
On the Splitting Property for Epistemic Logic Programs (Extended Abstract)∗

Pedro Cabalar1 , Jorge Fandinno2 and Luis Fariñas del Cerro3
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Abstract

Epistemic logic programs constitute an extension
of the stable model semantics to deal with new con-
structs called subjective literals. Informally speak-
ing, a subjective literal allows checking whether
some objective literal is true in all or some sta-
ble models. However, its associated semantics has
proved to be non-trivial, since the truth of subjec-
tive literals may interfere with the set of stable mod-
els it is supposed to query. As a consequence, no
clear agreement has been reached and different se-
mantic proposals have been made in the literature.
In this paper, we review an extension of the well-
known splitting property for logic programs to the
epistemic case. This epistemic splitting property is
defined as a general condition that can be checked
on any arbitrary epistemic semantics. Its satisfac-
tion has desirable consequences both in the repre-
sentation of conformant planning problems and in
the encoding of the so-called subjective constraints.

1 Introduction
The language of epistemic specifications, proposed by Gel-
fond [1991], constituted an extension of disjunctive logic pro-
gramming that introduced modal operators to quantify over
the set of stable models [Gelfond and Lifschitz, 1988] of a
program. These new constructs were later incorporated as an
extension of the Answer Set Programming (ASP) paradigm
in different implemented solvers (see Lecrerc and Kahl 2018
for a recent survey). The new constructs, subjective literals,
have the form K l and M l and allow respectively checking
whether an objective literal l is true in every stable model
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Toulouse (CIMI) through contract ANR-11-LABEX-0040-CIMI
within the program ANR-11-IDEX-0002-02 and the Alexander von
Humboldt Foundation.

(cautious consequence) or in some stable model (brave con-
sequence). In many cases, these subjective literals can be
seen as simple queries, but what makes them really interest-
ing is their use in rule bodies, which may obviously affect the
set of stable models they are meant to quantify. This fea-
ture makes them suitable for modelling introspection, that
is, reasoning about the knowledge and lack of knowledge
that the system possesses rather than reasoning exclusively
about the facts themselves. However, at the same time, it eas-
ily involves cyclic specifications whose intuitive behaviour
is not always easy to define. For instance, the semantics
of epistemic specifications may yield alternative sets of sta-
ble models, each set being called a world view. Deciding
the intuitive world views of a cyclic specification has moti-
vated a wide debate in the literature. In fact, in Gelfond’s
original semantics [G91; Gelfond 1991] or in its extensions
to arbitrary propositional formulas [Wang and Zhang, 2005;
Truszczyński, 2011], some cyclic examples manifested self-
supportedness, so Gelfond [2011] himself and, later on, other
authors [Kahl et al., 2015; Fariñas del Cerro et al., 2015;
Shen and Eiter, 2017; Cabalar et al., 2019a] proposed dif-
ferent variants trying to avoid unintended results.

Epistemic logic programs constitute a syntactic fragment
of arbitrary epistemic theories that is aligned to the syntax
of logic programming. In this paper we review a property
called epistemic splitting [Cabalar et al., 2019b], which not
only defines an intuitive behaviour for stratified epistemic
logic programs but also goes further, extending the splitting
theorem, well-known for standard logic programs [Lifschitz
and Turner, 1994], to the epistemic case. Informally speak-
ing, we say that an epistemic logic program can be split if a
part of the program (the top) only refers to the atoms of the
other part (the bottom) through subjective literals. A given
semantics satisfies epistemic splitting if, given any split pro-
gram, it is possible to get its world views by first obtaining
the world views of the bottom and then using the subjective
literals in the top as “queries” on the bottom part previously
obtained. If epistemic splitting holds, the semantics imme-
diately satisfies other properties. For instance, if the use of
epistemic operators is stratified, the program has a unique
world view at most. Similarly, subjective constraints (those
only consisting of subjective literals) can be guaranteed to
only rule out candidate world views. However, we will see
that, among the previously cited approaches, only the G91
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semantics and the recently proposed Founded Autoepistemic
Equilibrium Logic [Cabalar et al., 2019a] satisfy epistemic
splitting. So, somehow, most of the recent attempts to fix the
behaviour of cycles have neglected the attention on the effects
produced on acyclic specifications.

