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Abstract
Artificial intelligent systems are changing every as-
pect of our daily life. In the past decades, nu-
merous approaches have been developed to char-
acterize user behavior, in order to deliver person-
alized experience to users in scenarios like on-
line shopping or movie recommendation. This pa-
per presents a comprehensive survey of recent ad-
vances in user modeling from the perspective of
representation learning. In particular, we formulate
user modeling as a process of learning latent rep-
resentations for users. We discuss both the static
and sequential representation learning methods for
the purpose of user modeling, and review represen-
tative approaches in each category, such as matrix
factorization, deep collaborative filtering, and re-
current neural networks. Both shallow and deep
learning methods are reviewed and discussed. Fi-
nally, we conclude this survey and discuss a num-
ber of open research problems that would inspire
further research in this field.

1 Introduction
The concept of user modeling has been mainly discussed in
the context of human–computer interaction (HCI), which de-
scribes the process of building up and modifying a conceptual
understanding of the user. The major task of user modeling is
customization and adaptation of systems to the user’s specific
needs. In recent years, user modeling has been extended to a
wide range of domains, such as response prediction in display
advertising, conversion prediction in online shopping, movie
recommendation in video platforms, and student performance
prediction in massive open online courses (MOOC).

User modeling is a very broad topic, and a large number
of user modeling approaches have been proposed in the past
decades. The existing approaches can be interpreted through
various dimensions. In this survey, we analyze the user mod-
eling problem from the perspective of representation learn-
ing, and categorize existing work into multiple groups ac-
cordingly. We first present the problem statement of user
modeling as follows.
Problem Statement. Given a set of users, each user is asso-
ciated with a number of attributes (either numerical or cate-

gorical values). The task of user modeling is to learn a latent
representation for each user, with the help of items, item fea-
tures and/or user-item response matrix, with applications to
response prediction, recommendation, etc.

Representation learning could be used to extract meaning-
ful latent features from either static data (e.g., tabular data)
or sequential data (e.g., time-series data). In user model-
ing applications, user data are often organized in structured
static datasets (e.g., user-movie rating matrix) or unstructured
sequences (e.g., the purchase history of customers). More-
over, representation learning could be achieved by either shal-
low models or deep models. On one hand, traditional shal-
low learning models usually rely on statistical assumptions
and learn low-dimensional linear or nonlinear subspaces from
high-dimensional data space. On the other hand, deep learn-
ing methods employ neural networks with multiple layers to
extract latent information from input static/sequential data.
Accordingly, existing user modeling approaches can be iden-
tified in the intersections of two sets of dimensions, including
static/sequential and shallow/deep.

In this survey, we focus on user modeling methods that ex-
plicitly consider learning latent representations for users. We
will first introduce the static representation learning methods
for user modeling, including shallow learning methods like
matrix factorization and deep learning methods such as deep
collaborative filtering. The advantages and disadvantages of
these approaches will be analyzed. We then review the se-
quential representation learning methods, such as the tensor
based methods and recurrent neural networks, in different
applications. Unlike static methods, the sequential learning
methods consider the evolving of user behavior over time,
which have to deal with more challenging issues. Model
comparisons and discussions will be provided. Due to the
space limit, we cannot go over each category of methods in
very detail, but mainly focus on the high-level connections
among these categories. For each category, we will choose
one or two representative methods and describe their motiva-
tions and technical approaches. Finally, we discuss a number
of open problems and propose some potential future research
directions that would inspire researchers and practitioners in
the field.

Existing surveys on relevant topics usually focus on one
particular application domain, such as recommender system,
but they cannot reveal the interrelationships of various user
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modeling methods that are widely adopted in multiple do-
mains. To our best knowledge, our paper is the first sur-
vey that focuses on the general user modeling task from the
unique perspective of representation learning.

2 Static Representation Learning
The importance of accurate user modeling techniques moti-
vated by wide-ranging applications has fueled a great amount
of academic as well as industrial research in this area. In
static user modeling, representation learning methods aim to
extract latent user representations from static data, such as
user-item interaction matrix or user-advertisement response
matrix. Temporal information is not available (or not consid-
ered) in this setting. Static user modeling is a simplified but
very commonly used problem setting in literature.

