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Abstract

Automatic Curriculum Learning (ACL) has be-
come a cornerstone of recent successes in Deep Re-
inforcement Learning (DRL). These methods shape
the learning trajectories of agents by challenging
them with tasks adapted to their capacities. In re-
cent years, they have been used to improve sam-
ple efficiency and asymptotic performance, to or-
ganize exploration, to encourage generalization or
to solve sparse reward problems, among others. To
do so, ACL mechanisms can act on many aspects
of learning problems. They can optimize domain
randomization for Sim2Real transfer, organize task
presentations in multi-task robotic settings, order
sequences of opponents in multi-agent scenarios,
etc. The ambition of this work is dual: 1) to present
a compact and accessible introduction to the Au-
tomatic Curriculum Learning literature and 2) to
draw a bigger picture of the current state of the art
in ACL to encourage the cross-breeding of existing
concepts and the emergence of new ideas.

1 Introduction
Human learning is organized into a curriculum of interdepen-
dent learning situations of various complexities. For sure,
Homer learned to formulate words before he could com-
pose the Iliad. This idea was first transferred to machine
learning in Selfridge et al. [1985], where authors designed
a learning scheme to train a cart pole controller: first train-
ing on long and light poles, then gradually moving towards
shorter and heavier poles. A related concept was also de-
veloped by Schmidhuber [1991], who proposed to improve
world model learning by organizing exploration through ar-
tificial curiosity. In the following years, curriculum learning
was applied to organize the presentation of training exam-
ples or the growth in model capacity in various supervised
learning settings [Elman, 1993; Krueger and Dayan, 2009;
Bengio et al., 2009]. In parallel, the developmental robotics
community proposed learning progress as a way to self-
organize open-ended developmental trajectories of learning
agents [Oudeyer et al., 2007]. Inspired by these earlier works,
the Deep Reinforcement Learning (DRL) community devel-

oped a family of mechanisms called Automatic Curriculum
Learning, which we propose to define as follows:

Automatic Curriculum Learning (ACL) for DRL is a fam-
ily of mechanisms that automatically adapt the distribution of
training data by learning to adjust the selection of learning
situations to the capabilities of DRL agents.
Related fields. ACL shares many connections with other
fields. For example, ACL can be used in the context of Trans-
fer Learning where agents are trained on one distribution of
tasks and tested on another [Taylor and Stone, 2009]. Contin-
ual Learning trains agents to be robust to unforeseen changes
in the environment while ACL assumes agents to stay in con-
trol of learning scenarios [Lesort et al., 2019]. Policy Distilla-
tion techniques [Czarnecki et al., 2019] form a complemen-
tary toolbox to target multi-task RL settings, where knowl-
edge can be transferred from one policy to another (e.g. from
task-expert policies to a generalist policy).
Scope. This short survey proposes a typology of ACL
mechanisms when combined with DRL algorithms and,
as such, does not review population-based algorithms im-
plementing ACL (e.g. Forestier et al. [2017], Wang et
al. [2019]). As per our adopted definition, ACL refers to
mechanisms explicitly optimizing the automatic organization
of training data. Hence, they should not be confounded with
emergent curricula, by-products of distinct mechanisms. For
instance, the on-policy training of a DRL algorithm is not
considered ACL, because the shift in the distribution of train-
ing data emerges as a by-product of policy learning. Given
this is a short survey, we do not present the details of every
particular mechanism. As the current ACL literature lacks
theoretical foundations to ground proposed approaches in a
formal framework, this survey focuses on empirical results.

2 Automatic Curriculum Learning for DRL
This section formalizes the definition of ACL for Deep RL
and proposes a classification.
Deep Reinforcement Learning is a family of algorithms
which leverage deep neural networks for function approxima-
tion to tackle reinforcement learning problems. DRL agents
learn to perform sequences of actions a given states s in an
environment so as to maximize some notion of cumulative
reward r [Sutton and Barto, 2018]. Such problems are usu-
ally called tasks and formalized as Markov Decision Pro-
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cesses (MDPs) of the form T =〈S,A,P,R,ρ0〉 where S is
the state space,A is the action space, P :S×A×S→ [0,1] is
a transition function characterizing the probability of switch-
ing from the current state s to the next state s′ given action
a, R :S×A→R is a reward function and ρ0 is a distribution
of initial states. To challenge the generalization capacities of
agents [Cobbe et al., 2018], the community introduced multi-
task DRL problems where agents are trained on tasks sampled
from a task space: T ∼T . In multi-goal DRL, policies and re-
ward functions are conditioned on goals, which augments the
task-MDP with a goal space G [Schaul et al., 2015a].

