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Abstract

Smart agriculture (SmartAg) has emerged as a
rich domain for AI-driven decision support sys-
tems (DSS); however, it is often challenged by user-
adoption issues. This paper reports a case-based
reasoning (CBR) system, PBI-CBR, that predicts
grass growth for dairy farmers, combining pre-
dictive accuracy and explanations to improve user
adoption. PBI-CBR’s novelty lies in the use of
Bayesian methods for case-base maintenance in a
regression domain. Experiments report the tradeoff
between predictive accuracy and explanatory capa-
bility for variants of PBI-CBR, and how updating
Bayesian priors each year improves performance.

1 Introduction
Although the promise of artificial intelligence (AI) in
SmartAg is usually advertised as increasing productivity,
in the future it may be more about improving sustainabil-
ity [Gafsi et al., 2006; Lindblom et al., 2017]. As climate
change accelerates, AI’s main future contribution may be
more about helping farmers to measure, profile, and predict
the outcomes of farm-management decisions in ways that
mitigate their environmental impacts. However, this future
depends on the development of AI-enabled, decision-support
systems (DSS) that are both predictively accurate and ex-
plainable to the end user. Here, an existing DSS, called
PastureBase Ireland (PBI), is enhanced using case-based rea-
soning (CBR) techniques, in the so-called PBI-CBR system.
This new DSS predicts grass growth for dairy farmers and
offers explanations designed to improve user adoption. PBI-
CBR’s key technical novelty is its use of Bayesian Case-
Exclusion, to “clean up” user-entered data; a technique that
by excludes outlier cases from the prediction process using
prior beliefs about data distribution(s), thus reducing error
and improving explanations. In the remainder of this intro-
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duction, the sustainability context for this work is briefly de-
scribed, before outlining the structure of the paper.

1.1 Context: Agriculture, Sustainability and AI
Concerns about the impact of agriculture on climate change
and the development of sustainable models are grow-
ing [Lindblom et al., 2017]. The agricultural sector and con-
sumers are faced with opposing views from climate change
denial, to proposals that animal agriculture is responsible for
18-51% of greenhouse grass emissions [Steinfeld et al., 2006;
Goodland et al., 2009]. However, a recent middle ground
has emerged pushing for a quick move to sustainable farming
systems [Poux and Aubert, 2018]; the so-called agroecology
perspective. For example, in the dairy sector, agroecology
proposes a move to pasture-based systems, where animals are
predominantly fed on grass outdoors rather than on meal and
supplements indoors. This pasture-based system has the po-
tential to be sustainable if there is better grass management
(e.g., using grass as a carbon sink). However, these innova-
tions depend on precision technologies, using AI, for moni-
toring variables such as the climate and grass growth.

1.2 PastureBase Ireland (PBI) & Dairy Farming
SmartAg often depends upon providing new DSSs for farm-
ers to aid them in making complex decisions about how to
manage their farms, balancing productivity and sustainabil-
ity [Lindblom et al., 2017]. These systems need to be predic-
tively accurate, easy to use (and interpretable), and they need
to be able to support actionable decision-making in the face
of increasing climate disruption. The present work enhances
the existing PBI DSS used for grass-fed, pasture-based dairy
farming systems in Ireland.

Since 2013, Ireland’s national agricultural research orga-
nization, Teagasc, have provided PBI to support Irish dairy
farmers (6,000+ users). Among other features, the PBI
database has weekly records of grass covers for individual
farms (2013-present). A farm’s “grass cover” is the amount
of grass available on that farm for cows to eat. PBI-CBR uses
historical grass-cover data to predict grass growth rates on a
farm from one week to the next. These calculations allow
farmers to budget feed for their herds, to determine if there
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is sufficient (inexpensive) grass available or whether (expen-
sive) meal needs to be bought, meal that incurs additional
carbon costs as it tends to be imported (e.g., from the USA).

We used the PBI dataset recorded from thousands of pri-
vate farms in Ireland between 2013-2017. The primary fea-
ture of concern is the average grass growth rate for a farm
since the last grass cover recorded, but location features
(Farm ID-anonymized and County) are also important for ex-
planation purposes. To explain its predictions PBI-CBR aims
to provide explanatory cases from the same farm, or failing
that, a case from a nearby farm in the same county.

1.3 Outline of Paper
Section 2 discusses noise in the PBI dataset and how a
Bayesian approach is both useful and intuitive for the prob-
lem. Section 3 describes Expt. 1 which compares four
systems on accuracy and explanatory success. Section 4
describes Expt. 2 which shows how updating priors using
Bayesian techniques can improve prediction accuracy and
may well help to deal with disruptive climate events. Section
5 reviews related work before making some final conclusions.

