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Abstract

We provide excess risk guarantees for statistical
learning in a setting where the population risk with
respect to which we evaluate a target parameter de-
pends on an unknown parameter that must be es-
timated from data (a “nuisance parameter””). We
analyze a two-stage sample splitting meta-algorithm
that takes as input two arbitrary estimation algo-
rithms: one for the target parameter and one for
the nuisance parameter. We show that if the popu-
lation risk satisfies a condition called Neyman or-
thogonality, the impact of the nuisance estimation
error on the excess risk bound achieved by the meta-
algorithm is of second order. Our theorem is ag-
nostic to the particular algorithms used for the tar-
get and nuisance and only makes an assumption
on their individual performance. This enables the
use of a plethora of existing results from statisti-
cal learning and machine learning literature to give
new guarantees for learning with a nuisance compo-
nent. Moreover, by focusing on excess risk rather
than parameter estimation, we can give guarantees
under weaker assumptions than in previous works
and accommodate the case where the target parame-
ter belongs to a complex nonparametric class. We
characterize conditions on the metric entropy such
that oracle rates—rates of the same order as if we
knew the nuisance parameter—are achieved. We
also analyze the rates achieved by specific estima-
tion algorithms such as variance-penalized empirical
risk minimization, neural network estimation and
sparse high-dimensional linear model estimation.
We highlight the applicability of our results in four
settings of central importance in the literature: 1)
heterogeneous treatment effect estimation, 2) offline
policy optimization, 3) domain adaptation, and 4)
learning with missing data.

“This is an extended abstract for our COLT 2019 paper [Foster
and Syrgkanis, 2019].
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1 Introduction

Predictive models based on modern machine learning methods
are becoming increasingly widespread in policy making, with
applications in health care, education, law enforcement and
business decision-making. Most problems that arise in policy
making are not pure prediction problems, but rather have a
causal nature, such as attempting to predict counterfactual
outcomes for different interventions or optimizing policies
over such interventions. It is important to address the causal
nature of these problems and build models that have a causal
interpretation.

A common paradigm in the search of causality is that to
estimate a model with a causal interpretation from observa-
tional data—e.g. data not collected via some randomized trial
or via a known treatment policy—one typically needs to esti-
mate many other quantities that are not of primary interest, but
that can be used to de-bias a purely predictive ML model by
formulating an appropriate loss. Examples of such nuisance
parameters include the propensity for taking an action under
the current policy, which can be used to form unbiased esti-
mates for the reward of new policies, but is typically unknown
in datasets that do not come from controlled experiments.

To make matters more concrete, let us walk through an
example for which certain variants have been well-studied
in machine learning (e.g., [Dudik e al., 2011; Swaminathan
and Joachims, 2015; Nie and Wager, 2017; Kallus and Zhou,
2018]). Suppose a decision maker wants to estimate the causal
effect of some treatment 7' € {0,1} on an outcome Y as a
function of a set of observable features X; the causal effect
will be denoted as (X ). Typically, one has access to data con-
sisting of tuples (X, T;,Y;), where X;; is the observed feature
for sample ¢, T; is the treatment taken, and Y; is the observed
outcome. Such settings are often referred to as having bandit
feedback, since we only observe the outcome for the treatment
that was chosen. Due to the bandit nature of the problem, one
needs to create unbiased estimates of the unobserved outcome.
A standard approach is to use the so-called doubly-robust for-
mula, which is a combination of direct regression and inverse

propensity scoring: if we let Yl.(t) denote the potential outcome
from treatment ¢ in sample ¢, and let m(()t) (x;) = E[Yi(t) | x7]

and pgt) :=E[1{T =t} | ;], then the following is an unbiased
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estimator for each potential outcome:

3 Yi-m{ (z:)) 1{T;=t}
Y(t):m(t)x,jL(l o (@i =t} 1
i 0 ( l) péf) (z1) (
Given such an estimator, we can estimate the treatment effect
by running a regression between the unbiased estimates and

. N 2
the features, i.e. solve mingeo, ¥; (Y1) =Y —9(X,))

over some model class ©,,. In the population limit, with in-
finite samples, this corresponds to finding a model §(z) that

minimizes the population risk ]E[(Yi(l) - Yi(o) - 0(X))2].
Similarly, if one is interested in policy optimization rather
than estimating treatment effects, they could use these unbi-

ased estimates to solve mingee,, Zi(Yi(O) _Y/i(l) )-0(X;) over
a policy space ©,, of functions mapping features to {0,1}.
When dealing with observational data, the functions mg and
po are not known, and must be estimated if we wish to evaluate
the proxy labels Y (® The goal of the learner is to find a model
# that achieves good population risk when evaluated at the
true nuisance functions as opposed to the estimated, since only
then does the model have a causal interpretation.

