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Abstract
Mining high-dimensional data streams poses a fun-
damental challenge to machine learning as the pres-
ence of high numbers of attributes can remarkably
degrade any mining task’s performance. In the
past several years, dimension reduction (DR) ap-
proaches have been successfully applied for differ-
ent purposes (e.g., visualization). Due to their high-
computational costs and numerous passes over
large data, these approaches pose a hindrance when
processing infinite data streams that are poten-
tially high-dimensional. The latter increases the
resource-usage of algorithms that could suffer from
the curse of dimensionality. To cope with these
issues, some techniques for incremental DR have
been proposed. In this paper, we provide a sur-
vey on reduction approaches designed to handle
data streams and highlight the key benefits of us-
ing these approaches for stream mining algorithms.

1 Introduction
In the era of Internet-of-Things (IoT) data streams, appli-
cations in different domains have seen an explosion of in-
formation generated from heterogeneous data sources every
day. Because of their unbounded size and infinite nature, data
streams cannot be stored entirely in memory or scanned mul-
tiple times [Gama et al., 2009]. In addition to the overwhelm-
ing volume of data, its dimensionality is increasing consider-
ably in many domains, such as biology, social media, and
spams filters. Those high-dimensional data may contain re-
dundant or irrelevant features that can be potentially reduced
to a smaller set of relevant features without a significant loss
of information.

A natural way to handle such massive high-dimensional
data adequately is to apply the learning task, that may suf-
fer from the curse of dimensionality1 [Bellman, 2015], on a
compressed representation of the data which eases the pro-
cess by using less computational resources. Thus, a pre-
processing step is imperative to filter relevant features and
therefore improve the results of a later machine learning task.
The latter could be data visualization, noise filtering, or to

1It is very challenging to learn in high-dimensional spaces.

allow cost and resource savings with data stream mining al-
gorithms. To do so, a synopsis can be constructed from data
points (instances) in the stream using summarization tech-
niques, such as sketches by keeping frequencies of data, se-
lecting a part of incoming data without reducing the number
of features, known as sampling, or by applying dimension re-
duction (DR)2. Naturally, the choice of a suitable technique
depends on the problem being solved. In what follows, we
focus the most common application, DR, which aims to de-
crease the size of the feature space of data while keeping or
extracting a subset of the most relevant features [Sorzano et
al., 2014].

As mentioned before, DR is crucial to avoid the curse of
dimensionality, which may increase the use of computational
resources and negatively affect the predictive performance.
Several reduction techniques have been proposed, and widely
investigated, in the offline setting [Van Der Maaten et al.,
2009; Sorzano et al., 2014] to cope with high-dimensional
data. However, these techniques do not adhere to the strict
computational resources requirements of the data stream
learning framework [Gama et al., 2009]. To overcome this
problem, some of these techniques have been adapted to effi-
ciently process streaming data, effectively perform one-pass
processing, and adhere to memory and time constraints.

We distinguish two main different dimensionality reduc-
tion categories: (i) feature selection which consists in select-
ing a subset of the input features, i.e., the most relevant and
non-redundant features, without operating any sort of data
transformation; and (ii) feature transformation–also called
feature extraction– which consists in constructing from a set
of input features in high-dimensional space, a new set of fea-
tures in a lower dimensional space [Liu and Motoda, 1998].

Some recent surveys on streaming feature selection have
been proposed [Barddal et al., 2017; Hu et al., 2018; Al-
Nuaimi et al., 2019].To the best of our knowledge, surveys
on streaming feature transformation for do not exist even
though the past several years have seen new approaches in
this framework. Nevertheless, previous works have provided
a general overview limited to summarization techniques (e.g.,
sampling, sketches), such as [Aggarwal and Philip, 2007;
Ikonomovska et al., 2007]. We therefore believe that this re-

2Dimensionality reduction, embedding, and manifold learning
are the names for similar tasks.
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view on feature transformation can provide up-to-date knowl-
edge about recent findings and developments in the field.

Our goal in this paper is to provide a brief overview of the
most crucial feature transformation techniques that are–or can
be– used in the stream framework and discuss their similari-
ties and differences. We also briefly discuss some promising
future research directions.

