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Abstract

Estimation of tactile properties from vision, such
as slipperiness or roughness, is important to effec-
tively interact with the environment. These tac-
tile properties help humans as well as robots de-
cide which actions they should choose and how to
perform them. We, therefore, propose a model to
estimate the degree of tactile properties from vi-
sual perception alone (e.g., the level of slipperiness
or roughness). Our method extends an encoder-
decoder network, in which the latent variables are
visual and tactile features. In contrast to previous
works, our method does not require manual label-
ing, but only RGB images and the corresponding
tactile sensor data. All our data is collected with
a webcam and tactile sensor mounted on the end-
effector of a robot, which strokes the material sur-
faces. We show that our model generalizes to ma-
terials not included in the training data. ! 2

1 Introduction

Humans are able to perceive tactile properties, such as slip-
periness and roughness, through haptics [Bergmann-Tiest,
2010]. After adequate visual-tactile experience, they are also
capable of associating such properties from only visual per-
ception [Tanaka and Horiuchi, 2015; Yanagisawa and Takat-
suji, 2015]. More specifically, humans can roughly judge the
degree of a certain tactile property (e.g., the level of slipperi-
ness or roughness) [Fleming, 2014]. As an example, Figure 1
shows several materials with different degrees of softness and
roughness judged by ourselves, although this may be subjec-
tive to our own judgment. Information on tactile properties
can help us decide how we interact with our environment in
advance, e.g., driving slower if we see that we have bad trac-
tion or grasp tighter if an item looks slippery. Like with hu-
mans, this ability to gauge the level of tactile properties can
enable robots to deal with various objects and environments
more effectively in both industrial settings and our daily lives.

*Qriginal full paper is presented in ICRA2019 [Takahashi and
Tan, 2019].
"Dataset: https://github.com/pfnet-research/Deep_visuo-tactile_
learning ICRA2019
2Video: https://youtu.be/ysOQKVVIOQ
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Figure 1: Example of material surfaces and their perceived material
properties through visual information.

In the field of robotics and machine learning, a straight-
forward way to correlate vision with tactile properties is to
design discrete classes per material type and to classify the
images according to them. However, the performance of dis-
crete classification methods highly depends on how well the
designer chooses the number and types of class labels. Be-
cause of the wide variety of materials, which all have differ-
ent tactile properties, discrete classes can not offer a sufficient
resolution to judge the properties of the material well. Hence,
we use an unsupervised method to represent tactile proper-
ties without using manually specified labels. We propose a
method that we call deep visuo-tactile learning which extends
a traditional encoder-decoder network with latent variables,
where visual and tactile properties are embedded in a latent
space. We emphasize that this is a continuous space, rather
than a discrete one. This method is capable of generalizing to
unknown materials when estimating their tactile properties,
based on known tactile properties. Additionally, we only re-
quire the tactile sensor during the data collection phase and
obtain a trained network model that can be used even in sim-
ulations or offline estimation, which allows for research with-
out purchasing or damaging tactile sensors during runtime.

2 Related Work
2.1 Types of Tactile Sensors

Many researchers have developed tactile sensors [Dahiya er
al., 2013], some of which have been integrated to a robotic
hand to enhance manipulation. The majority of these sensors
falls in either of the following three categories:

1. Multi-touch sensors with sensing capabilities limited to


https://github.com/pfnet-research/Deep_visuo-tactile_learning_ICRA2019
https://github.com/pfnet-research/Deep_visuo-tactile_learning_ICRA2019
https://youtu.be/ys0QtKVVlOQ
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Figure 2: Proposed network architecture for deep visuo-tactile learning composed of encoder-decoder layers and latent variables. The input
is a texture image of the material and, the output is the tactile data that contains measured forces by a tactile sensor in the x, y, and z axes.

After training, latent variables would contain tactile properties of materials correlating images with tactile sense. Then, the network can infer

tactile properties from only image input.

one axis per cell [Fishel and Loeb, 2012]

2. Single-touch sensors which can sense along three
axes [Paulino et al., 2017]

3. Multi-touch sensors which can sense along three axes.
At the moment of writing, there are only three sensors:
uSkin [Tomo et al., 2016], Finger Vision [Yamaguchi
and Atkeson, 2016], and GelSight [Dong et al., 2017].