Automatic Curriculum Learning mechanisms propose to
learn a task selection function D :H→T where H can con-
tain any information about past interactions. This is done with
the objective of maximizing a metric P computed over a dis-
tribution of target tasks Ttarget after N training steps:

Obj :max
D

∫
T∼Ttarget

PN
T dT, (1)

where PN
T quantifies the agent’s behavior on task T after N

training steps (e.g. cumulative reward, exploration score). In
that sense, ACL can be seen as a particular case of meta-
learning, whereD is learned along training to improve further
learning.

ACL Typology. We propose a classification of ACL mech-
anisms based on three dimensions:
1. Why use ACL? We review the different objectives that

ACL has been used for (Section 3).
2. What does ACL control? ACL can target different aspects

of the learning problem (e.g. environments, goals, reward
functions, Section 4)

3. What does ACL optimize? ACL mechanisms usually target
surrogate objectives (e.g. learning progress, diversity) to
alleviate the difficulty to optimize the main objective Obj
directly (Section 5).

3 Why use ACL?
ACL mechanisms can be used for different purposes that can
be seen as particular instantiations of the general objective
defined in Eq 1.

Improving performance on a restricted task set. Clas-
sical RL problems are about solving a given task, or a re-
stricted task set (e.g. which vary by their initial state). In
these simple settings, ACL has been used to improve sample
efficiency or asymptotical performance [Schaul et al., 2015b;
Horgan et al., 2018].

Solving hard tasks. Sometimes the target tasks cannot be
solved directly (e.g. too hard or sparse rewards). In that case,
ACL can be used to pose auxiliary tasks to the agent, grad-
ually guiding its learning trajectory from simple to difficult
tasks until the target tasks are solved. In recent works, ACL
was used to schedule DRL agents from simple mazes to hard
ones [Matiisen et al., 2017], or from close-to-success initial
states to challenging ones in robotic control scenarios [Flo-
rensa et al., 2017; Ivanovic et al., 2018] and video games
[Salimans and Chen, 2018]. Another line of work proposes

to use ACL to organize the exploration of the state space so
as to solve sparse reward problems [Bellemare et al., 2016;
Pathak et al., 2017; Shyam et al., 2018; Pathak et al., 2019;
Burda et al., 2019]. In these works, the performance reward is
augmented with an intrinsic reward guiding the agent towards
uncertain areas of the state space.
Training generalist agents. Generalist agents must be able
to solve tasks they have not encountered during training (e.g.
continuous task spaces or distinct training and testing set).
ACL can shape learning trajectories to improve generaliza-
tion, e.g. by avoiding unfeasible task subspaces [Portelas
et al., 2019]. ACL can also help agents to generalize from
simulation settings to the real world (Sim2Real) [OpenAI et
al., 2019; Mehta et al., 2019] or to maximize performance
and robustness in multi-agent settings via Self-Play [Sil-
ver et al., 2017; Pinto et al., 2017; Bansal et al., 2017;
Baker et al., 2019; Vinyals et al., 2019].
Training multi-goal agents. In multi-goal RL, agents are
trained and tested on tasks that vary by their goals. Be-
cause agents can control the goals they target, they learn a
behavioral repertoire through one or several goal-conditioned
policies. The adoption of ACL in this setting can improve
performance on a testing set of pre-defined goals. Recent
works demonstrated the benefits of using ACL in scenarios
such as multi-goal robotic arm manipulation [Andrychowicz
et al., 2017; Zhao and Tresp, 2018; Fournier et al., 2018;
Zhao and Tresp, 2019; Fang et al., 2019] or multi-goal
navigation [Sukhbaatar et al., 2017; Florensa et al., 2018;
Racanière et al., 2019; Cideron et al., 2019].
Organizing open-ended exploration. In some multi-goal
settings, the space of achievable goals is not known in ad-
vance. Agents must discover achievable goals as they explore
and learn how to represent and reach them. For this problem,
ACL can be used to organize the discovery and acquisition
of repertoires of robust and diverse behaviors, e.g. from vi-
sual observations [Eysenbach et al., 2018; Pong et al., 2019;
Jabri et al., 2019] or from natural language interactions with
social peers [Lair et al., 2019; Colas et al., 2020].