2 Dimensionality Reduction
DR is a critical part of improving machine learning algo-
rithms’ performance. It is defined as the projection of high-
dimensional data into a low-dimensional space by reducing
the input features to the most relevant ones. As mentioned
before, feature transformation and feature selection process
data differently. Although both reductions are used to min-
imize an input feature space size, feature transformation is
a DR that creates a new subset – or combinations – of fea-
tures by exploiting the redundancy and noise of the input set
of features. In contrast, feature selection is characterized by
keeping the most relevant attributes from the original set of
features present in the data without changing them. In what
follows, we refer to feature transformation as DR.

Formally, DR consists in finding some transformation
function (or map) A : Rd → Rp, where p � d, to be ap-
plied on each instance Xi of a data set S.

3 A DR Taxonomy for Data Streams
In this section, we introduce DR techniques that have been
widely used in machine learning algorithms. These tech-
niques operate by transforming and using the most relevant
feature combinations, in turn reducing space and time de-
mands; this can be crucial for applications such as classifica-
tion and visualization. Note that DR is in general a very active
field recently; however, many such methods have been pro-
posed and used for offline purposes– and for static datasets.
Hence, they cannot be used in streaming frameworks, or they
have to be adapted.

Figure 1 shows a taxonomy that subdivides the DR tech-
niques as follows: data-dependent, data-independent, and
graph-based transformation. The data-dependent techniques
are derived from the whole data to achieve the transformation,
whereas the data-independent techniques are based on ran-
dom projections and do not use the input data to perform the
projection. Graph-based techniques are also data-dependent
that build a neighborhood graph to maintain the data structure
(i.e., preserves the neighborhood after projection).

3.1 Data-Dependent Techniques
Data-dependent techniques construct a projection function –
or matrix – from the data. This requires the presence of the
entirety – or at least a part of – the dataset. In the streaming
context, where data are potentially infinite, the classical tech-
niques from this category are therefore limited, since keeping
the entire data stream in memory is impractical.

Principal Components Analysis (PCA)
PCA is the most popular and straightforward unsupervised
technique that seeks to reduce the space dimension by find-
ing a lower-dimensional basis in which the sum of squared

distances between the original data and their projections is
minimized, i.e. being as close as possible to zero while max-
imizing the variances between the first components. Math-
ematically, PCA aims to find a linear mapping formed by a
few orthogonal linear combinations, also called eigenvectors
or PCs, from the original data that maximizes a certain cost
function. However, PCA computes eigenvectors and eigen-
values from a computed covariance matrix, relying on the
whole dataset. This is ineffective for streaming data since
a re-estimation of the covariance matrix from scratch for new
observations is unavoidable.

In this context, different variations of component analysis
have been proposed and adapted to the stream setting. For in-
stance, Incremental PCA (IPCA) [Artac et al., 2002] focuses
on how to update the eigenvectors of images (called eigenim-
ages) based on the previous coefficients. Candid Covariance-
free Incremental PCA (CCIPCA) [Weng et al., 2003] is an-
other extension that updates the eigenvectors incrementally
and does not need to compute the covariance matrix for each
new incoming instance (each instance being an image) which
makes it very fast. The main difference among these tech-
niques arises is in how eigenvectors are updated. On the
other hand, the common limitation concerns their applica-
tion domain since both techniques deal with images as high-
dimensional vectors and have not been tested on different
types of data.

Ross et al. proposed a batch-incremental PCA that deals
with a set of new instances each time a batch is complete.
However, this approach is not suited for instance-incremental
learning (i.e., processing instances one by one incremen-
tally). Mitliagkas et al. proposed a memory-limited stream-
ing PCA that attempts to make vanilla PCA incremental
and computation-efficient with high-dimensional data. To
achieve this, samples are drawn from a Gaussian spiked co-
variance model. A more recent work [Yu et al., 2017] pro-
poses a single-pass randomized PCA technique that itera-
tively updates the subspace’s orthonormal basis matrix within
an accuracy-performance trade-off. Yu et al. claim that this
technique works well in many applications, albeit it has been
evaluated only on a single image dataset.

The above PCA techniques apply to data stream min-
ing algorithms to alleviate their computation costs. For in-
stance, Feng et al. proposed an efficient online classification
algorithm, FIKOCFrame, that uses a PCA variant, fast itera-
tive kernel PCA [Günter et al., 2007], to incrementally reduce
the dimensionality before classification.