2 Noise: A Tale of Two Datasets
The grass-growth domain faces many of the typical prob-
lems that arise in SmartAg; notably, that the data is noisy,
in part, because it has been entered by end-users (who are,
often, non-technical). The PBI dataset has growth-data en-
tered by farmer end-users, data that is known to contain er-
rors, miss-recordings, and subjective estimates. For example,
some grass-growth recordings are based on physical measure-
ments with specialized devices (i.e., plate meters), whereas
others are based on visual inspection. This noise in the dataset
is dealt with by removing outlier cases, using a novel method,
called Bayesian case-exclusion; this method uses a separate
gold-standard dataset, gathered under controlled conditions
(which is noise-free), to “clean up” the farmer-entered data,
to create what we call the working-farm dataset.

2.1 The Gold Standard Dataset
The gold-standard dataset of grass-growth measurements we
used, covers 28 years of carefully-controlled, weekly mea-
surements in which samples, taken by researchers from the
same pasture, were cut, dried, and weighted on a weekly ba-
sis at the Teagasc Moorepark Dairy Research Centre, Fermoy,
Co. Cork. These measurements are idealized, but very accu-
rate and can thus serve as a good benchmark for determining
outlier cases in the PBI dataset, which we exclude using our
Bayesian case-exclusion method.

2.2 PBI Dataset
The PBI dataset, used to construct the working-farm case-
base, came from the weekly grass-covers entered by farm-
ers in PBI; these grass-covers are farmer’s estimates of grass
available on a given farm on a given day and were used to
make the grass-growth predictions for one week ahead. Some
of these records are known to be in-error; for example, of-
ten multiple entries are made on the same day, where the
last entry of the day was the intended record. For the years

Figure 1: The gold-standard dataset of grass growth measurements
from 1982–2010 at Teagasc, Animal and Grassland Research and In-
novation Centre, Moorepark, Fermoy, Co. Cork, Ireland [Hurtado-
Uria et al., 2013], where the distribution of grass growth each week
of the year is given as box plots.

2013-2017, this dataset had 99,087 grass-cover records, that
reduced to 92,635 when same-day entries were removed.
Case generation. Let a farm’s data be f =
{x1, x2, . . . xn}, where xi is a grass cover for a day,
and n the total number of covers (in chronological order).
The features of xi used to generate a case (Ci) are the
average growth rate since the previous grass cover (gr),
the week (wk), month (mth), and season (seas) in which
the grass cover was recorded. Weather data (wi) at the
county level was scraped from Met Éireann, and added as
an average from xi until xi+1. The weather information in
wi is the maximum daily temperature (maxt), the average
soil temperature 10cm below the surface (soilt) on a given
day, and the average global radiation (grad) on a given day.
Finally, gr from xi+1 was added to Ci as the target feature.
Thus, a case is represented as:

Ci(xi, wi, xi+1) = 〈xi(gr, wk,mth, seas),
wi(maxt, soilt, grad), xi+1(gr)〉 (1)

Case base construction. Taking the raw-data, the cases as
defined in Equation 1 were constructed; however, given that
the system has to predict one week ahead, only those cases
where the target xi+1(gr) was recorded 5-9 days after xi
were included in the case base. Also, cases from January and
December were excluded (as they tend to show zero growth).
Finally, only those cases with accurate historical weather in-
formation until the next grass cover were considered (weather
is crucial for predicting grass growth). These steps resulted
in a working-farm case-base of 20,760 cases.

2.3 The Current Experiments
In the remainder of this section, two experiments are reported
that test several variants of the Bayesian case-exclusion idea.
In Expt. 1, we examine what happens in this predictive CBR-
system when cases are not excluded (Control), versus exper-
imental systems in which they are. In Expt. 2, we explore
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adaptive Bayesian case-exclusion, and consider the data as a
time series where priors derived from the gold-standard dis-
tribution are updated year-on-year.

3 Experiment 1: Bayesian Case-Exclusion
In this domain an error of≤10 kg DM/ha is sufficient, but the
major problem is uncertainty in the working-farm case-base,
hence we use Bayesian case-exclusion to exclude likely out-
lier cases when making predictions. PBI-CBR also explains
predictions by referencing nearest neighbouring cases from
the same farm or county used in the prediction. The four
variants of the system tested were:

