting the risk of accounts ahead of time. Al-
though it interrupts very few legitimate transactions, many
fraudulent transactions cannot be detected.

In practical applications, it is necessary to ensure that the
false positive rate is less than 0.1%. Next, we present the re-
sults on the performance of ex-ante prediction module, inter-
im detection module, and the integrated system, respectively,
when RT = 0.75:

e Our real-time fraud prevention and detection integrated
system can detect 94.46% of fraudulent transactions with less
than 0.09% of legitimate transactions interrupted.

e It is remarkable that 80.42% of fraudulent transactions
can be prevented by the ex-ante module with less than 0.04%
of legitimate transactions interrupted, leaving only 14% of
fraudulent transactions to be detected when they are ongoing.

e Figure 11 shows the distribution of fraudulent transac-
tions over time intervals that the system can predict ahead of
time. We observe that nearly 70% of fraudulent transactions
can be predicted more than 5 seconds ahead of occurring.
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Figure 11: The cumulative distribu-
tion of predicted frauds.

6 Conclusion and Future Work

Different from most existing studies which usually aimed to
design fraud detection methods of interim patterns, this work
takes a different point of view to investigate whether transac-
tion fraud can be detected in an ex-ante manner in an online
payment service. We have obtained an insightful finding that
there is really a relation between a user’s historical paymen-
t behavior and his/her account compromise. Based on this
finding, we can predict a fraudulent transaction before its oc-
currence without on-going transaction behaviors which are
necessary for any interim fraud detection methods. Based on
areal-world dataset, it is validated that this ex-ante fraud pre-
diction can prevent more than 80% of fraudulent transaction-
s before their actual occurrences. Moreover, utilizing their
complementary effects, we have designed a real-time fraud
prevention and detection system by combining the ex-ante
and interim methods to further improve the effectiveness.

For future work, we will solve the cold-start problem of
risk prediction for some accounts whose historical transaction
count is smaller than the size of transaction sequence win-
dows. In addition, it is also interesting to investigate how to
overcome the concept drift problem [Lu et al., 2019] in risk
prediction.
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