Cardot and Degras proposed recently a comparative review
of the incremental PCA approaches where they provide guid-
ance for selecting the appropriate approach based on their ac-
curacy and computation resources (time and memory).

Multi-Dimensional Scaling (MDS)
MDS [Wickelmaier, 2003] is a well-known unsupervised
technique used for embedding. It projects a given distance
matrix into a non-linear lower-dimensional space while pre-
serving the similarity among instances. Nevertheless, this
technique is computationally expensive with large datasets
and non-scalable because it requires the entire data distance
matrix. Incremental versions have been proposed to alleviate
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Figure 1: Taxonomy of dimensionality reduction techniques.

the computational requirements.
Incremental MDS (iMDS) technique, proposed by Agar-

wal et al., keeps some distance preservation using the so-
called out of sample mapping without the need of reconstruct-
ing the whole matrix. A more recent work by Zhang et al.
proposed a new version of MDS for high-dimensional data,
named scMDS. It is a batch-incremental technique that in-
troduces a realignment matrix for each batch to overcome the
concept drift that may occur due to different batches that have
different feature bases. Nevertheless, the efficiency of this
batch-incremental technique depends on the size of the batch.

Auto-Encoder (AE)
AEs are a family of Neural Networks (NNs) which are
designed for unsupervised learning, for learning a low-
dimensional representation of a high-dimensional dataset,
where the input is the same as the output. An AE has two
main components, (i) the encoder step, during which the in-
put data are compressed into a latent space representation;
and (ii) the decoder step where the input data are reproduced
from this new representation. Vincent et al. introduced the
denoising AE (DAE), a variant of AE, that extracts features
by adding perturbations to the input data and then attempts to
reconstruct the original data. Zhou et al. proposed an online
DAE that adaptively uses incremental feature augmentation,
depending on the already existing features, to track drifts.
However, this work does not address the convergence prop-
erties of the training task (the hyperparameters configuration
used to construct the network, e.g., the number of epochs)
that are crucial in the stream setting.

Unlike other algorithms, NNs naturally handle incremental
learning tasks [Dong and Japkowicz, 2016]. While dealing
with data streams, NNs learn by passing the data in smaller
chunks (Mini-Batch Gradient Descent) or an instance at a
time (Stochastic Gradient Descent). Using this way, each
instance is going to be processed only once without being
stored. The advantage of using this kind of technique is that it
is not limited to linear transformations. Non-linearities are in-
troduced using non-linear activation functions, NNs are there-
fore more flexible. Nevertheless, this high-quality results that
this family of learners offers come at the price of slow learn-
ing speed due to the infinite nature of data and the large pa-
rameter space needed.

Linear Discriminant Analysis (LDA)
LDA [McLachlan, 2004], also known as Fisher Discriminant
Analysis (FDA), is a linear transformation technique. Con-
trary to the techniques mentioned earlier, LDA performs a
supervised reduction that takes into account the class labels

of instances by looking for efficient discrimination of data in
a way to maximize the separation of the existing categories
(class labels), while other techniques, e.g. PCA, aim at an ef-
ficient representation. However, when dealing with evolving
data streams, the set of labels of instances may be unknown at
each learning stage because new classes may appear (concept
evolution) [Haque et al., 2016].

One way to cope with this issue is to update the discrimi-
nant eigenspace when a new class arrives, as introduced in the
Incremental LDA (ILDA) approach [Pang et al., 2005]. An-
other streaming extension of LDA has been proposed, called
IDR/QR [Ye et al., 2005]. It applies a singular value decom-
position suitable for large datasets that uses less computa-
tional cost than ILDA. Kim et al. proposed an ILDA that
incrementally updates the discriminant components using a
different criterion. They claim to be more efficient in terms
of time and memory than the previous approaches.

Maximum Margin Criterion (MMC)
MMC [Li et al., 2004] is a supervised feature extractor tech-
nique based on the same representation of LDA while maxi-
mizing a different objective function. To overcome the limi-
tations of MMC with streaming data, Yan et al. proposed an
Incremental MMC (IMMC) approach, which infers an online
adaptive supervised subspace from data streams by optimiz-
ing the MMC and updating the eigenvectors of the criterion
matrix incrementally. Hence, the computation of IMMC is
very fast since it does not need to reconstruct the criterion
matrix when new instances arrive.