4 What does ACL control?
While on-policy DRL algorithms directly use training data
generated by the current behavioral policy, off-policy algo-
rithms can use trajectories collected from other sources. This
practically decouples data collection from data exploitation.
Hence, we organize this section into two categories: one re-
viewing ACL for data collection, the other ACL for data ex-
ploitation.

4.1 ACL for Data Collection
During data collection, ACL organizes the sequential presen-
tation of tasks as a function of the agent’s capabilities. To
do so, it generates tasks by acting on elements of task MDPs
(e.g. R,P,ρ0, see Fig. 1). The curriculum can be designed
on a discrete set of tasks or on a continuous task space. In
single-task problems, ACL can define a set of auxiliary tasks
to be used as stepping stones towards the resolution of the
main task. The following paragraphs organize the literature
according to the nature of the control exerted by ACL:
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Figure 1: ACL for data collection. ACL can control each elements
of task MDPs to shape the learning trajectories of agents. Given
metrics of the agent’s behavior like performance or visited states,
ACL methods generate new tasks adapted to the agent’s abilities.

Initial state (ρ0). The distribution of initial states ρ0 can
be controlled to modulate the difficulty of a task. Agents
start learning from states close to a given target (i.e. easier
tasks), then move towards harder tasks by gradually increas-
ing the distance between the initial states and the target. This
approach is especially effective to design auxiliary tasks for
complex control scenarios with sparse rewards [Florensa et
al., 2017; Ivanovic et al., 2018; Salimans and Chen, 2018].

Reward functions (R). ACL can be used for automatic re-
ward shaping: adapting the reward function R as a function
of the learning trajectory of the agent. In curiosity-based
approaches especially, an internal reward function guides
agents towards areas associated with high uncertainty to fos-
ter exploration [Bellemare et al., 2016; Pathak et al., 2017;
Shyam et al., 2018; Pathak et al., 2019; Burda et al., 2019].
As the agent explores, uncertain areas –and thus the reward
function– change, which automatically devises a learning cur-
riculum guiding the exploration of the state space. In Fournier
et al. [2018], an ACL mechanism controls the tolerance in a
goal reaching task. Starting with a low accuracy requirement,
it gradually and automatically shifts towards stronger accu-
racy requirements as the agent progresses. In Eysenbach et
al. [2018] and Jabri et al. [2019], authors propose to learn
a skill space in unsupervised settings (from state space and
pixels respectively), from which are derived reward functions
promoting both behavioral diversity and skill separation.

Goals (G). In multi-goal DRL, ACL techniques can be ap-
plied to order the selection of goals from discrete sets [Lair et
al., 2019], continuous goal spaces [Sukhbaatar et al., 2017;
Florensa et al., 2018; Pong et al., 2019; Racanière et al.,
2019] or even sets of different goal spaces [Colas et al.,
2019]. Although goal spaces are usually pre-defined, recent
work proposed to apply ACL on a goal space learned from
pixels using a generative model [Pong et al., 2019].

Environments (S,P). ACL has been successfully applied
to organize the selection of environments from a discrete
set, e.g. to choose among Minecraft mazes [Matiisen et
al., 2017] or Sonic the Hedgehog levels [Mysore et al.,
2018]. A more general –and arguably more powerful– ap-
proach is to leverage parametric Procedural Content Genera-
tion (PCG) techniques [Risi and Togelius, 2019] to generate
rich task spaces. In that case, ACL allows to detect relevant
niches of progress [OpenAI et al., 2019; Portelas et al., 2019;

Mehta et al., 2019].

Opponents (S,P). Self-play algorithms train agents
against present or past versions of themselves [Silver et al.,
2017; Bansal et al., 2017; Vinyals et al., 2019; Baker et al.,
2019]. The set of opponents directly maps to a set of tasks, as
different opponents results in different transition functions P
and possibly state spaces S . Self-play can thus be seen as a
form of ACL, where the sequence of opponents (i.e. tasks)
is organized to maximize performance and robustness. In
single-agent settings, an adversary policy can be trained to
perturb the main agent [Pinto et al., 2017].

