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Abstract

Our architecture uses non-monotonic logical rea-
soning with incomplete commonsense domain
knowledge, and incremental inductive learning, to
guide the construction of deep network models
from a small number of training examples. Exper-
imental results in the context of a robot reasoning
about the partial occlusion of objects and the sta-
bility of object configurations in simulated images
indicate an improvement in reliability and a reduc-
tion in computational effort in comparison with an
architecture based just on deep networks.

1 Motivation

Consider a robot! reducing clutter by clearing away toys ar-
ranged by children in different configurations. It is difficult
to provide this robot many labeled examples of the objects
and object configurations that it has to reason about. Also,
the robot has to reason with different descriptions of incom-
plete domain knowledge and uncertainty. This includes qual-
itative descriptions of commonsense knowledge, e.g., state-
ments such as “structures with a large object on a small object
are typically unstable” that hold in all but a few exceptional
circumstances. At the same time, the robot uses algorithms
for sensing and actuation that model uncertainty probabilis-
tically. Furthermore, any humans participants may not have
the time and expertise to provide comprehensive feedback.
As motivating examples, we consider the visual scene un-
derstanding tasks of estimating the partial occlusion of ob-
jects and the stability of object configurations from images.
Deep networks and the associated algorithms are the state of
the art for these (and other such) problems in robotics and
Al These algorithms require many labeled training examples,
are computationally expensive, and their operation is diffi-
cult to understand. Our architecture seeks to address these
challenges by exploring the interplay between representation,
reasoning, and learning. We limit perceptual input to RGB-D
images of simulated scenes such as Figure 1(right), a small

*Full paper was a Best Paper Award finalist at Robotics: Science
and Systems conference [Mota and Sridharan, 2019a].
!Terms “robot”, “learner”, and “agent” used interchangeably.

number of which are used as training data with occlusion la-
bels for objects and stability labels for object structures. We
assume that the robot knows the grounding (i.e., meaning in
the real world) of words such as “above” and “left_of” that
describe spatial relations between objects. The robot’s do-
main knowledge also includes statements encoding defaults,
constraints, and domain dynamics (more details later).

For any given image, our architecture first attempts to per-
form the estimation tasks by non-monotonic logical reason-
ing with incomplete commonsense domain knowledge and
the spatial relationships extracted between objects in the im-
age. If it is unable to do so (or provides incorrect labels on
training data), it automatically identifies relevant regions of
interest in the image. These regions are mapped to the de-
sired labels by a deep network trained using similar regions
extracted from the training data. The labeled examples are
also used to train decision trees and incrementally learn previ-
ously unknown state constraints that are used for subsequent
reasoning. Experimental results show a marked improvement
in accuracy and computational efficiency in comparison with
an architecture that only uses deep networks, and provides in-
sights about the interplay between reasoning and learning; for
complete details, see [Mota and Sridharan, 2019a].

2 Related Work

Scene understanding includes many estimation and predic-
tion problems for which deep networks provide state of the
art performance. For instance, a Convolutional Neural Net-
work (CNN) has been used to predict the stability of struc-
tures [Lerer er al., 2016], and movement of colliding ob-
jects [Wu et al., 2015]. The training of CNNs and other
deep networks requires many labeled examples and consid-
erable computationally resources, and their operation is dif-
ficult to understand [Zhang er al., 2016]. Since labeled ex-
amples are not readily available in many domains, deep net-
works have been trained using physics engines [Wagner et al.,
2018] or prior (domain) knowledge [Siinderhauf e al., 2018].
The structure of deep networks has also been used to con-
strain learning, e.g., relational frameworks that pair objects
with queries that need to be answered [Santoro ez al., 2017].
However, these methods do not exploit commonsense domain
knowledge or the coupling between reasoning and learning.
Research in Al has developed theories and algorithms that
enable agents to reason with commonsense domain knowl-
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edge. For scene understanding, domain knowledge often
includes the grounding of spatial relations (e.g., “in” and
“above”) and axioms governing domain dynamics. Methods
have been developed to reason about and learn spatial rela-
tions between objects [Jund er al., 2018] and deep networks
have been used to infer these spatial relations using images
and natural language expressions [Paul et al., 2016]. There is
also a rich history of methods for learning domain knowledge,
e.g., refining first-order logic models of actions [Gil, 1994],
incrementally learning domain axioms using non-monotonic
logical reasoning and relational reinforcement learning [Srid-
haran and Meadows, 2018], and frameworks for interactive
task learning [Chai et al., 2018]. Our architecture draws on
these insights and exploits the inter-dependencies between
reasoning and learning in the context of scene understanding.