The incremental formulation of the proposed algorithm is
mentioned in [Yan et al., 2004] with the proof. A major draw-
back of this approach is its sensitivity to parameter setting.

3.2 Data-Independent Techniques
Data-independent techniques are mainly based on the prin-
ciple of random projections. These techniques are therefore
appropriate for evolving streams because they generate the
projection matrices (or functions), and transform data into a
low-dimensional space, independently from the input data.

Random Projection (RP)
Random projection is a powerful technique for dimensional-
ity reduction that has been widely applied with several mining
algorithms for solving numerous problems [Vempala, 2005].
RP is based on the Johnson-Lindenstrauss (JL) lemma 1
which asserts that N instances from a Euclidean space can be
projected into a lower-dimensional space of O(log(N/ε2))
dimensions under which pairwise distances are preserved
within a multiplicative factor of 1± ε.
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Lemma 1 Let ε ∈ [0, 1], X = {x1, ..., xN} ∈ Rd. Given a
number p ≥ log(N/ε2), ∀xi, xj ∈ X there is a linear map
A : Rd → Rp such that:

(1−ε)‖xi−xj‖22 ≤ ‖Axi−Axj‖22 ≤ (1+ε)‖xi−xj‖22, (1)

where A is a random matrix that can be generated using, e.g.,
a Gaussian distribution.

Hence, RP offers a computationally-efficient and straight-
forward way to compress the dimension of input data rapidly
while approximately preserving the pairwise distances be-
tween any two instances. However, this technique sometimes
leads to a slight loss in accuracy.

Compressed Sensing (CS)
Compressed sensing, also called compressed sampling, tech-
nique based on the principle that a data compression method
has to deal with redundancy while transforming and recon-
structing data [Donoho, 2006]. Given a sparse and high-
dimensional vector x ∈ Rd, the goal of CS is to measure
y ∈ Rp and then reconstruct x, for p� d, as y = Ax, where
A ∈ Rp×d is called a sampling or sensing matrix.

The technique has been widely studied and used through-
out different domains in the offline framework, such as image
processing [Qiu et al., 2009]. The basic idea is to use orthog-
onal features to provably and properly represent sparse and
high-dimensional vectors x ∈ Rd as well as reconstruct them
from a small number of feature vectors y ∈ Rp, where p� d.
Two main concepts are crucial to the recovery of the stream
with high probability, (i) the sparsity: CS exploits the fact
that the input data x may be s-sparse; and (ii) the Restricted
Isometry Property (RIP): the matrix A is said to respect the
RIP for all s-sparse data if there exists ε ∈ [0, 1] such that:

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22, (2)

where x ∈ X .
RP and CS are closely related. Random matrices (e.g.,

Bernoulli, Binomial, Gaussian) are also known to satisfy the
RIP with high probability if p = O(s log(d)) [Achlioptas,
2003], which is essentially a JL type condition on projections
using the sensing matrix A. The difference is mainly in terms
of how big the matrix A has to be. On the other hand, CS
could be data-dependent when we use Fourier transform to
obtain the sensing matrix from data. In [Freris et al., 2013],
authors proposed a recursive scheme for using Fourier matri-
ces with data streams which constructs successive windows
and uses the measurement in the previous window to obtain
the next one. However, this approach is expensive in terms of
memory since it keeps data on windows and it is still not as
accurate as using a Gaussian matrix [Arjoune et al., 2018].

Hashing Trick (HT)
Hashing trick [Weinberger et al., 2009], also known as feature
hashing, is a fact and space-efficient technique that projects
sparse instances or vectors into a lower feature space using a
hash function. Given a list of keys that represents a set of fea-
tures from the input instances, it computes then the hash func-
tion for each key, which will ensure its mapping to a specific
cell of a fixed size vector that constitutes the new compressed
instance. The HT technique has the appealing properties of

being very fast, simple, and sparsity preserving. A significant
advantage to point out is that this technique is very memory-
efficient because the output feature vector size is limited,
making it a clear candidate for using, especially for online
learning on streams. This technique has been used in con-
junction with stream mining algorithms. For instance, Bahri
et al. proposed recently a naive Bayes approach that uses HT
technique to alleviate its computational resources on sparse
high-dimensional data streams.