4.2 ACL for Data Exploitation
ACL can also be used in the data exploitation stage, by act-
ing on training data previously collected and stored in a re-
play memory. It enables the agent to “mentally experience
the effects of its actions without actually executing them”, a
technique known as experience replay [Lin, 1992]. At the
data exploitation level, ACL can exert two types of control
on the distribution of training data: transition selection and
transition modification.

Transition selection (S×A). Inspired from the prioritized
sweeping technique that organized the order of updates in
planning methods [Moore and Atkeson, 1993], Schaul et
al. [2015b] introduced prioritized experience replay (PER)
for model-free RL to bias the selection of transitions for pol-
icy updates, as some transitions might be more informative
than others. Different ACL methods propose different met-
rics to evaluate the importance of each transition [Schaul
et al., 2015b; Zhao and Tresp, 2018; Colas et al., 2019;
Zhao and Tresp, 2019; Lair et al., 2019; Colas et al., 2020].

Transition modification (G). In multi-goal settings, Hind-
sight Experience Replay (HER) proposes to reinterpret tra-
jectories collected with a given target goal with respect to a
different goal [Andrychowicz et al., 2017]. In practice, HER
modifies transitions by substituting target goals g with one
of the outcomes g′ achieved later in the trajectory, as well as
the corresponding reward r′=Rg′(s,a). By explicitly bias-
ing goal substitution to increase the probability of sampling
rewarded transitions, HER shifts the training data distribu-
tion from simpler goals (achieved now) towards more com-
plex goals as the agent makes progress. Substitute goal selec-
tion can be guided by other ACL mechanisms (e.g. favoring
diversity [Fang et al., 2019; Cideron et al., 2019]).

5 What Does ACL Optimize?
Objectives such as the average performance on a set of test-
ing tasks after N training steps can be difficult to optimize
directly. To alleviate this difficulty, ACL methods use a vari-
ety of surrogate objectives.

Reward. As DRL algorithms learn from reward signals, re-
warded transitions are usually considered as more informative
than others, especially in sparse reward problems. In such
problems, ACL methods that act on transition selection may
artificially increase the ratio of high versus low rewards in the
batches of transitions used for policy updates [Narasimhan et
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Algorithm Why use ACL? What does ACL control? What does ACL optimize?

ACL for Data Collection (§ 4.1):

ADR (OpenAI) [OpenAI et al., 2019] Generalization Environments (S,P) (PCG) Intermediate difficulty
ADR (Mila) [Mehta et al., 2019] Generalization Environments (P) (PCG) Intermediate diff. & Diversity
ALP-GMM [Portelas et al., 2019] Generalization Environments (S) (PCG) LP
RARL [Pinto et al., 2017] Generalization Opponents (P) ARM
AlphaGO Zero [Silver et al., 2017] Generalization Opponents (P) ARM
Hide&Seek [Baker et al., 2019] Generalization Opponents (P) ARM
AlphaStar [Vinyals et al., 2019] Generalization Opponents (P) ARM & Diversity
Competitive SP [Bansal et al., 2017] Generalization Opponents (P) ARM & Diversity
RgC [Mysore et al., 2018] Generalization Environments (S) (DS) LP
RC [Florensa et al., 2017] Hard Task Initial states (ρ0) Intermediate difficulty
1-demo RC [Salimans and Chen, 2018] Hard Task Initial states (ρ0) Intermediate difficulty
Count-based [Bellemare et al., 2016] Hard Task Reward functions (R) Diversity
RND [Burda et al., 2019] Hard Task Reward functions (R) Surprise (model error)
ICM [Pathak et al., 2017] Hard Task Reward functions (R) Surprise (model error)
Disagreement [Pathak et al., 2019] Hard Task Reward functions (R) Surprise (model disagreement)
MAX [Shyam et al., 2018] Hard Task Reward functions (R) Surprise (model disagreement)
BaRC [Ivanovic et al., 2018] Hard Task Initial states (ρ0) Intermediate difficulty
TSCL [Matiisen et al., 2017] Hard Task Environments (S) (DS) LP
Acc-based CL [Fournier et al., 2018] Multi-Goal Reward function (R) LP
Asym. SP [Sukhbaatar et al., 2017] Multi-Goal Goals (G), initial states (ρ0) Intermediate difficulty
GoalGAN [Florensa et al., 2018] Multi-Goal Goals (G) Intermediate difficulty
Setter-Solver [Racanière et al., 2019] Multi-Goal Goals (G) Intermediate difficulty
CURIOUS [Colas et al., 2019] Multi-Goal Goals (G) LP
Skew-fit [Pong et al., 2019] Open-Ended Explo. Goals (G) (from pixels) Diversity
DIAYN [Eysenbach et al., 2018] Open-Ended Explo. Reward functions (R) Diversity
CARML [Jabri et al., 2019] Open-Ended Explo. Reward functions (R) Diversity
LE2 [Lair et al., 2019] Open-Ended Explo. Goals (G) Reward & Diversity

