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Abstract

This work tackles the problem of checking strong
equivalence of logic programs that may contain lo-
cal auxiliary atoms, to be removed from their stable
models and to be forbidden in any external context.
We call this property projective strong equivalence
(PSE). It has been recently proved that not any logic
program containing auxiliary atoms can be refor-
mulated, under PSE, as another logic program or
formula without them — this is known as strongly
persistent forgetting. In this paper, we introduce
a conservative extension of Equilibrium Logic and
its monotonic basis, the logic of Here-and-There,
in which we deal with a new connective ‘|” we call
fork. We provide a semantic characterisation of
PSE for forks and use it to show that, in this exten-
sion, it is always possible to forget auxiliary atoms
under strong persistence. We further define when
the obtained fork is representable as a regular for-
mula.

1 Introduction

Answer Set Programming (ASP [Baral, 2003]) has become an
established problem-solving paradigm for Knowledge Rep-
resentation and Reasoning (KRR). The reasons for this suc-
cess derive from the practical point of view, with the avail-
ability of efficient solvers [Gebser et al., 2012; Faber et
al., 2008] and application domains [Erdem er al., 2016],
but also from its solid theoretical foundations, rooted in the
stable models [Gelfond and Lifschitz, 1988] semantics for
normal logic programs that was later generalised to arbi-
trary propositional [Pearce, 1996], first-order [Pearce, 2006;
Ferraris et al., 2007] and infinitary [Harrison et al., 2015] for-
mulas. An important breakthrough that supported these ex-
tensions of ASP has been its logical characterisation in terms
of Equilibrium Logic [Pearce, 1996] and its monotonic ba-
sis, the intermediate logic of Here-and-There (HT). Despite
its expressiveness, a recent result [Gongalves et al., 2016] has
shown that Equilibrium Logic has limitations in capturing the

*This paper is an extended abstract of an article entitled For-
getting Auxiliary Atoms in Forks and published in Artificial Intel-
ligence [Aguado et al., 2019].
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representational power of auxiliary atoms, which cannot al-
ways be forgotten.

In this paper, we extend logic programs to include a new
construct ‘|’ we call fork and whose intuitive meaning is
that the stable models of P | P’ correspond to the union of
stable models from P and P’ in any context. We also re-
view the notion of projective strong equivalence (PSE), that
is, whether two programs are equivalent over a restricted vo-
cabulary in any context that uses also the same restricted vo-
cabulary [Eiter et al., 2005]. Finally, we show that using this
construct is always possible to forget any set of atoms, some-
thing that was not possible without it.

2 Motivation Example
To illustrate this point, take the following problem.

Example 1 Two individuals, mother and father, both carry-
ing alleles a and b, procreate an offspring. We want to gen-
erate all the possible ways in which the offspring may inherit
its parents’ genetic information.

According to Mendelian laws, we should obtain three pos-
sible combinations that, ignoring their frequency, correspond
to the sets of alleles {a}, {b} and {a,b}. These are, in fact,
the three classical models of disjunction aV b. To obtain these
three solutions as stable models in ASP, the straightforward
way would be to use the three rules:

aV -a bV b L+ —=an-b (Py)

We assume here some familiarity with ASP: disjunctions of
the form p V —p act as non-deterministic choice rules (allow-
ing the arbitrary inclusion of atom p) and L < —a A —b is
a constraint forbidding models where a V b does not hold.
Moreover, when we include p V —p for all atoms, as in the ex-
ample, stable models just coincide with classical models. A
drawback of this representation is that it does not differentiate
the information coming from each parent, possibly becoming
a problem of elaboration tolerance. For instance, if only the
mother’s information were available, one would expect to ob-
tain the stable models {a} and {b} but not {a, b}, as there is
no evidence of that combination without further information
about the father. So, the mother alone would be better rep-
resented by a regular disjunction a V b. However, we cannot
represent each parent as an independent disjunction like that,
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since (a V b) A (a V b) just amounts to (a V b) and the combi-
nation {a, b} is not obtained. A simple way to represent these
two disjunctions separately is using auxiliary atoms to keep
track of alleles from the mother (ma V mb) and the father
(fa Vv fb). This leads to program Ps:

ma V mb b <+ mb (Pm)
fa Vv fo b+« fb (Py)

consisting of the mother’s contribution P, and the father’s
contribution Py. Four stable models are obtained from Ps,
{ma, fa,a}, {mb, fb,b}, {ma,fb,a,b} and {mb, fa,a,b},
but if we project them on the original vocabulary V' = {a, b}
(i.e. we remove auxiliary atoms), they collapse to three {a},
{b} and {a,b} as expected. Note that, although auxiliary
atoms in this example have a meaning in the real world (they
represent the effective sources of each inherited allele) they
were not part of the original alphabet V' = {a, b} of Ex-
ample 1, which does not distinguish between the same ef-
fect {a,b} but due to different sources {ma, fb,a,b} and
{mb, fa,a,b}.