3 Proposed Architecture

Figure 1(left) shows our architecture in the context of a Robot
Assistant (RA) domain, with a simulated robot estimating the
occlusion of objects and the stability of object structures, and
rearranging objects to reduce clutter. Spatial relations be-
tween objects in RGB-D images are grounded using our prior
work [Mota and Sridharan, 2018]. An object is occluded if
any fraction of its frontal face is hidden by another object;
a structure is unstable if any object in it is unstable. Deci-
sion tree induction maps object attributes and spatial relations
to the target labels; axioms representing previously unknown
state constraints are constructed from these trees. Learned
constraints are encoded in an Answer Set Prolog (ASP) pro-
gram along with incomplete commonsense domain knowl-
edge and the spatial relations. If ASP-based reasoning pro-
vides the desired labels, the image is not analyzed further.
Otherwise, an attention mechanism identifies the image’s Re-
gions of Interest (ROIs), and a CNN is trained to map these
ROISs to labels. We briefly describe these components below;
for more details, see [Mota and Sridharan, 2019al].

3.1 Knowledge Representation with ASP

To represent and reason with incomplete domain knowledge,
we use ASP, a declarative language that can represent re-
cursive definitions, defaults, causal relations, and language
constructs difficult to express in classical logic formalisms.
ASP encodes default negation and epistemic disjunction, i.e.,
each literal can be true, false or unknown. It supports non-
monotonic logical reasoning, i.e., adding a statement can re-
duce the set of inferred consequences, aiding in the recov-
ery from errors due to reasoning with incomplete knowl-
edge. Modern ASP solvers support efficient reasoning in
large knowledge bases with incomplete knowledge, and are
used by an international community [Erdem et al., 2016].

A domain’s description in ASP comprises a system de-
scription D and a history H. D comprises a sorted sig-
nature Y and axioms. Y includes basic sorts; statics,
i.e., domain attributes that do not change over time; flu-
ents, i.e., domain attributes whose values can be changed;
and actions. Domain attributes and actions are described
as relations in terms of their arguments’ sorts. In the RA
domain, sorts include object, robot, relation, surface,
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and step for temporal reasoning. Statics include some
object attributes such as obj_size(object, size).  Flu-
ents include spatial relations between two objects, i.e.,
obj_relation(relation, object, object), and relations such
as in_hand(robot,object), i.e., a particular object is in
the robot’s grasp. Actions of the RA domain include
pickup(robot, object) and putdown(robot,object), and
holds( fluent, step) is a predicate implying that a particu-
lar fluent holds at a particular timestep. The RA domain’s
axioms model the domain’s dynamics in the form of causal
laws, state constraints, and executability conditions:

holds(in_hand(robot, object), I +1) <+ (la)
occurs(pickup(robot, object), I)

holds(obj _relation(above, A, B),T) + (1b)
holds(obj _relation(below, B, A), I)
—occurs(pickup(robot, object), I) <+ (Ic)

holds(in_hand(robot, object), I)

The axioms also encode default statements such as “struc-
tures with larger objects on smaller objects are typically un-
stable”. Finally H includes records of observations received
and actions executed by the robot. To reason with domain
knowledge, we construct the ASP program II(D, H); plan-
ning, diagnostics, and inference are reduced to computing an-
swer sets of I, which represent beliefs of the robot associated
with II [Gelfond and Kahl, 2014]. The ASP program of the
RA domain is in our repository [Mota and Sridharan, 2019b].