ACL for Data Exploitation (§ 4.2):

Prioritized ER [Schaul et al., 2015b] Performance boost Transition selection (S×A) Surprise (TD-error)
CURIOUS [Colas et al., 2019] Multi-goal Trans. select. & mod. (S×A,G) LP & Energy
HER [Andrychowicz et al., 2017] Multi-goal Transition modification (G) Reward
HER-curriculum [Fang et al., 2019] Multi-goal Transition modification (G) Diversity
Language HER [Cideron et al., 2019] Multi-goal Transition modification (G) Reward
Curiosity Prio. [Zhao and Tresp, 2019] Multi-goal Transition selection (S×A) Diversity
En. Based ER [Zhao and Tresp, 2018] Multi-goal Transition selection (S×A) Energy
LE2 [Lair et al., 2019] Open-Ended Explo. Trans. select. & mod. (S×A,G) Reward
IMAGINE [Colas et al., 2020] Open-Ended Explo. Trans. select. & mod. (S×A,G) Reward

Table 1: Classification of the surveyed papers. The classification is organized along the three dimensions defined in the above text. In Why use
ACL, we only report the main objective of each work. When ACL controls the selection of environments, we precise whether it is selecting
them from a discrete set (DS) or through parametric Procedural Content Generation (PCG). We abbreviate adversarial reward maximization
by ARM and learning progress by LP.

al., 2015; Jaderberg et al., 2016; Colas et al., 2020]. In multi-
goal RL settings where some goals might be much harder
than others, this strategy can be used to balance the proportion
of positive rewards for each of the goals [Colas et al., 2019;
Lair et al., 2019]. Transition modification methods favor re-
wards as well, substituting goals to increase the probability of
observing rewarded transitions [Andrychowicz et al., 2017;
Cideron et al., 2019; Lair et al., 2019; Colas et al., 2020].
In data collection however, adapting training distributions to-
wards more rewarded experience leads the agent to focus on
tasks that are already solved. Because collecting data from
already solved tasks hinders learning, data collection ACL
methods rather focus on other surrogate objectives.

Intermediate difficulty. A more natural surrogate objec-
tive for data collection is intermediate difficulty. Intuitively,
agents should target tasks that are neither too easy (already
solved) nor too difficult (unsolvable) to maximize their learn-
ing progress. Intermediate difficulty has been used to adapt
the distribution of initial states from which to perform a
hard task [Florensa et al., 2017; Salimans and Chen, 2018;
Ivanovic et al., 2018]. This objective is also implemented
in GoalGAN, where a curriculum generator based on a Gen-
erative Adversarial Network is trained to propose goals for
which the agent reaches intermediate performance [Florensa
et al., 2018]. Racanière et al. [2019] further introduced a
judge network trained to predict the feasibility of a given goal
for the current learner. Instead of labelling tasks with an inter-
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mediate level of difficulty as in GoalGAN, this Setter-Solver
model generates goals associated to a random feasibility uni-
formly sampled from [0,1]. The type of goals varies as the
agent progresses, but the agent is always asked to perform
goals sampled from a distribution balanced in terms of fea-
sibility. In Sukhbaatar et al. [2017], tasks are generated by
an RL policy trained to propose either goals or initial states
so that the resulting navigation task is of intermediate diffi-
culty w.r.t. the current agent. Intermediate difficulty ACL has
also been driving successes in Sim2Real applications, where
it sequences domain randomizations to train policies that are
robust enough to generalize from simulators to real-world
robots [Mehta et al., 2019; OpenAI et al., 2019]. OpenAI et
al. [2019] trains a robotic hand control policy to solve a Ru-
bik’s cube by automatically adjusting the task distribution so
that the agent achieves decent performance while still being
challenged.