This phenomenon is ubiquitous in causal inference and
motivates us to formulate the abstract problem of statistical
learning with a nuisance component: Given n i.i.d. examples
from a distribution D, a learner is interested in finding a tar-
get parameter @;L € ©, so as to minimize a population risk
function Lp : ©,, x G,, - R. The population risk depends not
just on the target parameter, but also on a nuisance parameter
whose true value gg € G,, is unknown to the learner. The goal
of the learner is to produce an estimate that has small excess
risk when evaluated at the unknown true nuisance model:

Lp (0, 90) - infeo,, Lp (6, g0). 2)

Depending on the application, such an excess risk bound can
take different interpretations. For many settings, such as treat-
ment effect estimation, it is closely related to mean squared
error, while in policy optimization problems it may correspond
to regret. Following the tradition of statistical learning theory
[Vapnik, 1995; Bousquet ef al., 2004], we make excess risk
the primary focus of our work, independent of the interpreta-
tion. We develop algorithms and analysis tools that generically
address (2), then apply these tools to a number of applications
of interest.

The problem of statistical learning with a nuisance com-
ponent is strongly connected to the problem of semipara-
metric inference [Robinson, 1988; Kosorok, 20081, where
a true parameter 6y is the minimizer of a population risk
that depends on unknown nuisance components. Our paper
builds on a growing body of results on “double” or “debi-
ased” machine learning in statistics and econometrics litera-
ture [Chernozhukov et al., 2017; Chernozhukov et al., 2018a;
Chernozhukov et al., 2018c; Chernozhukov et al., 2018b] for
addressing semiparametric inference problems. This line of
research has focused on providing so-called “\/n-consistent
and asymptotically normal” estimates when the target parame-
ter 6 is low-dimensional and nuisance parameters belong to
a nonparametric class. Unlike the semiparametric inference
problem, statistical learning with a nuisance component does
not require a well-specified model, nor a unique minimizer of

Algorithm 1 Two-Stage Estimation with Sample Splitting

Input: Sampleset S = z1,...,2,
1: Split S into subsets S =z -y Zn)2]> S =g\ 5.

2: Let G, be the output of Alg(G,,, S™M).
3: return 0,,, the output of Alg(©,,, 5 G,).

the population risk. Moreover, we do not ask for parameter
recovery and asymptotic inference (i.e. asymptotically valid
confidence intervals). Rather, we are content with an excess
risk bound, regardless of whether there is an underlying true
parameter to be identified. As a consequence, we provide
guarantees even when the target parameter belongs to a large,
potentially nonparametric class.

The case where the target parameter belongs to an arbitrary
class has not been addressed at the level of generality we
consider in the present work, but we mention some prior work
that goes beyond the low-dimensional/parametric setup for
special cases. [Athey and Wager, 2017] and [Zhou et al.,
2018] give guarantees based on metric entropy of the target
class for the specific problem of treatment policy learning.
For estimation of treatment effects, various nonparametric
classes have been used for the target class on a fairly cases by
case basis, including kernels [Nie and Wager, 2017], random
forests [Athey et al., 2019; Oprescu et al., 2019; Friedberg et
al., 2018], and high-dimensional linear models [Chernozhukov
et al., 2017; Chernozhukov et al., 2018b]. Our work unifies
several of these papers into a single framework and our general
results have implications and improve upon each of these
directions.

Our approach is to reduce the problem of statistical learn-
ing with a nuisance component to the standard formulation
of statistical learning. Rather than directly analyzing partic-
ular algorithms and models from machine learning, such as
regularized regression, gradient boosting, or neural network
estimation, we assume a black-box guarantee for the excess
in the case where a nuisance value g € G,, is known. In par-
ticular, our main theorem only asks for the existence of an
algorithm Alg(©,,,5; g) that for any given nuisance parame-
ter g and data set .S, achieves good excess risk with respect to
the population risk Lp (6, g), i.e. with probability 1 — §:

LD(a‘n,g)—gi%f Lp(6,9) <Ratep(0,,5,6;9). (3)

Likewise, we assume the existence of a black-box algorithm
Alg(G,, S) to estimate the nuisance component gg from the
data, with the required estimation guarantee varying from
problem to problem.

Given access to the two black-box algorithms, we analyze
a sample-splitting based simple meta-algorithm for statistical
learning with a nuisance component presented as Algorithm 1.
We can now state the main question addressed in this paper:
When is the excess risk achieved by sample splitting robust to
nuisance component estimation error?

In more technical terms, we seek to understand when the
two-stage sample splitting estimation algorithm achieves an
excess risk bound with respect to gg, in spite of error in the
estimator g,, output by the first-stage algorithm. Robustness
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to nuisance estimation error allows the learner to use more
complex models for nuisance estimation and—under certain
conditions on the complexity of the target and nuisance model
classes—to learn a target parameter whose error is, up to
lower order terms, as good as if the learner had known the true
nuisance model. Such a guarantee is typically referred to as
achieving an oracle rate in semiparametric inference.