The rest of the paper is organised as follows. First, we
motivate the main idea through a well-known example. Af-
ter that, we recall definitions of epistemic logic programs and
introduce the notion of an abstract semantics. In the next sec-
tion, we review the property of epistemic splitting and some
of its consequences. Finally, we conclude the paper with a
summary of the state-of-the-art with respect to this property.

2 Motivation
To illustrate the intuition behind our proposal, let us con-
sider the following well-known standard example introduced
in [Gelfond, 1991].

Example 1 A given college uses the following set of rules to
decide whether a student X is eligible for a scholarship:

eligible(X) ← high(X) (1)
eligible(X) ← minority(X), fair(X) (2)
∼eligible(X) ← ∼ fair(X), ∼high(X) (3)

Here, ‘∼’ stands for strong negation and high(X) and
fair(X) refer to the grades of student X . We want to en-
code the additional college criterion “The students whose eli-
gibility is not determined by the college rules should be inter-
viewed by the scholarship committee” as another rule in the
program. �

The problem here is that, for deciding whether eligible(X)
“can be determined,” we need to check if it holds in all the
answer sets of the program, that is, if it is one of the cautious
consequences of the latter. For instance, if the only available
information for some student mike is the disjunction

fair(mike) ∨ high(mike) (4)

we get that program {(1) - (4)} has the following two stable
models:

{high(mike), eligible(mike)} (5)
{fair(mike)} (6)

so eligible(mike) cannot be determined and an interview
should follow. Of course, if we just want to query cautious
and brave consequences of the program, we can do it inside
ASP. For instance, the addition of constraint

⊥ ← eligible(mike)

allows us to decide if eligible(mike) is a cautious conse-
quence by just checking that the resulting program has no
answer sets. The difficulty comes from the need to derive
new information from a cautious consequence. This is where
subjective literals come into play. Rule

interview(X)← notK eligible(X),

notK ∼eligible(X)
(7)

allows us to prove that interview(X) holds whenever neither
eligible(X) nor ∼ eligible(X) are cautious consequences of

{(1) - (4)}. Recall that K l holds when the literal l is true
in all stable models of the program. The novel feature here
is that (7) is also part of the program, and so, it affects the
answer sets queried by K l too, which would actually be:

{fair(mike), interview(mike)} (8)
{high(mike), eligible(mike), interview(mike)} (9)

So, there is a kind of cyclic reasoning: operators K and M
are used to query a set of stable models that, in their turn, may
depend on the application of that query. In the general case,
this kind of cyclic reasoning is solved by resorting to multiple
world views, but in our particular example this does not seem
to be needed. One would expect that separating the queried
part {(1) - (4)} and the rule that makes the query (7) should
be correct, since the first four rules do not depend on (7) and
the latter exclusively consults them without interacting with
their results. A similar line of reasoning could be applied if
we added one more level such as, for instance, by including
the rule:

appointment(X)← K interview(X) (10)

The two answer sets of program {(1) - (7)} contain
interview(mike) and so appointment(mike) can be added
to both answer sets incrementally. This method of analysing a
program by division into independent parts shows a strong re-
semblance to the splitting theorem, well-known for standard
ASP. Splitting is applicable when the program can be divided
into two parts, the bottom and the top, in such a way that the
bottom never refers to head atoms in the top. When this hap-
pens, we can first compute the stable models of the bottom
and then, for each one, simplify the top accordingly, getting
new stable models that complete the information. We could
think about different ways of extending this method for the
case of epistemic logic programs, depending on how restric-
tive we want to be on the programs where it will be applica-
ble. However, we choose a very conservative case, looking
for a wider agreement on the proposed behaviour. The con-
dition we impose is that our top program can only refer to
atoms in the bottom through epistemic operators. In this way,
the top is seen as a set of rules that derive facts from epis-
temic queries on the bottom. Thus, each world view W of the
bottom will be used to replace the subjective literals in the top
by their truth value with respect to W.