3.2 Decision Tree Induction

Previously unknown state constraints are learned using a
decision tree induction algorithm that splits nodes based on
the potential information gain. The spatial relations between
scene objects and the attributes of objects in 50% of the
labeled training samples form the nodes of the tree, and the
corresponding labels form the leaf nodes. Any branch of the
tree in which the leaf represents a precision higher than 95%
is used to construct candidate axioms that are validated using
the other 50% of the labeled examples. The effect of noise is
reduced by repeating the learning and validation steps (100
times) and only retaining axioms learned more than a mini-
mum number of times. In the RA domain, separate decision
trees are learned for stability and occlusion estimation, e.g.,
the gray and blue branch in Figure 2 encodes: —stable(A) «
obj_relation(above, A, B),  obj_surface(B,irregular),
i.e., any object above an object with an irregular surface is
unstable. Any learned axioms are merged with the existing
axioms (as appropriate) and used for subsequent reasoning.

3.3 Attention Mechanism

When ASP-based reasoning cannot assign labels to objects in
an image, the attention mechanism identifies and directs at-
tention to regions of interest (ROIs) that contain information
relevant to the task at hand. It first identifies each axiom in
the ASP program whose head corresponds to a relation of in-
terest. For instance, if the task is to estimate the occlusion of
object structures, each axiom whose head describes whether
an object is occluded or not is considered. The relations in the
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Figure 1: (Left) architecture combines the complementary strengths of non-monotonic logical reasoning, deep learning, and decision tree
induction, for scene understanding; (Right) simulated scene with toys; robot has to reason about occlusion and stability.
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Figure 2: A decision tree constructed from some labeled examples. Highlighted branches are used to construct previously unknown axioms.

body of each such axiom are used to identify ROIs considered
for further processing; the remaining image regions are not
analyzed because they are unlikely to provide useful informa-
tion. For instance, to estimate stability in Figure 1(right), the
attention mechanism considers the stack comprising the red
cube, white cylinder, and the green ball, since they satisfy the
relevant relation above—the other two objects (yellow duck,
blue pitcher) are disregarded. Any image may contain multi-
ple ROIs, each with one or more objects.

3.4 Convolutional Neural Networks

The pixels in the ROIs identified by the attention mechanism
serve as input to a deep network, which when trained is con-
sidered to model previously unknown information relevant
to the task at hand. We explored two variants of a CNN,
Lenet [LeCun et al., 1998] and Alexnet [Krizhevsky et al.,
2012], with the sigmoid activation function and the Adam
optimizer in the TensorFlow implementation [Abadi et al.,
2016]. The training dataset comprises image ROIs in the
form of suitably rescaled RGB images, and the labels to be
assigned to objects and structures in the ROIs. The CNN’s
parameters (e.g., weights, learning rate) are tuned to learn
the mapping between the pixels and labels. The number of
epochs was chosen as the stopping criteria to compare net-
works learned with and without the attention mechanism. The
learned CNNss assign labels to ROIs or the entire test image
to which ASP-based reasoning is unable to assign labels. The
related code is in our repository [Mota and Sridharan, 2019b].

4 Experimental Setup and Results

In this section, we summarize some experimental results;
please see [Mota and Sridharan, 2019a] for more details.

To simulate experiments in a dynamic domain in which a
large number of training samples are not available, we used
the Bullet real-time physics engine to generate 6000 labeled
images for estimating occlusion and stability of objects. Each
image had ROIs with up to five objects with different col-
ors, textures and shapes. The objects included cylinders,
spheres, cubes, a duck, and five household objects from the
Yale-CMU-Berkeley dataset [Calli et al., 2015]. We consid-
ered different arrangements of these objects, with the verti-
cal alignment randomized to create a stable or an unstable
arrangement. Other parameters, e.g., spread between ob-
jects, lighting, orientation etc, were also randomized to cre-
ate scenes with complex, partial, or no occlusion. Also, we
removed some state constraints related to stability and occlu-
sion from the ASP program. A second dataset was derived
from this dataset to simulate the attention mechanism’s oper-
ation, i.e., only pixels in the relevant ROIs were considered
for analysis. CNNs trained using the two datasets were com-
pared as a function of the amount of training data and the
complexity of the networks. Occlusion is estimated for each
object (i.e., maximum of five outputs per ROI) and stability is
estimated for the object structure (i.e., one output per ROI).