2.1 Factorization Methods
The most representative approach for static representation
learning might be matrix factorization, which has been rec-
ognized as an effective solution to collaborative filtering and
applied to many recommender systems. Matrix factorization
(MF) is a type of latent factor models, which leads to the best
performance at the Netflix competition in 2007 [Koren et al.,
2009]. There are mainly two types of factorization methods,
which require different inputs for model training.

The first category of factorization methods only requires
a user response matrix (i.e., interactions between users and
items) as input, and learn latent features for users (and items).
Let X ∈ RN×M denote a user response matrix, from N
users to M items. The items shall be specified in different
applications. For instance, the items correspond to movies
in movie recommendation and correspond to ads in display
advertising. Each row of X corresponds to a user, and each
column corresponds to an item. The element Xij denotes
the response from the i-th user to the j-th item, such as
movie rating. X could be very sparse, as we can only ob-
serve responses from users to a subset of items. Usually,
Xij ∈ [0, C], where C is the maximum value in the response
(e.g., highest movie rating). Matrix factorization based meth-
ods [Koren et al., 2009] usually decompose the response ma-
trixX into two latent factor matricesU and V , i.e.,X ≈ UV ,
U ∈ RN×K , V ∈ RK×M , where K is the number of latent
factors and it’s usually much smaller than N and M .

The objective function of standard matrix factorization is:

arg min
U,V

f(U, V ) = ‖I � (X − UV T)‖2F

+ λ(‖U‖2F + ‖V ‖2F),
(1)

where I is an indicator matrix with Iij = 1 if Xij is a valid
value and 0 otherwise, � denotes the Hadamard product (i.e.,
element-wise product), and λ is a trade-off parameter. The
first term in (1) denotes the approximation errors, and the last
two terms are regularizations used to prevent overfitting. The
probabilistic explanation of the standard matrix factorization
model is provided in [Mnih and Salakhutdinov, 2008].

Although promising, the conventional matrix factorization
methods suffer from the problem of cold-start, i.e. what rec-
ommendations to make when a new user/item arrives in the

system. Another problem often presented in many real world
applications is data sparsity or reduced coverage.

The second category of factorization methods tries to
address the aforementioned issues in conventional matrix
factorization by incorporating side information to learn la-
tent factors. Some methods have shown promising perfor-
mance in collaborative filtering by following such a strat-
egy. Porteous et al. proposed a Bayesian matrix factoriza-
tion (BMF) approach with side information and Dirichlet pro-
cess mixtures [Porteous et al., 2010]. Hu et al. proposed
a cross-domain triadic factorization (CDTF) method [Hu et
al., 2013], which leverages the information from other do-
mains. Factorization machine (FM) is another representa-
tive model in this category, which has been widely applied
in practice [Rendle, 2012]. FM can be considered as a gen-
eral framework of matrix factorization, which has achieved
remarkable performance in various regression and classifica-
tion tasks and has been deployed in many industrial systems.
It provides a general formulation to explicitly model the pair-
wise interactions of user features and item features. The pre-
dictive model of FM is defined as:

f(w,G|x) = w0 +
∑
i=1

dwixi +
d∑

i=1

d∑
j=i+1

g>i gjxixj , (2)

where w and G = [g1, g2, · · · , gd] are model parameters. x
contains user features, item features, and other available side
information. gi ∈ Rm denotes the m-dimensional embed-
ding of the i-th feature in x. Although FM does not directly
generate embedding vectors for users, the feature embeddings
gi can be converted to user embedding and employed for user
modeling purposes.

A comprehensive discussion of matrix factorization based
user modeling approaches can be found in [Koren and Bell,
2015]. Beyond recommender systems, the matrix factoriza-
tion approach has been applied to other areas such as ed-
ucational assessment, with proper incorporation of domain
knowledge. Recently, Jing et al. proposed a contextual col-
laborative filtering (CCF) approach for student response pre-
diction in mixed-format tests [Jing and Li, 2018].