Learning progress. The Obj objective of ACL meth-
ods can be seen as the maximization of a global learning
progress: the difference between the final score

∫
T∼T P

N
T dT

and the initial score
∫
T∼T P

0
T dT . To approximate this com-

plex objective, measures of competence learning progress
(LP) localized in space and time were proposed in earlier
developmental robotics works [Baranes and Oudeyer, 2013;
Forestier et al., 2017]. Like Intermediate difficulty, maximiz-
ing LP drives learners to practice tasks that are neither too
easy nor too difficult, but LP does not require a threshold to
define what is ”intermediate” and is robust to tasks with inter-
mediate scores but where the agent cannot improve. LP max-
imization is usually framed as a multi-armed bandit (MAB)
problem where tasks are arms and their LP measures are as-
sociated values. Maximizing LP values was shown optimal
under the assumption of concave learning profiles [Lopes and
Oudeyer, 2012]. Both Matiisen et al. [2017] and Mysore et
al. [2018] measure LP as the estimated derivative of the per-
formance for each task in a discrete set (Minecraft mazes
and Sonic the Hedgehog levels respectively) and apply a
MAB algorithm to automatically build a curriculum for their
learning agents. At a higher level, CURIOUS uses abso-
lute LP to select goal spaces to sample from in a simulated
robotic arm setup [Colas et al., 2019] (absolute LP enables
to redirect learning towards tasks that were forgotten or that
changed). There, absolute LP is also used to bias the sam-
pling of transition used for policy updates towards high-LP
goals. ALP-GMM uses absolute LP to organize the presenta-
tion of procedurally-generated Bipedal-Walker environments
sampled from a continuous task space through a stochastic
parameterization [Portelas et al., 2019]. They leverage a
Gaussian Mixture Model to recover a MAB setup over the
continuous task space. LP can also be used to guide the
choice of accuracy requirements in a reaching task [Fournier
et al., 2018], or to train a replay policy via RL to sample tran-
sitions for policy updates [Zha et al., 2019].

Diversity. Some ACL methods choose to maximize mea-
sures of diversity (also called novelty or low density). In
multi-goal settings for example, ACL might favor goals from
low-density areas either as targets [Pong et al., 2019] or as
substitute goals for data exploitation [Fang et al., 2019]. Sim-

ilarly, Zhao and Tresp [2019] biases the sampling of trajec-
tories falling into low density areas of the trajectory space.
In single-task RL, count-based approaches introduce internal
reward functions as decreasing functions of the state visita-
tion count, guiding agent towards rarely visited areas of the
state space [Bellemare et al., 2016]. Through a variational
expectation-maximization framework, Jabri et al. [2019] pro-
pose to alternatively update a latent skill representation from
experimental data (as in Eysenbach et al. [2018]) and to meta-
learn a policy to adapt quickly to tasks constructed by deriv-
ing a reward function from sampled skills. Other algorithms
do not optimize directly for diversity but use heuristics to
maintain it. For instance, Portelas et al. [2019] maintains
exploration by using a residual uniform task sampling and
Bansal et al. [2017] sample opponents from past versions of
different policies to maintain diversity.

Surprise. Some ACL methods train transition models and
compute intrinsic rewards based on their prediction er-
rors [Pathak et al., 2017; Burda et al., 2019] or based on the
disagreement (variance) between several models from an en-
semble [Shyam et al., 2018; Pathak et al., 2019]. The gen-
eral idea is that models tend to give bad prediction (or dis-
agree) for states rarely visited, thus inducing a bias towards
less visited states. However, a model might show high predic-
tion errors on stochastic parts of the environment (TV prob-
lem [Pathak et al., 2017]), a phenomenon that does not appear
with model disagreement, as all models of the ensemble even-
tually learn to predict the (same) mean prediction [Pathak et
al., 2019]. Other works bias the sampling of transitions for
policy update depending on their temporal-difference error
(TD-error), i.e. the difference between the transition’s value
and its next-step bootstrap estimation [Schaul et al., 2015b;
Horgan et al., 2018]. Whether the error computation involves
value models or transition models, ACL mechanisms favor
states related to maximal surprise, i.e. a maximal difference
between the expected (model prediction) and the truth.