3 Epistemic Logic Programs
Given a set of atoms At, an objective literal is either an atom
or a truth constant1, that is a ∈ At ∪ {>,⊥}, or an atom pre-
ceded by default negation, not a. A subjective literal is any
expression of the form K l, M l, not K l or notM l, with l
an objective literal. A literal is either an objective or subjec-
tive literal. A rule r is an implication of the form:

a1 ∨ · · · ∨ an ← L1, . . . , Lm (11)

with n ≥ 0 and m ≥ 0, where each ai ∈ At is an atom
and each Lj a literal. A rule is called objective if all liter-
als in it are objective. The left hand disjunction of (11) is

1For a simpler description of program transformations, we allow
truth constants where > denotes true and ⊥ denotes false.
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called the rule head and abbreviated as Head(r). The right
hand side of (11) is called the rule body and abbreviated as
Body(r). The sets Bodyobj(r) and Bodysub(r) respectively
contain the objective and the subjective literals in Body(r).
We write Atoms(F ) to represent the set of atoms occurring
in any syntactic construct F (a literal, head, body, rule or pro-
gram). By abuse of notation, we will sometimes respectively
write Head(r) and Body(r) instead of Atoms(Head(r)) and
Atoms(Body(r)) when it is clear by the context.

A rule r with Head(r) = ∅ is called a constraint. If in ad-
dition Bodyobj(r) = ∅, then it called a subjective constraint.

We assume that strong negation ‘∼a’ is just another atom
in At and that the constraint⊥ ← a,∼a is implicitly included
in the program. We allow the use of variables, but understood
as abbreviations of their possible ground instances.

A program Π is a (possibly infinite) set of rules. It is called
objective if all its rules are objective. An objective program
is consistent if it has a stable model in the sense of [Gelfond
and Lifschitz, 1988]. A propositional interpretation I is a set
of atoms. A belief view W is a non-empty set of propositional
interpretations.

Definition 1 (Abstract semantics) An (abstract) seman-
tics S is a function mapping each program into set of belief
views satisfying the following conditions:

• if Π is a consistent objective program, then S(Π) is the
set of stable models of Π;

• otherwise, S(Π) is the empty set.

Given a program Π, each belief view in S(Π) is called a
S-world view of Π. �

4 Epistemic Splitting Property
We proceed now to introduce our definition of the epistemic
splitting property. To do so, we begin by extending the idea
of splitting set from [Lifschitz and Turner, 1994].

Definition 2 (Epistemic splitting set) A set of atoms
U ⊆ At is said to be an epistemic splitting set of a pro-
gram Π if for any rule r in Π one of the following conditions
hold

(i) Atoms(r) ⊆ U ,

(ii) (Bodyobj(r) ∪Head(r)) ∩ U = ∅.
We define a splitting of Π as a pair 〈BU (Π), TU (Π)〉 satis-
fying BU (Π) ∩ TU (Π) = ∅ and BU (Π) ∪ TU (Π) = Π, and
also that all rules in BU (Π) satisfy (i) and all rules in TU (Π)
satisfy (ii). �

With respect to the definition of splitting sets for objective
(i.e. standard) programs, we have replaced the condition
for the top program, Head(r) ∩ U = ∅, by the new condi-
tion (ii). This essentially means that the top program may
only refer to atoms U in the bottom through epistemic op-
erators. This introduces a new kind of “dependence” in the
sense that, as happens with head atoms, objective literals in
the body also depend on atoms occurring in subjective liter-
als. For instance, U= {p, q} is not an epistemic splitting set
of program Π1 = {p∨q , s← p,K q} because of the second
rule: s 6∈ U requires p 6∈ U . The reason for this restriction

is to avoid imposing (to a potential semantics) a fixed way
of evaluating p with respect to the world view [{p}, {q}] for
the bottom. Another observation is that we keep the defini-
tion of BU (Π) and TU (Π) non-deterministic: some rules can
be arbitrarily included in one set or the other. These rules cor-
respond to subjective constraints on atoms in U , since these
are the only cases that may satisfy conditions (i) and (ii) si-
multaneously.