Remarks. Factorization methods are simple yet effective,
which are easy to be implemented and deployed. Methods
like standard matrix factorization and factorization machines
have been widely employed in many commercial systems.
However, these methods usually have strong statistical as-
sumptions on data distribution, and have limited capability
in modeling complex or dynamic user behavior data.

2.2 Deep Neural Networks
Developing customized deep neural networks for the task of
user modeling has been an emerging topic in the past decade.
Similar to factorization methods introduced before, most ex-
isting deep neural network approaches usually focus on the
problem of collaborative filtering, in which the user model-
ing problem is defined as learning hidden representations for
users. In the following, we present three categories of deep
neural network methods for user modeling, including the
restricted Boltzmann machine based methods, auto-encoder
based methods, and feed-forward network based methods.
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The first category is restricted Boltzmann machine (RBM)
based methods. Salakhutdinov et al. [Salakhutdinov et al.,
2007] might be the first to apply RBM to the task of collabo-
rative filtering. They modified the restricted Boltzmann ma-
chines as a two-layer undirected graphical model consisting
of binary hidden units and softmax visible units for collabora-
tive filtering. They further designed an efficient learning pro-
cedure called contrastive divergence to maximize an approxi-
mation to the true likelihood function. A conditional RBM
model and inference procedures are also proposed. They
demonstrated the model performance on the Netflix dataset
for movie recommendation. Following this line, Truyen et
al. [Truyen et al., 2009] proposed ordinal Boltzmann ma-
chines for collaborative filtering. They studied the parame-
terizations for handling the ordinal nature of ratings, and pre-
sented the integration of multiple Boltzmann machines for
user-based and item-based processes. Wang et al. [Wang and
Wang, 2014] utilized deep belief nets (DBN) for music rec-
ommendation, which unifies feature extraction and recom-
mendation of songs in a joint framework. They assumed that
a user has a feature vector βu drawn from a Gaussian prior
and each songs has a feature vector xv . They automatically
learned the feature vectors of the songs using a deep belief
network which is a generative probabilistic graphical model
with hidden nodes and observation. The authors used stacked
layers of Restricted Boltzmann Machines for pretraining in
an unsupervised fashion, and then employed the Maximum
Likelihood Estimation (MLE) for supervised learning.

The second category is auto-encoder based methods.
These methods mainly aim to learn latent factors from con-
tent information such as raw features of audio or documents.
Wang et al. [Wang et al., 2015] proposed a hierarchical
Bayesian model called collaborative deep learning (CDL)
which tightly couples stacked denoising auto-encoders (SDA)
and collaborative topic regression (CTR). Li et al. proposed a
general deep collaborative filtering (DCF) framework, which
unifies the deep learning models with matrix factorization
based collaborative filtering [Li et al., 2015a]. DCF is a hy-
brid model, which makes use of both user response matrix
and side information and bridges together matrix factoriza-
tion and deep auto-encoders. Given a user-item rating matrix
R, the user side information X and the item side information
Y , DCF jointly decomposes R and learns latent factor matri-
ces (i.e., U , V ) from ratings and side information (i.e., X and
Y ) through the following formulation:

arg min
U,V

l(R,U, V ) + β(‖U‖2F + ‖V ‖2F)

+γL(X,U) + δL(Y, V ),
(3)

where β, γ and δ are trade-off parameters. There are two
key components in the DCF framework: (1) the function
l(R,U, V ) for decomposing the rating matrix R into the two
latent matrices; (2) the functions L(X,U) and L(Y, V ) that
connect the user/item contextual features with the latent fac-
tors. The first component derived through matrix factoriza-
tion extracts latent knowledge from the rating matrix. The
second component devised using deep learning models es-
tablishes connections of the side information with the latent
factors. In particular, Li et al. presented an instantiation of
DCF by combining probabilistic matrix factorization (PMF)

with marginalized denoising auto-encoders (mDA) [Li et al.,
2015a]. PMF is a widely applied CF approach with excel-
lent performance, and mDA is a powerful tool in extracting
high-level features from raw inputs. Empirical evaluations on
movie recommendation and book recommendation datasets
show that the combination of the two leverages their benefits
for learning even richer models.