Energy. In the data exploitation phase of multi-goal set-
tings, Zhao and Tresp [2018] prioritize transitions from high-
energy trajectories (e.g. kinetic energy) while Colas et
al. [2019] prioritize transitions where the object relevant to
the goal moved (e.g. cube movement in a cube pushing task).

Adversarial reward maximization (ARM). Self-Play is a
form of ACL which optimizes agents’ performance when op-
posed to current or past versions of themselves, an objective
that we call adversarial reward maximization (ARM) [Her-
nandez et al., 2019]. While agents from Silver et al. [2017]
and Baker et al. [2019] always oppose copies of themselves,
Bansal et al. [2017] train several policies in parallel and fill
a pool of opponents made of current and past versions of all
policies. This maintains a diversity of opponents, which helps
to fight catastrophic forgetting and to improve robustness. In
the multi-agent game Starcraft II, Vinyals et al. [2019] train
three main policies in parallel (one for each of the available
player types). They maintain a league of opponents com-
posed of current and past versions of both the three main
policies and additional adversary policies. Opponents are not
selected at random but to be challenging (as measured by win-
ning rates).
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6 Discussion
The bigger picture. In this survey, we unify the wide range
of ACL mechanisms used in symbiosis with DRL under a
common framework. ACL mechanisms are used with a par-
ticular goal in mind (e.g. organizing exploration, solving hard
tasks, etc. § 3). It controls a particular element of task MDPs
(e.g. S,R,ρ0, § 4) and maximizes a surrogate objective to
achieve its goal (e.g. diversity, learning progress, § 5). Ta-
ble 1 organizes the main works surveyed here along these
three dimensions. Both previous sections and Table 1 present
what has been implemented in the past, and thus, by contrast,
highlight potential new avenues for ACL.
Expanding the set of ACL targets. Inspired by the matura-
tional mechanisms at play in human infants, Elman [1993]
proposed to gradually expand the working memory of a
recurrent model in a word-to-word natural language pro-
cessing task. The idea of changing the properties of the
agent (here its memory) was also studied in developmen-
tal robotics [Baranes and Oudeyer, 2011], policy distillation
methods [Czarnecki et al., 2018; Czarnecki et al., 2019] and
evolutionary approaches [Ha, 2019] but is absent from the
ACL-DRL literature. ACL mechanisms could indeed be used
to control the agent’s body (S,P), its action space (how it acts
in the world, A), its observation space (how it perceives the
world, S), its learning capacities (e.g. capacities of the mem-
ory, or the controller) or the way it perceives time (controlling
discount factors [François-Lavet et al., 2015]).
Combining approaches. Many combinations of previously
defined ACL mechanisms remain to be investigated. Could
we use LP to optimize the selection of opponents in self-
play approaches? To drive goal selection in learned goal
spaces (e.g. Laversanne-Finot et al. [2018], population-
based)? Could we train an adversarial domain generator to
robustify policies trained for Sim2Real applications?

On the need of systematic ACL studies. Given the posi-
tive impact that ACL mechanisms can have in complex learn-
ing scenarios, one can only deplore the lack of comparative
studies and standard benchmark environments. Besides, al-
though empirical results advocate for their use, a theoretical
understanding of ACL mechanisms is still missing. Although
there have been attempts to frame CL in supervised settings
[Bengio et al., 2009; Hacohen and Weinshall, 2019], more
work is needed to see whether such considerations hold in
DRL scenarios.

ACL as a step towards open-ended learning agents. Alan
Turing famously wrote “Instead of trying to produce a pro-
gramme to simulate the adult mind, why not rather try to
produce one which simulates the child’s?” [Turing, 1950].
The idea of starting with a simple machine and to enable it
to learn autonomously is the cornerstone of developmental
robotics but is rarely considered in DRL [Colas et al., 2020;
Eysenbach et al., 2018; Jabri et al., 2019]. Because they
actively organize learning trajectories as a function of the
agent’s properties, ACL mechanisms could prove extremely
useful in this quest. We could imagine a learning architecture
leveraging ACL mechanisms to control many aspects of the
learning odyssey, guiding agents from their simple original
state towards fully capable agents able to reach a multiplicity

of goals. As we saw in this survey, these ACL mechanisms
could control the development of the agent’s body and capa-
bilities (motor actions, sensory apparatus), organize the ex-
ploratory behavior towards tasks where agents learn the most
(maximization of information gain, competence progress) or
guide acquisitions of behavioral repertoires.
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