• Control. A basic system that uses all the cases in the
working-farm case base.
• Exclude-2sd. A Bayesian system that excludes cases

two-standard deviations away from the weekly, mean
growth-rates of the gold-standard dataset (see Fig. 1).
The rationale being that grass growth in a given week ap-
proximates a normal distribution. Formally, the data for
growth rate (GR) in a given week across all years in the
gold-standard dataset approximates GR ∼ N(µ, σ2),
where N is a normal distribution with parameters µ and
σ for the mean and standard deviation, respectively. All
cases outside µ±2σ are excluded. This step reduces the
working-farm case-base by 42% (N=12,042 cases).
• Exclude-3sd. This is identical to the Exclude-2sd system

but µ ± 3σ is used to exclude cases. This reduces the
working-farm case-base by 21% (N=16,443 cases).
• Transform-3sd. This is a Bayesian system that trans-

forms the growth-rates of cases using the gold-standard
distribution. That is, the distribution of growth in a given
week from the gold-standard dataset [GR ∼ N(µ, σ2)]
is used to transform the growth-rate values of cases for
the same week in the working-farm case-base, to fit to
the parameters µ and σ2. Formally, to transform the
growth-rate (gr) in a grass cover x in any given week
of the year:

ygr = (xgr − µ)
σp
σ

+ µp (2)

where xgr is the growth rate in grass cover x, ygr is the
transformed growth rate of xgr, µ and σ are the mean
and standard deviation for the overall growth rate in that
week in the working-farm case-base, respectively, and
µp and σp are the mean and standard deviation for the
overall growth rate in that week in the gold-standard
dataset, respectively. The intuition being that the gold-
standard dataset is closer to the ground-truth. Note, in
this system cases that fall outside µp ± 3σp after the
transformation are still excluded, so the working-farm
case-base is reduced by 2% (N=20,282 cases).

As we shall see, exclusion methods improve prediction ac-
curacy, with varying levels of explanatory success. The trans-
form system retains as many cases as possible, aiding accu-
racy and explanatory success. Interestingly, there are indica-
tions that the transformed case-base is closer to the ground
truth as the correlation of Pearson’s r between grad and GR

across all cases increases from r = 0.53 to r = 0.66 after trans-
formation, reflecting known dependencies between such radi-
ation and grass-growth [Ruelle et al., 2018].

3.1 Method: Procedure and Measures
For each system variant Monte Carlo cross-validation was
used with 30 re-sampling iterations, each time taking 80/20%
data for training and testing, respectively. A standard k-NN
algorithm was used for case retrieval and prediction. Selected
values of k ranging from 5-1000 were tested for each sys-
tem variant. For each evaluation of k in each system, three
measures were taken: (i) the mean absolute error (MAE) (ii)
the %Farm-Explanation-Success (%FES; i.e., the percentage
of times the k-nearest-neighbours contained a case from the
same farm as the query), and (iii) the %County-Explanation-
Success (%CES; i.e., the percentage of times the k-nearest-
neighbours contained a case from the same county).

3.2 Results and Discussion
Fig. 2a shows the results the system variants for all values of
k in three graphs, one for each measure: MAE, %FES, and
%CES. Overall, MAE is worst for the lowest k with some
improvement in at k=20-35. Regarding %FES all systems
are similar, though success does change for different values
of k. For all systems %FES is poor for low values of k, but
beyond k=50 it rises to 80%; showing that higher values of k
have enough cases from the same farm to explain the predic-
tions. For all systems, %CES starts high (∼80%) and rapidly
reaches ∼100%.

Overall, the Control system never gets lower than an
MAE of 15. Similarly, from the two exclusion-systems only

(a) Experiment 1 (b) Experiment 1
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Figure 2: The tradeoff between error and explanation. (a) Expt. 1
shows that as the value for k approaches 1000, more explanatory
cases are retrieved, but the MAE for all systems also increases.
Transform-3sd has the best MAE of ∼8.6 kg DM/ha/day at k ∼35,
but same-farm explanatory success is low at ∼7%; however, at
k=1000, the tradeoff is balanced, with the MAE still acceptable and
%FES at 85%. (b) Expt. 2 shows MAE is improved for almost every
update-variant, although the improvement in the transform-system is
minimal; explanatory success and MAE are similar to Expt. 1, but
poorer, likely due to less training data. Finally, note the log scale on
the x-axis.
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Exclude-2sd with k=35 has the somewhat acceptable MAE of
∼10.01 kg DM/ha/day. Overall, the Transform-3sd system is
the best with a MAE < 10 kg DM/ha/day for all values of k;
here it is capable of delivering county explanations very con-
sistently, but more data would be needed for similar success
in farm explanation-retrieval.

4 Experiment 2: Updating Priors
In Expt. 1 Bayesian exclusion/transformation of cases re-
sulted in improved performance. However, all of these sys-
tems exclude cases using static parameters from the gold-
standard dataset. In recent years, climate change is impact-
ing the distributions of grass growth, and Expt. 2 tries to
rectify this by updating Bayesian priors year-on-year. So,
Expt. 2 has six versions of PBI-CBR, three systems tested
in Expt. 1, and three variants of these systems in which pri-
ors were updated (Update-Exclude-2sd, Update-Exclude-3sd,
Update-Transform-3sd). The procedure is described next.