The third category is feed-forward neural network meth-
ods. Oord et al. [Oord et al., 2013] addressed the music
recommendation problem using the convolutional neural net-
works. They first conducted a weighted matrix factorization
to handle implicit feedback and obtained latent factors for all
songs. After that, they used deep neural networks to map au-
dio content to those latent factors. In particular, they extracted
local features from audio signals and aggregated them into a
bag-of-words representation. Finally, the deep convolutional
network was employed to map this feature representation to
the latent factors. They tested their algorithm on the Million
song dataset and showed that their model improved the rec-
ommendation performance by augmenting the audio signals.
He et al. proposed a neural collaborative filtering (NCF) ap-
proach [He et al., 2017], which replaces the inner product
in collaborative filtering with a neural network architecture
that can learn an arbitrary function from data. The predictive
model of NCF is formulated as:

R̂ij = f(U>xi, V
>yj |U, V,Θ), (4)

where R̂ij denotes the response from the i-th user to the j-
th item, xi is the feature vector for the i-th user, yj is the
feature vector for the j-th item, and Θ denotes the model pa-
rameters of function f . U and V denote the embeddings of
users and items, respectively. The function f(·) can be im-
plemented as a multi-layer feed-forward neural network. The
NCF framework also allows the combination of generalized
matrix factorization and multi-layer perceptron.

In [He and Chua, 2017], a neural factorization machine
(NFM) is proposed for sparse predictive analytics. NFM ex-
tends the idea of factorization machines (FM) to the setting
of deep neural networks, which models both second-order
and higher-order feature interactions. Zhang et al. presented
a neural user-item coupling learning for collaborative filter-
ing [Zhang et al., 2018].

Deep learning based static user modeling, especially the
deep collaborative filtering approach, has been rapidly devel-
oped in recent years. Readers could refer to an excellent sur-
vey on this topic for more information [Zhang et al., 2019].

Remarks. Compared with factorization methods, the deep
neural networks based methods have a better capability in
terms of discovering complex feature interactions, but they
still face some challenging issues. First, deep user model-
ing approaches have to deal with user data which are often
discrete or categorical values. How to learn effective embed-
dings for categorical features is still an open problem. Sec-
ond, it is usually difficult to explain the internal mechanisms
of current deep user modeling methods. Designing explain-
able deep learning methods for user modeling would further
promote the applications of user modeling techniques.
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3 Sequential Representation Learning
The static user modeling discussed in Section 2 makes a sim-
ple assumption that user data and user preference are static
observations. In reality, however, users have dynamic behav-
iors. A key observation is that the behavior and preference
of users may change over time. For example, in the scenario
of online shopping, if a user has already purchased an item
in the previous week, it is unlikely that he/she will purchase
the same item again in the next week. Sequential user model-
ing approaches have been developed to capture the dynamic
behavior of users and learn robust user representations. In
the following, we will discuss dynamic factorization methods
and deep sequential learning methods.

3.1 Dynamic Factorization Methods
Factorization methods discussed in Section 2.1 can be ex-
tended to dynamic settings in two ways, including dynamic
matrix factorization and tensor decomposition. The former
one focuses on factorizing user-item interaction matrix at
each time step, but incorporates temporal constraints. The
latter one directly represents sequential response data as a
high-order tensor, and factorizes tensors to obtain latent em-
beddings for users and items.