2.2 Recognition through Tactile Sensing

Research utilizing tactile sensors has grown recently as the
availability and accessibility to tactile sensors has improved.
Prior to the use of deep learning-based methods in these stud-
ies, data acquired from tactile sensors were often analyzed
manually in order to define hand-crafted features [Yang et al.,
20161, or were only used as a trigger for certain actions [Ya-
maguchi and Atkeson, 2016]. Such methods may not scale
well as technology for tactile sensing advances to provide
e.g., higher resolution and larger amount of data, or whenever
the task complexity grows. By utilizing learning methods, es-
pecially deep learning, tasks involving high-dimensional data
such as image recognition [He er al., 2016] and natural lan-
guage processing [Conneau et al., 2016] which were too dif-
ficult to process before can now be processed. Deep learning
methods also found their way to applications where tactile
sensing is involved [Schmitz et al., 2014; Baishya and Béduml,
2016; Yuan et al., 2017a; Gao et al., 2016]. Many of these
studies, however, deal with the classification problem in or-
der to e.g., recognize objects inside a robotic hand [Schmitz
et al., 2014], recognize materials [Baishya and Bduml, 2016;
Yuan et al., 2017a] and properties [Gao et al., 2016] from
touch and image. Yuan ef al.[Yuan et al., 2017b] estimated
object hardness as a continuous value using tactile sensor
through supervised learning. We argue that these methods
would be difficult to scale to different tactile properties due
to the need to design each tactile property manually.

We note that our method differs from some other similar
studies such as [Bell et al., 2015] or [Schwartz and Nishino,
2019] in that we also make use of tactile information.

3 Deep Visuo-tactile Learning

We propose a method for deep visuo-tactile learning to esti-
mate tactile properties from images by associating tactile in-
formation with images. Figure 2 shows our design of such a
network. We aimed to design a network with a structure that
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is as simple as possible, but still sufficient for our purposes.
We expect that increased complexity of the network archi-
tecture by e.g., using variational auto-encoder (VAE) and re-
current neural networks will mainly influence the accuracy
and how tactile properties are represented as features, but
that the results remain analogous. Complex models usually
have the ability to learn more complex representations and
larger datasets, but the effectiveness of our contribution can
be shown using simpler models, hence our decision.

Our proposed network consists of 2D convolution layers
for encoding, 3D deconvolution layers for decoding, and a
multi layer perceptron (MLP) as hidden layers between the
encoder fy and decoder go. Our network outputs a time se-
ries sequence of tactile data consisting of applied forces and
shear forces, while the input is an edge extracted image from
the RGB image to prevent correlation to colors. The latent
variables z are calculated from encoder fy, () with training
data D = {(x1,y1)-.., (Tn, yn)}, and the cost function L is
calculated to minimize between expected output in training
data y and inferred output ' from decoder gy, (2) as follow:

min = 3 L(ys, g0, (fo, (21))), (M

01,00 M
R

where @ is the parameters to be trained, m (< n) is the number
of sequences for mini-batch training.

After training, z will hold visuo-tactile features that can be
used to correlate the input images to the time series tactile
data. We then map the embedded input to the latent space
spanned by these variables; the coordinates of the embed-
dings in this space will represent the material’s degree of the
tactile property represented by the latent variable. Then, the
network can infer tactile properties only from image input.
However, we remind the reader that we do not focus on in-
ferring the tactile time series data as output from the input
images. Rather, we attempt to estimate the level of tactile
properties, which can now be done by extracting the latent
variables from the trained network. The reason for not di-
rectly using the values from the inferred time series data is
that they are too sensitive to contact differences in e.g., the
posture used to initiate the contact, the movement speed dur-
ing contact, and the wear condition of the contact surface.
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4 Experiment Setup

4.1 Hardware Setup

Tactile Sensor

The uSkin tactile sensor we use [Tomo et al., 2016] consists
of 16 taxels in a 4 x 4 square formation and is capable of
measuring applied pressing forces and shear force in the x, y,
and z axes (Figure 3(a) shows the coordinate system of the
tactile sensor). To prevent damage to the tactile sensor, we
have covered all surfaces of the sensor with lycra fabric. For
our experiments, we only use the raw values of the pressure
readings z,y, z € [0,65535] on each of the taxels, which are
configured to sample at 100 Hz.