Locality Sensitive Hashing (LSH)
The basic idea behind LSH technique [Datar et al., 2004]
is the application of hashing functions which map, with
high probability, similar instances (in the high-dimensional d-
space) that have the same hash code to the same bucket. I.e., if
instances are phrases that are very similar to each other, they
might be different by only one or a couple of words or even
one character; hence, LSH will generate very similar, ideally,
identical hash codes to increase the probability of collision for
those instances. LSH operates by partitioning the space with
hyperplanes into disjoint regions, which are spatially proxi-
mate. A particular hyperplane is going to cut the space into
two half-spaces, and arbitrarily one side is called positive “1”
and the other side negative “0”; this will help in classifying
the instances for that dimension. The process is iterative: the
first bit in the hash code of an instance is assigned with respect
to its position. Then, the process keeps cutting the space and
assigning bits the same way. Therefore, we obtain the hash
codes based on the bits assigned after each hyperplane.

There is an efficiency-resource tradeoff with LSH. To
achieve good accuracy, it requires the use of several hash
functions; consequently, the memory increases, which will
slow down the reduction process and make it less suitable
with large data. LSH is used in several interesting real-word
applications: Netflix users with similar tastes in movies for
recommendation systems, plagiarism based on a body of doc-
uments, or finding similar text. It is also used in classification
tasks, e.g., topic classification of pages, by exploiting the fact
that pages on the same topic will contain similar words.

3.3 Graph-Based Techniques
Graph-based techniques are data-dependent techniques that
start by constructing a graph based on instance similarities
and then operate on this representation.

Isometric Mapping (Isomap)
Isomap is a manifold learning technique that can be viewed as
a combination of the principles of PCA and MDS. It starts by
building a neighborhood graph on the manifold from which
a geodesic distance matrix is constructed. Isomap assumes
that pairwise geodesic distances are equal to Euclidean ones
(obtained by applying the MDS on the resulting geodesic dis-
tance matrix) in the low-dimensional space. Since it requires
the computation of pairwise distances, Isomap is thus not ap-
propriate for the incremental setting with large datasets.

Law et al. proposed a streaming version of Isomap that
updates the geodesic distances and the coordinates incremen-
tally. This technique is not fully incremental because a new
instance can affect the neighborhood structure and, therefore,
the geodesic matrix. Thus, there is a need to examine how this
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(a) UMAP (b) tSNE (c) RP

(d) PCA (e) HT

Figure 2: Dimensionality reduction techniques while projecting CNAE dataset in 2-dimensional space.

new instance interacts with the existing ones before finding its
coordinates. Another incremental Isomap, denoted S-Isomap,
has been proposed lately by Schoeneman et al. which does
not recompute the whole geodesic distance matrix when a
new instance arrives, but only finds its nearest neighbors (that
will be used to approximate the geodesic distance between
this new observation and the others already available in the
batch). This approach fails when used to process data be-
cause it assumes that the data are weakly correlated, and thus
unable to detect when concept drift takes place.

t-distributed Stochastic Neighbor Embedding (tSNE)
tSNE [Maaten and Hinton, 2008] is one of the most promi-
nent DR techniques in the state-of-the-art. It is a graph-based
non-linear technique proposed to visualize high-dimensional
data embedded in a lower-space (typically 2 or 3 dimen-
sions) by using the insight that similar instances in the high-
dimensional space should be represented by close instances
in the low-dimensional space. tSNE uses a fixed parameter
named perplexity similar to the number of neighbors that con-
trols the neighborhood size of each node in the graph, which
prevents it from preserving global data structure. The main
weakness of tSNE in our context is about the scalability, i.e.
to add more instances, we need to re-run tSNE from scratch.