Dynamic Matrix Factorization
User modeling techniques considering temporal dynamics
was first developed using collaborative filtering in [Koren,
2009]. Koenigstein et al. utilized the temporal informa-
tion for music recommendation [Koenigstein et al., 2011].
In [Chua et al., 2013], a dynamic matrix factorization method
was presented to model the temporal adoption effects in col-
laborative filtering. Devooght et al. introduced a novel dy-
namic matrix factorization framework for collaborative fil-
tering, which allows to set an explicit prior to unknown
values in rating matrix [Devooght et al., 2015]. In addi-
tion to the consideration of temporal dynamics, it has been
proven that modeling several related tasks jointly will fur-
ther boost the model performance. In [Li et al., 2015b;
Li and Fu, 2017], a dynamic collective matrix factorization
(DCMF) approach is proposed to deal with two user mod-
eling tasks jointly, including click prediction and purchase
prediction. It extends the collective matrix factorization for-
mulation, and focuses on the application of user behavior pre-
diction in digital marketing.

We briefly describe the idea of DCMF as an example of dy-
namic matrix factorization methods for user modeling. Given
T pre-defined time slices t ∈ {1, 2, · · · , T}, Ct and Dt are
used to denote the click responses and purchase activities in
the time slice t, respectively. Since the temporal dynamics
are ignored in standard matrix factorization, it can only utilize
all the previous data (i.e., {C1, · · · , Ct} and {D1, · · · , Dt})
for training, and then predict Dt+1. As a result, the size
of training data will increase significantly over time, which
leads to a heavy computational burden. By exploiting the
temporal relationships between click response and purchase
events, the purchase events in time t + 1 are mainly related
to the click events in time t and hence the dynamic model
needs to account for that. Furthermore, DCMF ensures that
the latent features of users do not dramatically change in a

short period of time, as in reality the user preferences would
evolve smoothly. To address this concern, DCMF leverages
the latent features of the users learned in time t − 1 (i.e.,
U t−1) at time t (t > 1). Specifically, a regularization term,
U t ≈ U t−1M is designed to account for the drift in user pref-
erences, where U t−1 is the latent features of users learned
from the previous time slice t−1. M is a transition matrix of
users’ behavior, which tries to capture the mappings between
users’ behavior in two successive time slices. The intuition is
that users’ intention on purchasing items should be smoothly
transited over time. Then, the objective function of DCMF is:

min
Ut,V t,P t,M

f(U t, V t, P t,M) = α‖WC � (Ct − U tV tT)‖2F

+ (1− α)‖WD � (Dt − U tP tT)‖2F
+ λ1‖U t − U t−1M‖2F
+ λ2(‖U t‖2F + ‖V t‖2F + ‖P t‖2F + ‖M‖2F),

(5)
where the latent features U t−1 is given, λ1 and λ2 are trade-
off parameters. The last regularization term ‖M‖2F is used to
control the complexity of model.

Tensor Factorization
Temporal user response data can be represented as a high-
order tensor, by considering user, item, timestamps and other
available factors as multiple dimensions. In this way, ten-
sor factorization methods can be used to learn user em-
beddings. In [Karatzoglou et al., 2010], a multiverse rec-
ommendation method is proposed, which considers differ-
ent types of context in the tensor representation, and high-
order singular value decomposition (SVD) is performed to
get latent factors. Furthermore, Bhargava et al. proposed
a multi-dimensional collaborative recommendation approach
for Who (User), What(Activity), When (Time) and Where
(Location), by using tensor factorization on sparse user-
generated data [Bhargava et al., 2015]. These approaches
have compact and unified formulations, but also require high
computational costs due to SVD operations.

Remarks. Dynamic factorization methods present practical
solutions to modeling sequential user behavior data, and they
demonstrate better flexibility than static user modeling ap-
proaches. However, they require pre-defined constraints to
incorporate temporal smoothness constraints, and have lim-
ited capability in modeling long-term temporal dependencies
in sequential data.