Materials

For the materials, we have prepared 50x150 mm samples of
25 materials with different textures and rigidity that can be
obtained off the shelf from a hardware store, see Figure 4. 15
of these materials are used for training, while the remaining
10 were used to evaluate our trained network as unknown ma-
terials. To normalize the experiments between each material
and simplify the process of our data collection, we have glued
each of the samples to their own PVC plate (See Figure 3(b)).

Sawyer

To conduct our experiments, we make use of a Sawyer 7-DOF
robotic arm with a custom 3D-printed end-effector on which
the uSkin tactile sensor and a Logitech C310 HD camera are
mounted (See Figure 3 (a)).

4.2 Data Collection

For data collection, the following process is repeated ten
times per material by the robot.

1. Move to a fixed initial position

2. Detect material surface: move down from a fixed initial
height until force threshold F'z 5.0N has been reached

3. Capture image: move up 1.6 x 10”2 m from detected
material surface and take a picture

4. Move back to material surface and start capturing data
from tactile sensor

5. Stroke material: move 3.0 x 1072m with constant
velocity 2.0 x 1073 m/sec in positive y-axis direction
while tactile sensor makes contact with material surface

After data collection, we process all data to obtain our
training data by doing the following. We normalize values
to be between -1 and 1 and sample down each sequence
of 900 time steps to 90 steps. Moreover, we perform ro-
tations and croppings (from 640 x 480 pixels to pieces of
200 x 200 pixels) covering various areas to the obtained im-
ages. By doing this, we augment our data by 64 times per
material and obtain a total of 960 samples of image-tactile
pairs. Furthermore, we extract the edges from the RGB im-
ages of the materials with normalized pixel values between -1
and 1, because we reason that touch sense does not depend on
material colors, and performing this preprocessing enables us
to train our network with less data. For training, we use eight
out of the ten collected images and tactile sequences. The re-
maining two image-tactile sequence pairs were split for vali-
dation and testing, respectively.
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(a) (b)
Figure 3: (a) end-effector with a tactile sensor and a web camera,

(b) the Sawyer stroking a material to the minus y-axis direction.

Training material (known materials

11) Work gloves  (12) Knit hat #2 (13) Toilet mat #1 (14) Floor mat

(15) Sponge #1

18) Printed tatami (17) Cushion #1  (18) Mop

(23) Fleece mat (24) Carper #4  (25) Sponge #2

I£'21) Cushion#2  (22) Carpet #3

Unknown materials

Figure 4: Trained materials (red) and unknown materials (blue) with
their corresponding names included our dataset.

4.3 Network Hyper-parameters & Training

The architecture of our network model with four 2D and four
3D convolutional layers, and two full-connected MLPs to per-
form deep visuo-tactile learning is shown in Figure 2 as de-
scribed in Section 3. More details on the network parameters
are shown in Section 4.3. For all layers except last layer in the
network, we make use of batch normalization. For training,
we use mean squared error as the cost function, and a batch
size of 15. All our network experiments were conducted on
a machine equipped with 128 GB RAM, an Intel Xeon ES5-
2623v3 CPU, and a GeForce GTX Titan X with 12GB result-
ing in about 1.5 hours of training time.