The performance measures were the accuracy of the labels
assigned to objects and object structures, and the precision
and recall of discovering previously unknown axioms. All
claims were tested for statistical significance as appropriate.
Lenet and Alexnet architectures without the commonsense
reasoning and attention mechanism modules, i.e., trained on
the RGB-D input images, were used as the baselines.

Figure 3 indicates that using commonsense reasoning to
guide deep learning improves the estimation accuracy of the
deep networks. Training and using the deep networks with
only relevant ROIs of images that cannot be processed by
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Figure 3: Accuracy of Lenet and Alexnet with and without com-
monsense reasoning and the attention mechanism. Our architecture
improves accuracy in comparison with the baselines.
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Figure 4: Accuracy of Lenet and Alexnet with and without the atten-
tion mechanism and commonsense reasoning. Any desired accuracy
is achieved with a smaller training set.

commonsense reasoning (bars denoted with “Att” in legend)
simplifies learning and makes it easier to learn an accurate
mapping between inputs and outputs, resulting in higher ac-
curacy than the baselines for any given number of training im-
ages. The improvement is more pronounced when the train-
ing set is smaller, but there is improvement at all training
dataset sizes considered in our experiments.

Figure 4 shows that using the attention mechanism and rea-
soning with commonsense knowledge helps achieve any de-
sired level of accuracy with much fewer training examples.
The purple dashed (horizontal) line in Figure 4 indicates that
the baseline Lenet needs ~ 1000 images to reach an accu-
racy of 77%, whereas Lenet(Att) only needs a2 600. A simi-
lar difference is observed between Alexnet and Alexnet(Att)
for &~ 80% accuracy—the dark green dash-dotted (horizon-
tal) line in Figure 4. In other words, the use of commonsense
knowledge helps train deep networks with fewer examples,
reducing both the computational and storage requirements.

Table 1 indicates the ability to learn previously unknown
axioms. Errors are mostly variants of the target axioms that
are not in the most generic form, i.e., they have irrelevant lit-
erals but are not wrong. The lower precision and recall with
defaults is because it is challenging to distinguish between
defaults and their exceptions. We do not describe it here,
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Axiom type Precision Recall
Unknown 98% 100%
(normal)
Unknown

62%
(default) 8% o

Table 1: Precision and recall for previously unknown axioms (nor-
mal, default) using decision tree induction.

but work in our group indicates that reasoning with common-
sense knowledge and decision trees provides (at least partial)
explanations for the decisions made by the architecture [Riley
and Sridharan, 2019; Sridharan and Meadows, 2019].

Finally, we evaluated the robot’s ability to compute mini-
mal plans to pickup and clear particular objects. The number
of plans computed when the learned axioms were included in
the ASP program was much smaller than when the axioms
were not included; the learned axioms helped eliminate cer-
tain paths in the transition diagram. In one scene, with all the
axioms the robot computed three plans; all were minimal and
correct. With some axioms missing, the robot found as many
as 64 plans, many of which were incorrect. A plan was con-
sidered to be correct if executing it (in simulation) resulted in
the corresponding goal being achieved.

5 Discussion and Conclusions

Deep networks are the state of the art for many tasks in
robotics and Al, but they require large training datasets and
considerable computational resources, and make it difficult
to understand their operation. Our architecture seeks to ad-
dress these limitations by integrating the principles of non-
monotonic logical reasoning with commonsense knowledge,
decision tree induction, and deep learning. Commonsense
knowledge is available in almost every domain—in fact, such
knowledge is often used to determine the structure and pa-
rameters of the deep networks. Our architecture exploits this
knowledge to simplify learning, focusing on aspects of the
domain not encoded by the existing knowledge. A more ac-
curate mapping is thus learned between inputs and outputs
using a smaller set of labeled examples. Experimental results
indicate that our architecture improves accuracy, especially
when large labeled training datasets are not readily available,
and reduces storage and computation requirements. In the
future, we will explore the interplay between reasoning and
learning to better understand the operation of deep network
models, building on work that uses relational logical struc-
tures to explain decisions, beliefs, and experiences [Sridharan
and Meadows, 2019]. Furthermore, we will enable the learn-
ing of different types of domain knowledge [Sridharan and
Meadows, 2018], and reason at different resolutions [Sridha-
ran et al., 2019] to test this architecture on physical robots.
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