Continuing with our motivating example, we can see that
the set U consisting of atoms high(mike), fair(mike),
eligible(mike),minority(mike) and their corresponding
strong negations is an epistemic splitting set that divides pro-
gram Π2 = {(1) - (7)} into a bottom BU (Π2) = {(1) - (4)}
and top part TU (Π2) = {(7)}. As in objective splitting, the
idea is computing first the world views of the bottom pro-
gram BU (Π) and, for each one, simplifying the correspond-
ing subjective literals in the top program. Given an epistemic
splitting set U for a program Π and a set of interpretations W,
we define EU (Π,W) def= TU (Π)WU , that is, we make the sub-
jective reduct of the top with respect to W and signature U .

Definition 3 Given a semantics S , a pair 〈Wb,Wt〉 is said
to be an S-solution of Π with respect to an epistemic splitting
set U if Wb is a S-world view ofBU (Π) and Wt is a S-world
view of EU (Π,Wb). �

This definition is semantics-dependent in the sense that each
alternative semantics S for epistemic specifications may de-
fine its own S-solutions for a given U and Π. This is be-
cause different semantics may define the selected S-world
views for a program in a different way. Back to our ex-
ample, notice that BU (Π2) is an objective program with-
out epistemic operators. Thus, any semantics provides
Wb = [{fair(mike)}, {high(mike), eligible(mike)}] as
the unique world view for the bottom. The corresponding
simplification of the top would be EU (Π2,Wb) containing
(after grounding) the single rule

interview(mike)← not ⊥, not ⊥

Again, this program is objective and its unique world view
is Wt = [{interview(mike)}]. Now, in the general case, to
reconstruct the world views for the global program, we define
the operation:

Wb tWt = { Ib ∪ It | Ib ∈Wb and It ∈Wt }

(remember that both the bottom and the top may produce
multiple world views, depending on the program and the se-
mantics we choose). In our example, WbtWt would exactly
contain the two stable models (8) and (9) we saw in the intro-
duction.

Property 1 (Epistemic splitting) A semantics S satisfies
epistemic splitting if for any epistemic splitting set U of
any program Π: W is an S-world view of Π iff there is
an S-solution 〈Wb,Wt〉 of Π with respect to U such that
W = Wb tWt. �

In our running example, it can be easily seen that the world
view we obtain in two steps is indeed the unique world view
of the whole program, under any semantics satisfying epis-
temic splitting. Uniqueness of world view was obtained in
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this case because both the bottom program BU (Π2) and the
top, after simplification, EU (Π2,Wb) were objective pro-
grams. In fact, as we see next, we can still get a unique
world view (at most) when there are no cyclic dependences
among subjective literals. This mimics the well-known result
for stratified negation in logic programming. Let us define
a modal dependence relation among atoms in a program Π
so that dep(a, b) is true iff there is a rule r ∈ Π such that
a ∈ (Head(r) ∪ Bodyobj(r)) and b ∈ Bodysub(r).

Definition 4 (Epistemic stratification) We say that an epis-
temic program Π is epistemically stratified if we can assign
an integer mapping λ : At→ N to each atom such that

1. λ(a) = λ(b) for any rule r ∈ Π and atoms
a, b ∈ (Atoms(r) \ Bodysub(r)),

2. λ(a) > λ(b) for any pair of atoms a, b satisfying
dep(a, b). �

Take, for instance, the program Π3 = {(1) - (7), (10)}. We
can assign atoms high(mike), fair(mike), minority(mike)
and eligible(mike) layer 0. Then interview(mike) could be
assigned layer 1 and, finally, appointment(mike) can be lo-
cated at layer 2. So, Π3 is epistemically stratified.