Uniform Manifold Approximation & Projection (UMAP)
UMAP [McInnes et al., 2018] is a new manifold technique,
similar to tSNE, that has attracted attention recently and is
built upon rigorous mathematical foundation through the Rie-
mannian geometry. UMAP starts by constructing open balls

over all instances and building simplicial complexes. The
space reduction is obtained by finding a representation, in a
lower-space, that closely resembles the topological structure
in the original space. Given the new dimension, an equivalent
fuzzy topological representation is then constructed. After-
ward, UMAP optimizes it by minimizing the cross-entropy
between these two fuzzy representations. In addition to be-
ing faster than tSNE, UMAP offers also a better visualization
quality by preserving more of the global structure. Unlike
tSNE, UMAP has no restriction on the projected space size
making it useful not only for visualization, but also as a gen-
eral DR technique for mining algorithms.

A batch-incremental strategy has been proposed recently
to build manifolds on small chunks then used for classifica-
tion through a streaming lazy algorithm [Bahri et al., 2020].
However, this technique is still not fully incremental and the
batch-incremental manner slows down the whole process.

4 Research Challenges and Open Directions
This survey aims at providing a literature review for progress
in dimensionality reduction techniques. In this section, we
briefly provide some promising future research directions. To
the best of our knowledge, tSNE and UMAP do not have any
fully incremental version, ultimately, both techniques are es-
sentially transductive3 and do not learn a mapping function
from the input space. Hence, they need to process all the

3Transductive learning consists on learning on a dataset but pre-
dicting on a known set of unlabeled instances from the same dataset.
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instances for each new unseen observation, which prevents
them from being applicable within a data stream framework.

Figure 2 shows the performance of different DR techniques
on CNAE dataset4 while projecting into a 2-dimension space
in an offline fashion. This dataset consists of 9 classes, where
each color represents a class label. We notice that UMAP in
Figure (a) offers the most interesting visualization while sep-
arating classes (already proved in [McInnes et al., 2018] with
different data). tSNE (Figure (b)) offers a less visible sep-
aration than UMAP because it does not preserve the global
structure of data. On the other hand, we see a lot of overlap-
ping with RP, PCA, and HT in Figures (c), (d), and (e), re-
spectively, because of their linear nature. Figure 2 (e) shows
the projection with HT, we notice kind of points because HT
maps features to the same cells (collisions) depending on the
hash function being used. Besides, the overlap after the trans-
formation can potentially affect any later learning task, no-
tably distance or neighborhood-based algorithms. We see that
in contrast to linear techniques, nonlinear techniques have the
ability to offer an advantage when dealing with complex data.

5 Discussion
DR plays a significant role in the data stream mining area
since it aims at keeping the most relevant features to reduce
the computational cost of stream mining algorithms and make
the structure effective for visualization (see Figure 3).

Techniques such as PCA, LDA, and MDS are the most
classical ones for DR. As we mentioned before in Section 3,
some versions of the data-dependent techniques have been
proposed to deal with evolving data streams. Nevertheless,
this category of techniques usually provides good accuracy
when combined with stream data mining algorithms. On
the other hand, data-independent techniques are naturally
adapted to the evolving environment of data streams and do
not suffer from the scalability problem. Moreover, using data-
independent techniques is extremely fast because it is per-
formed without including the input data content. This trans-
formation performs as well, if not better, as data-dependent
transformation because it is less sensitive to new unseen in-
stances and could benefit from the infinite nature of streams.
Sometimes, data-independent schemes could destroy any in-
terpretability in the case of visualization (e.g., Figures 2 (c)
and (d)). Thus, the choice of the (data-dependent or data-
independent) technique poses an accuracy-resource tradeoff
that may depend on the problem being solved and the algo-
rithm used (e.g., use a graph-based manner for visualization
to preserve the neighborhood and the global structure of data).

6 Concluding Remarks
In this survey, we provided a literature review that surveys the
vast set of dimensionality reduction techniques for streaming
– online or incremental – data. We proposed a simple and use-
ful taxonomy of existing works where we differentiated be-
tween data-dependent and data-independent techniques and
their impact on data stream mining algorithms. This can help

4https://archive.ics.uci.edu/ml/datasets/CNAE-9

High-dimensional Data

Dimensionality Reduction

Low-Dimensional Data

Processing

Figure 3: The goal of dimensionality reduction.

the readers to choose suitable dimensionality reduction tech-
niques for their tasks. We also discussed some promising fu-
ture research directions which concern the adaptation of two
powerful techniques, tSNE and UMAP, to the stream setting.
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