As we have seen, P; and P, are “V-equivalent” in the
sense that they yield the same stable models when projected
to alphabet V' = {a,b}. A natural question is whether this
also holds in any context, that is, if P, U @ and P, U @ also
yield the same V-projected stable models, for any context
@ in the target alphabet V' (since we want to keep auxiliary
atoms local or hidden). As mentioned before, we call this
notion projective strong equivalence w.r.t. 'V, or V-strong
equivalence for short.

As we will see later, programs P; and P, are indeed
V-strongly equivalent, so they express the same combined
knowledge obtained from both parents. However, if we want
to keep program P, alone capturing the mother’s contribu-
tion, there is no possible {a, b}-strongly equivalent represen-
tation in Equilibrium Logic (the same happens with Py).

a < ma
a <+ fa

3 Forks and 7T'-views

Let At be a finite set of atoms called the (propositional) sig-
nature. A (propositional) formula ¢ is defined using the
grammar:

pu= L | p ]| ere | eve | oo

where p is an atom p € At. We use Greek letters o, ¢, v and
their variants to stand for formulas. A fork is defined using
the grammar:

Fu= L |p| (FIF) | FAF | ovo | ¢ = F

where ¢ is a propositional formula and p € At is an atom.
We use Greek letters F, G, H and their variants to stand for
forks. We define the derived operators - % (¢ — 1) and
T < = L. Notice that the fork operator |” cannot occur in the
scope of disjunction or negation, since —=F would stand for
F — 1 and implications do not allow forks in the antecedent.
This restricted syntax suffices for the purposes of the current
paper.

The semantics of forks is defined in terms of denotations
in two steps. First we define the denotation of propositional
formulas and then we extend it to arbitrary forks.
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Given a set T' of atoms, a T-support H is a set of sub-
sets of T, that is H C 27, satisfying T € H if H # (). We
write Hp to stand for the set of all possible T-supports. To
increase readability of examples, we just write a support as
a sequence of interpretations between square brackets. For
instance, possible supports for ' = {a,b} are [{a, b} {a}],
[{a,b} {b} 0] or the empty support [ |.

Intuitively, H will be used to capture the set of “here” com-
ponents H that support the “there” world T as a model of a
given formula ¢, that is, the set of H’s such that (H,T) = ¢
in here-and-there logic. When H is empty [ ], there is no sup-
port for T, so (T, T) t~ ¢ and thus, T is not even a classical
model. If A is not empty, this means we have at least some
model (H,T) and, thus, (T',T) must be a model too; this is
why we require 7' € ‘H in the set.

Definition 1 (7T-denotation; Aguado ef al. 2015) Let T C
At. The T-denotation of a formula ¢, written [ ]7, is a
T-support recursively defined as follows:

[L17 = ]

[p]" & {HCT|peH}
[ensd]" < [e]"nly]"
[eva]™ < [e]"ulw]”

T aer [] if []" #[ ] and [y]" =]
Le=ol™ = {WU [¥]* otherwise

T-denotations satisfy that H € [ |7 iff (H,T) = ¢ in
the logic of here-and-there. Interestingly, when not empty,
the fewer models in [ ¢ ]7, the more supported is T, since it
is closer to being stable. Seeing “more supported” as an or-
dering relation, the “most supported” [ ¢ ] (the top element)
would precisely be [T = [ T ] corresponding to a stable
model. This ordering relation is formally defined below.

Definition 2 Given a set T C At of atoms and two T-
supports H and H' we write H <1 H' iff either H = | ]
orH D H #]]

The relation <7 is a partial order on Hy with [] and [ T'] its
bottom and top elements, respectively. We usually write H <
H’ instead of H <7 H' when clear from the context. As an
example, the classical interpretation 7' = {a, b} is more sup-
ported in Hy = [{a, b} {a}] than in Hy = [{a, b} {a} {0} 0],
that is Ho =< H;, because Ho contains additional interpreta-
tions and is further from being stable.

Example 2 (Implementing a choice) 7o  implement a
choice rule for atom p (in modern ASP syntax, written {p})
a knowledge engineer uses an auxiliary atom q. As a first
option, she considers the use of rules:

(=p = q) A (=g — p) (1)

However, having a disjunctive ASP solver, another possibility
could be:

pVyq )

Is there any substantial difference? ]
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T | [(H]*" | [@]"
0 [] []
{r} [{p}] [{p}]
{a} [{q}] [{q}]
{r,a} | Up.a} {p} {3 01 | [{p,q} {p} {a} ]

Figure 1: T-denotations for (1) and (2).