Theorem 1 Let S be any semantics satisfying epistemic
splitting and let Π be a finite, epistemically stratified pro-
gram. Then, if Π has some S-world view, this is unique. �

The proof of the theorem just relies on multiple applica-
tions of splitting to each layer and the fact that each simplifi-
cation EU (Π,Wb) will be an objective program. This is very
easy to see in the extended example Π3. We can split the
program using as U all atoms but appointment(mike) to get
a bottom Π2 and a top {(10)}. Program Π2 can be split in
its turn as we saw before, producing the unique world view
[(8), (9)]. Then EU (Π3, [(8), (9)]) contains the single rule

appointment(mike)← >

This is also an objective program whose unique world view
is [{appointment(mike)}] and, finally, the combination of
these two world views yields again a unique world view

[ (8)∪{appointment(mike)} , (9)∪{appointment(mike)} ]

Epistemic splitting not only guarantees the existence of (at
most) one world view for an epistemically stratified program
but, in fact, it also forces all semantics that fulfill that prop-
erty to coincide on this class of programs [Fandinno, 2019,
Theorem 7] – that is, either none has a world view or all of
them yield the same, unique world view.

Property 2 (Subjective constraint monotonicity) A se-
mantics S satisfies subjective constraint monotonicity if, for
any epistemic program Π and any subjective constraint r, W
is a world view of Π ∪ {r} iff both W is a world view of Π
and W satisfies r. �

Theorem 2 Epistemic splitting implies subjective constraint
monotonicity. �

G91 G11 F15 K15 S17 C19
SCM X X X
Splitting X X
Foundedness X

Table 1: Summary of properties in different semantics. SCM stands
for subjective constraint monotonicity. G91 stands for [Gelfond,
1991; Wang and Zhang, 2005; Truszczyński, 2011], G11 for [Gel-
fond, 2011], F15 for [Fariñas del Cerro et al., 2015], K15 for [Kahl
et al., 2015], S17 for [Shen and Eiter, 2017], and C19 for [Cabalar
et al., 2019a].

5 Conclusions

We review a formal property for epistemic logic programs
called epistemic splitting. This property has a strong resem-
blance to the splitting theorem well-known for regular ASP
programs. Epistemic splitting can be applied when we can
divide an epistemic logic program into a bottom part for a
subset U of atoms and a top part, that only refers to atoms
in U through subjective literals (those using modal epistemic
operators). When this happens, it allows obtaining the world
views of the program in two steps: first, computing the world
views of the bottom and, second, using each bottom world
view W to replace subjective literals for atoms in U in the top
by their truth value with respect to W. One interesting con-
sequence of this property is that programs that are stratified
with respect to subjective literals have a unique world view, at
most. Another consequence is that constraints only consist-
ing of subjective literals have a monotonic behaviour, ruling
out world views that satisfy the constraint body.

Our study of the main semantics in the literature shows
that only a bunch of semantics satisfy the epistemic property
we studied. Table 1 is taken from [Fandinno, 2019] and sum-
marises the known results for different semantics with respect
to the properties discussed through this paper plus the found-
edness property from [Cabalar et al., 2019a]. Recall that most
of the semantics were born motivated by the existence of self-
supported world views in the G91 semantics: for instance,
the program consisting of the single rule a← K a yields two
world views [∅] and [{a}] but the latter justifies the atom a by
the mere assumption of K a without further evidence, some-
thing that seems counterintuitive. The foundedness property
precisely characterises this problem in terms of unfounded
sets and, as shown in the table, is currently satisfied only by
C19, which in addition keeps the good behaviour of G91 with
respect to epistemic splitting and subjective constraint mono-
tonicity.

Recall that our main motivation when defining the split-
ting property was to establish a minimal requirement that
seemed reasonable. Still, this property was not satisfied by
most semantics. On the other hand, semantics that satisfy
this property may satisfy even stronger notions of splitting
worth studying. Finally, we refer to [Cabalar et al., 2019b] for
more details about epistemic splitting. In particular, how this
property may facilitate the simple application of the generate-
define-test methodology to the formalisation of conformant
planning.
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L. Fariñas del Cerro. Splitting epistemic logic programs.
In M. Balduccini, Y. Lierler, and S. Woltran, editors,
Proceedings of the Fifteenth International Conference
on Logic Programming and Nonmonotonic Reasoning
(LPNMR’19), pages 120–133. Springer-Verlag, 2019.

[Fandinno, 2019] J. Fandinno. Founded (auto)epistemic
equilibrium logic satisfies epistemic splitting. Theory and
Practice of Logic Programming, 19(5-6):671–687, 2019.
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