3.2 Deep Sequential Learning

In recent years, deep sequential learning methods based on
recurrent neural networks have been successfully applied to
a wide range of sequential data, such as speech and videos.
For user modeling, a number of recurrent neural networks
based approaches have been proposed to learn latent user em-
beddings from structured or unstructured user behavior data.
Most of existing methods focus on modeling user behavior in
a single domain, while some recent methods present a new
setting of user modeling from multiple domains.
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Single Domain
Recurrent neural networks (RNN) have been introduced to
user modeling recently. For modeling the dynamic behav-
ior of users, an RNN-based recommender system was firstly
introduced for session-based recommendation [Hidasi et al.,
2015]. Based on this model, a number of RNN-based dy-
namic methods have been developed by additionally con-
sidering personalization and context-awareness. Donkers et
al. [Donkers et al., 2017] devised a user-based Gated Recur-
rent Units (GRU) method that attentively considers user em-
beddings along with sequential item information for personal-
ized next item recommendations. Quadrana et al. [Quadrana
et al., 2017] hierarchically exploited a user-level RNN and
a session-level RNN to reflect users’ inter-session sequential
dynamics into intra-session sequential dynamics for person-
alized session-based recommendations. Wu et al. [Wu et al.,
2017] exploited a user-level and an item-level RNNs in paral-
lel based on the user-level and the item-level history, respec-
tively, to consider temporal evaluation of users and items for
the rating prediction.

To consider the context-aware information, Beutel et
al. [Beutel et al., 2018] reflected contextual information into
input, output and RNN layers. Particularly, they parametrized
hidden state transitions in RNNs with an element-wise multi-
plicative function of context embeddings for better next item
recommendations and compared their approach with base-
lines without contexts. Zhu et al. [Zhu et al., 2017] claimed
the importance of taking into account time intervals in order
to effectively capture the relations of user behaviors, and thus,
they devised a new LSTM variant to equip LSTM [Hochreiter
and Schmidhuber, 1997] with newly introduced time gates to
model time intervals between two successive user behaviors
for the next-basket recommendations.

The above methods perform user modeling by exploiting
structured sequential data. However, many real-world appli-
cations involve unstructured sequential data, such as software
log-trace data or web service log data. Tao et al. [Tao et al.,
2019] proposed a deep sequential framework (Log2Intent)
to model the software user action preference using user ses-
sion log-trace data. Specifically, a sequence-to-sequence-like
model is proposed by treating each session as a sequential
node. It assumes that the temporally encoded user action is
capable of predicting the next actions in decoder. The gated
recurrent unit (GRU) is used as the sequence encoder and de-
coder. In Log2Intent, the authors further explored an auxil-
iary natural language dataset to improve the interpretability
of the learned user action embedding. To this end, the au-
thors proposed a recurrent semantics memory unit (RSMU)
to dynamically fetch the memory slot (i.e., sentence) from
each action’s memories as key-value dictionary. Once the
most relevant sentences are retrieved, their embeddings are
fed into the sequence encoder together with the log-trace in-
formation [Tao et al., 2019].

Multiple Domains
Existing approaches on dynamic user modeling mainly fous
on user behavior in a single domain. However, in real-
ity, users may switch across multiple domains (e.g., differ-
ent shopping websites, different mobile devices). Elkahky et

al. proposed a single multi-view deep neural network model
that jointly learns dense features of items from different
domains such as News, Apps and Movie/TV via common
users [Elkahky et al., 2015].

In [Kim et al., 2019], a domain switch-aware holistic re-
current neural network (DS-HRNN) is proposed for model-
ing multi-domain user behavior. DS-HRNN specifically ad-
dresses the domain switch challenge, by utilizing a domain
switch-aware supplementary loss and domain switch-aware
behavior regularizer. In DS-HRNN, the key ideas of han-
dling multi-domain user behavior include: (1) aggregating
user behaviors from multiple domains into one sequence in
chronological order; and (2) exploiting a single RNN model
that takes sequences of multi-domain user behaviors. To al-
leviate the disconnection of local dynamics, it is necessary
to recover the disconnection as much as possible while pre-
serving global dynamics of sequential behaviors simultane-
ously. To this end, a domain switch-aware supplementary
loss is incorporated to DS-HRNN, which is an explicit way
of recovering the lost connection at domain switches Simi-
larly, alleviating the disconnection of local dynamics can be
also achieved in an implicit way in terms of inputs. It leads to
domain switch-aware behavior regularizer that minimizes the
distance between correlated inputs from different domains.