1.1 Overview of Results

We show that Neyman orthogonality, which has been used
to prove oracle rates for inference in semiparametric models
[Neyman, 1959; Neyman, 1979; Chernozhukov et al., 2018a;
Chernozhukov et al., 2018bl], is key to providing oracle rates
for statistical learning with a nuisance component. We prove
that if the population risk satisfies a functional analogue of
Neyman orthogonality, then the estimation error of G, has a
second order impact on the overall excess risk (relative to gg)
achieved by 6,. To gain some intuition, Neyman orthogonality
is weaker condition than double robustness, albeit similar in
flavor, (see e.g. [Chernozhukov et al., 2016]) and is satisfied
by both the treatment effect loss and the policy learning loss de-
scribed in the introduction. In more detail, our extension of the
Neyman orthogonality condition asks that a cross-functional
derivative of the loss vanish to zero, when evaluated at the opti-
mal target and nuisance parameter. Prior work on the classical
notion of Neyman orthogonality provides a number of means
through which to construct orthogonal losses whenever certain
moment conditions are satisfied by the data generating pro-
cess [Chernozhukov et al., 2018a; Chernozhukov et al., 2016;
Chernozhukov et al., 2018b]. Indeed, orthogonal losses can
be constructed in settings including treatment effect estima-
tion, policy learning, missing data problems, estimation of
structural econometric problems and game theoretic models.
We identify two regimes of excess risk behavior:

1. When the population risk is strongly convex with respect
to the prediction of the target model (e.g. the treatment
effect estimation loss), then typically so-called fast rates
(e.g. rates of order of O(1/n) for parametric classes)
are achievable had we known the true nuisance model.
Letting Rg, denote the estimation error of the nuisance
component (root-mean-squared prediction error for most
of our settings), then in the fast rate setting we show
that orthogonality implies that the first stage error has an
impact on the excess risk of the order of Rén (e.g. n~ /4
RMSE rates for the nuisance suffice when the target is
parametric).

2. Absent any assumption on the convexity of the population
risk (e.g. the treatment policy optimization loss), then
typically slow rates (e.g. rates of order O(1/\/n) for
parametric classes) are achievable had we known the true
nuisance model. In this case the impact is of nuisance
estimation error is of the order R  so, once again, n1/4
RMSE rates for the nuisance suffice when the target is
parametric.

To extend the sufficient conditions above to arbitrary classes,
we give conditions on the relative complexity of the target
and nuisance classes—quantified via metric entropy—under
which the sample splitting meta-algorithm achieves oracle
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rates (assuming the two black-box estimation algorithms are
appropriately instantiated). This allows us to extend several
prior works beyond the parametric regime to complex non-
parametric target classes. Our technical results extends the
works of [Yang and Barron, 1999; Rakhlin et al., 2017], which
provide minimax optimal rates without nuisance components
and utilize the technique of aggregation in designing optimal
algorithms.

The flexibility of our approach allows us to instantiate the
framework with any machine learning model and algorithm
of interest for both nuisance and target model estimation, and
to utilize the vast literature on generalization bounds in ma-
chine learning to establish data-dependent and dimension-
independent rates for several classes of interests. For instance,
our approach allows us to use recent work on size-independent
generalization error of neural networks. We obtain sharp
guarantees for these specific model classes and more as a con-
sequence of a new analysis for empirical risk minimization
with plug-in estimation of nuisance parameters in the presence
of orthogonality. Our results on plugin empirical risk mini-
mization extend the local Rademacher complexity analysis
of generalization bounds [Koltchinskii and Panchenko, 2000;
Bartlett er al., 2005], to account for the impact of the nuisance
error. In the slow rate regime we also give a new analysis of
variance-penalized empirical risk minimization, which allows
us to recover and extend several prior results in the literature
on policy learning. Our result improves upon the variance-
penalized risk minimization approach of [Maurer and Pontil,
2009] by replacing the dependence on the metric entropy at
a fixed approximation level with the critical radius, which is
related to the entropy integral.

As a consequence of focusing on excess risk, we obtain
oracle rates under weaker assumptions on the data generating
process than in previous works. Notably, we obtain guaran-
tees even when the target model is misspecified and the target
parameters are not identifiable. For instance, for sparse high-
dimensional linear classes, we obtain optimal prediction rates
with no restricted eigenvalue assumptions. We highlight the ap-
plicability of our results to four settings of primary importance
in the literature: 1) estimation of heterogeneous treatment ef-
fects from observational data, 2) offline policy optimization, 3)
domain adaptation, 4) learning with missing data. For each of
these applications, our general theorems allow for the use of
arbitrary estimators for the nuisance and target model classes
and provide robustness to the nuisance estimation error.
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