4.1 Updating Bayesian Priors
To perform the updating, priors are taken from the gold-
standard dataset and then progressively used on each year’s
data from the PBI-dataset to update them; the idea being to
try to track shifts in climate over time. First, take the gold-
standard dataset and, binning all its data into weeks, for any
given week, let the growth rate (GR) approximate a normal
distribution GR ∼ N(µ, σ2), where µ and σ2 are its mean
and variance, respectively. In 2013, all the data for this week
was processed into cases (see Section 4.2). Then, we proceed
with transformation or exclusion methods on these cases de-
pending on the system variant (using µ and σ2 as in Expt. 1),
which gives the new data D = {C1, C2...Cn}, where n is the
number of cases. Take the prior to be µ ∼ N(µ0, σ

2
0), where

the value σ0 is initially chosen as 4, and µ0 is initially chosen
as µ. Here the value for σ2 is assumed to remain fixed. Bayes
rule shows the posterior (for a given week) is proportional to
the likelihood times the prior, in addition, because σ2 and σ2

0
are known we can ignore the constant of proportionality and
derive that the posterior µp is:

µp ∼ N
(

σ2

σ2 + σ2
0n
µ0 +

σ2
0

σ2 + σ2
0n
nx̄,

σ2σ2
0

σ2 + σ2
0n

)
(3)

where x̄ is the empirical mean of the growth rates in the cases
of D, for a full derivation see [Murphy, 2007].

Using Equation 3 we update values for µ0 and σ2
0 , the new

value of µ0 was then used to update the original µ from the
gold-standard dataset, which was used with σ2 (the fixed vari-
ance from the gold-standard dataset) to repeat the whole pro-
cess in 2014 for the same week. This process is repeated for
all weeks of each year until the end of 2016 when all training
data was collected. The latest priors in each week were again
used to exclude or transform cases in 2017 for evaluation.

4.2 Method: Procedure and Measures
For each system the case base was split in a ∼60/40% ra-
tio for training and testing, respectively; the former being the
PBI data from 2013-2016 and the latter 2017. Crucially, these

results will be different from identical systems in Expt. 1 be-
cause of the different splits (there is also less training data
here). For case retrieval, a standard k-NN was again used
with selected values for k ranging from 5-1000. The three
measures used were again MAE, %FES, and %CES.

4.3 Results and Discussion
Fig. 2b shows the results, that generally replicate Expt. 1. Re-
garding MAE, as before the transformation-versions do better
than the exclusion-versions, with k=75 being optimal for all
systems. Expt. 2 shows that Bayesian updating improves all
systems at nearly every value of k. Regarding explanation
the overall curve-shapes are similar to Expt. 1, with maxi-
mum values being %FES=68% and %CES=100%, in contrast
to %FES=85.94% and %CES=99.98% in Expt. 1. Accept-
able tradeoffs for accuracy and explanation are achieved for
both of the transform systems in that at k=1000 the MAE is
∼9.95 kg DM/ha/day with ∼67.5% explanatory-success rate
for same-farm cases in both systems.

5 Related Work
Case base maintenance is a notable area of research in
CBR [Smiti and Elouedi, 2011]. However, most methods
have focused on classification [Hart, 1968; Gates, 1972;
Ritter et al., 1975; Guan et al., 2009; Aha et al., 1991;
Markovitch and Scott, 1988], as opposed to regression [Red-
mond and Highley, 2010]. Redmond and Highley [2010] did
try to convert Edited Nearest Neighbors [Wilson, 1972] for
regression by assigning two hyperparameters, but they ac-
knowledge that applying the classification algorithms to re-
gression is difficult. Our method requires no hyperparame-
ters, though it does require the specification of a prior(s).

XAI within CBR has been shown to be important in intel-
ligent systems [Kenny and Keane, 2019; Keane and Kenny,
2019], with some consideration of CBR recommenders in
SmartAg [Cho et al., 2012]. Frameworks have been proposed
for explanation in CBR XAI [Sørmo et al., 2005], but there
are few CBR-applications in SmartAg (for one exception see
Branting et al.’s [2001] work on grasshopper-infestation).

6 Conclusion
We have shown that a CBR system can be used for a DSS
in dairy farming to predict grass growth and provide person-
alized case-based explanations. To deal with noise in the
data, we have introduced Bayesian case-exclusion to use prior
knowledge to identify and exclude noisy data. Furthermore,
we have shown that Bayesian calculations for updating priors
year-on-year also improves performance [Kenny et al., 2019].
These systems have the ability to improve the sustainability of
dairy farming in the future. Our more recent research [Tem-
raz et al., 2020] has shown that these techniques can continue
to deliver accurate predictions in the face of climate change
by using the previously-excluded “outlier” cases in later years
(such as the hot summer of 2018). Hopefully, though we may
experience significant climate shifts, there will always be a
case somewhere in the historical record that can provide ac-
curate predictions, and by extension explanations.
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