Remarks. Deep sequential learning for user modeling has
attracted increasing attention, owing to its remarkable per-
formance in practice. Unlike other sequential data such as
texts or videos, the temporal patterns in user behavior data
usually have larger variations and higher heterogeneity. De-
signing customized deep sequential learning architectures for
user modeling purpose would be a critical task in the future.

4 Conclusion and Future Directions
In this survey, we review the recent advances in user model-
ing from the perspective of static and sequential representa-
tion learning. Both shallow and deep representation learn-
ing methods are discussed. We consider the key problem
in user modeling as the process of learning low-dimensional
linear or nonlinear representations for users, but in the con-
texts of static or sequential, single-domain or multi-domain,
etc. Due to the space limit, this survey cannot cover some
other relevant topics, such as user modeling based on textual
data [Zheng et al., 2017; Chen et al., 2018] and knowledge
graph based user modeling [Wang et al., 2019].

In the following, we present a few potential topics in user
modeling, which are less explored so far. We hope this survey
and the discussions on emerging topics could not only pro-
vide researchers and practitioners in related fields a compre-
hensive understanding of recent user modeling approaches,
but also shed some light on designing novel and practical rep-
resentation learning methods for user modeling.

• Modeling Categorical User Features. Existing compu-
tational methodologies, including both shallow and deep
models, work well for feature vectors with numerical
values, but could not well model the categorical features.
One-hot encoding is often considered as a proper way to
represent categorical features, but it cannot effectively
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handle categorical features with high cardinality. De-
signing novel neural network architectures for modeling
categorical features is an open problem.
• Knowledge Transfer for User Modeling. To charac-

terize the complex behavior of users, it is usually in-
sufficient by leveraging only one dataset. Due to the
commonality of human behavior in many domains, it
might be possible to transfer knowledge from auxil-
iary data to boost the learning performance in target
domains. Two problem settings might be considered.
First, two user modeling tasks from different domains
may help each other. Second, one user modeling task
might benefit from external knowledge bases, such as
knowledge graphs, text corpus, etc. Leveraging method-
ology and theory in domain adaptation [Li et al., 2017;
Ding et al., 2018; Shao et al., 2016] could be helpful.
• Algorithmically Fair User Modeling. Fairness-aware

representation learning has garnered extensive attention
in machine learning field and beyond. Despite a few suc-
cesses in recommendation task [Yao and Huang, 2017],
this line of research to prevent unfair predictions for
users from minority groups is still underexplored. The
open research problems include how to define new no-
tions of fairness and how to design fairness-aware user
embedding methods.
• Explainable User Modeling. Although latent repre-

sentations of user modeling lead to remarkable results
in terms of response prediction or recommendation, it
is usually hard to explain why these models work so
well. Adding explainability to user modeling would
make such techniques more acceptable by practitioners.
A potential direction is based on nonnegative matrix fac-
torization (NMF) [Lee and Seung, 1999]. NMF and its
variants show promising results of interpretable repre-
sentation learning in a number of applications, including
face clustering [Zhao et al., 2017], topic modeling [Shi
et al., 2018], hand-written digit classification [Zhao et
al., 2015], etc. Research efforts on novel principles of
explainable methodology are expected.
• Multi-Level User Modeling. Existing user modeling

approaches consider users equally. However, hierarchi-
cal structures could be observed among a large set of
users, considering the spatial or interest-driven grouping
patterns of human beings. Discovering such multi-level
patterns and leveraging them for user modeling would
be an interesting topic.
• Deep Integration of Intelligent Assistants. By far, user

modeling has been mainly discussed in the context of
recommendation, advertising, etc. It will be meaning-
ful if pushing user modelings techniques to other rel-
evant domains that also involve dynamic modeling of
user behaviors. One example is product question an-
swering [Lai et al., 2018], which aims to provide cus-
tomers the relevant information regarding queries. User
modeling might be useful in generating personalized re-
sponses or capturing dynamic changes of interests.
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