Filter Activation

‘ ‘ Layer In Out ‘ size ‘ Stride Padding ‘ function
5 Ist 1 32 (8,8) 2,2) (0,0) ReLu
2 2nd 32 32 (8,8) 2,2) (0,0) ReLu
] 3rd 32 32 (4,4) 2,2) (0,0) ReLu
= 4th 32 32 (4,4) (2,2) (0,0) Tanh
5 Ist 1 32 (1,1,3) | (1,L,1) (0,0,0) ReLu
3 2nd 32 32 (1,1,3) | (1,1,2) (0,0,0) ReLu
8 3rd 32 32 224 | (1,1,2) (0,0,3) ReLu
Aa 4th 32 3 224) | (1,1,2) (1,1,2) Tanh

Table 1: Network Design’

3 For the hidden layer between encoder and decoder, we use two MPLs with 4

and 160 neurons with ReLu as activation function, respectively.
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5 Results of Estimation of Tactile Properties

We present the results of estimated tactile properties in the la-
tent space. After training with the 15 known materials shown
in Figure 4, we let our network infer tactile properties with
both known and 10 unknown materials. The tactile properties
for all these materials are represented in four latent variables
as z. Figure 5 shows the latent space of two of those latent
variables. We have, to the best of our ability, analyzed the
remaining two latent variables, but infer that the information
they seem to represent are too diverse to analyze. Known
materials used during training are represented by red-colored
stars as seen in Figure 4, while unknown materials are repre-
sented by blue-colored stars.

To qualitatively evaluate the results of how tactile proper-
ties are represented in the latent space, we calculate the values
for roughness, hardness, and friction for each material from
tactile sequence data with forces in the x, y and z axes for all
the 16 sensor taxels. We expect that the y-axis values con-
tain information on friction between the end-effector and the
material due to the applied shear forces while stroking. We
also expect that the z-axis embeds information on roughness
as well as softness of a material surface. The color of the
circles in Figure 5 (a) is deeper for more rough and harder
materials, and deeper colors in Figure 5 (b) represent higher
friction of materials. This enables us to see whether the map-
ping of these tactile properties for each material in the latent
space corresponds to the degree of roughness, hardness, and
friction from our calculated values. We note that tactile prop-
erties are represented in the latent space according to what the
tactile sensor perceived. Therefore, what we personally per-
ceive as the degree of tactile properties might not correspond
to our result.

Figure 5 (a) indicates that materials with relatively high de-
gree of hardness and roughness tend to get mapped to regions
with lower values of the latent variable z;. For example, floor
mats and brown carpets were recognized as hard and rough,
while materials like body towels and toilet mats were recog-
nized as soft and smooth. Moreover, we see that an unknown
black carpet is relatively closer to the somewhat similarly tex-
tured, known brown carpet than to the other unknown mate-
rials in the center region, despite their difference in color. In
the same manner, the values of latent variables of known and
unknown sponges are close to each other. From this point
of view, Figure 5 (a) suggests that the degree of softness and
roughness of materials are embedded in latent variable z;.
An interesting case is a Japanese straw mat surface printed
on paper and was estimated to have a high degree of rough-
ness. However, tactile values corresponding to this degree of
roughness could not be obtained by the sensor. This shows
the limitation of our current model on how accurate tactile
properties can be estimated from only two-dimensional im-
ages as input.

Furthermore, Figure 5 (b) indicates that materials with
seemingly low friction tend to get mapped to regions with low
values of z. For example, fabriclike materials have relatively
high friction when stroked by the sensor due to contact with
the lycra cover of the tactile sensor. On the other hand, non
fabric materials like plastic slip more easily when stroked and
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Figure 5: Visualization of tactile properties of (a) softness and
roughness, and (b) friction from latent spaces of the hidden layer.

Table cover

have relatively low friction as a result. We can see that rela-
tively glossy (thus seemingly slippery) materials (table cover
and floor mat) are mapped to areas with the lowest 25 values.
Therefore, we believe that z5 is connected to the amount of
friction surfaces provide during stroking.

6 Conclusion

We proposed a method to estimate tactile properties from im-
ages, called deep visuo-tactile learning, for which we built an
encoder-decoder network with latent variables. The network
is trained with material texture images as input and time se-
ries sequences tactile acquired from a tactile sensor as output.
After training, we obtained a continuous latent space repre-
senting tactile properties and their degrees for various materi-
als. Our experiments showed that unlike conventional meth-
ods relying on classification, our network is able to deal with
unknown material surfaces and adapted the latent variables
accordingly without the need for manually designed class la-
bels.
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