The T'-denotations of both options are shown in Figure 1.
As mentioned above, stable models correspond to 71”s such
that [ ]7 = [ T], that is, we get the two stable models {p}
and {¢} in both columns. In fact, all rows coincide except
for T = {p,q} where § € [(D]»% but ¢ [ ]{PD. A
difference in T-denotations means that formulas are not HT
equivalent, and so, they are not strongly equivalent [Lifschitz
et al., 2001]. In fact, the counterexample of strong equiva-
lence is well-known in the literature: adding (p — ¢) A (¢ —
p) to (1) yields no stable model, while the same addition to
(2) produces stable model {p, ¢}.

Let us now introduce the semantics of arbitrary forks.
Given a T-support H we define the set of (non-empty) =<-
smaller supports | H = {H' | H' <= H}\{[]}. This
is usually called the ideal of H. Note that, the empty sup-
port [ ] is not included in the ideal. As a result, [ ] = 0.
We extend this notation to any set of supports A so that
NELH | H < HHeANN{[]}

Definition 3 (T-view) A T-view is a set of T-supports A C
H that is <-closed, i.e., A = A.

If A is a T-view and the <-greatest T-support [ T'| is in-
cluded in A, then A is precisely |[ T ]. We proceed next to
define the semantics of forks in terms of T-views. To empha-
size the duality between conjunction and disjunction, we will
be interested in dealing with a weaker version of the member-
ship relation, €, defined as follows. Given a T-view A, we
write H € A iff H € A orboth H = [] and A = (). We are
now ready to extend the concept of T-denotation to forks.

Definition 4 (7T-denotation of a fork) Let At be a proposi-
tional signature and T C At a set of atoms. The T-denotation
of a fork F, written { F' )T, is a T-view recursively defined
as follows:

(L)T o

(p)" “Up]" foranyatomp
(FAG)T < {1 | H e (F)T and M € (G)T }
(V)™ CHHUH |HE (@) and H' € ()T}

- (o) Lo =)
(e F)" = {i{ [elTuH ’ He(F)T'} otherwise

(FlG)T = (F)TU(G)T

The fork operator ‘|’ is commutative, associative and idem-
potent. Conjunction and implication distribute over ‘|’. As
for the rest of operators, note that the definitions above also
cover propositional formulas. In fact, we have the following

relation between T'-denotations as T-views and 7T-supports:
()T =[] for every propositional formula ¢.

Definition 5 Given a fork F, we say that T C At is a stable
model of F iff {( F)T = |[T]. SM[F] denotes the set of
stable models of F'.

For any propositional formula, this definition coincides
with the standard definition of stable models. The intuition
behind a fork is that we can collect its stable models indepen-
dently, that is, SM[F' | G] = SM[F] U SM[G].

4 Projective Strong Equivalence

Let us now formally define projective strong equivalence for
forks. Since propositional formulas are also forks, this def-
inition also applies to them. We represent the projection of
the stable models of some fork onto some vocabulary V' as
SMyle] = {TNV [T e SMlp] }.

Definition 6 (Projective strong equivalence) Let V C At
be some vocabulary. A fork F' is V-strongly equivalent to
fork G, written F =y G if SMy [F' A L] = SMy |G A L] for
any fork L such that At(L) C V.

When V D At(F) U At(G) we talk about (non-projective)
strong equivalence and drop the V' subindex. Strong equiv-
alence has a simple characterisation in these terms: F' = G
iff ( F)T = (G )T forevery T C At.

Providing a semantic characterisation of projective strong
equivalence =2y requires some more notation. We define Hy
as the projection of every set in ‘H to the vocabulary V, i.e.,
Hy < {HNV | H € H}. A T-support H is V-unfeasible iff
there is some H C T in ‘H satisfying HNV =T NV;itis
V -feasible otherwise. The reason for the name “unfeasible”
is that, if we take a formula ¢ with denotation [¢]? = H,
then T will never become stable if we are only allowed to use
vocabulary V' when adding a context .

Definition 7 Let V' C At be a vocabulary and T C 'V be
a set of atoms. Then, the V-T-denotation of a fork F' is a
T-view, denoted as (( F )1, is defined as follows:

HHy |He (FYT s.t. T'NV =T and H is V -feasible }

In other words, { F' ) collects all the feasible supports H
that belong to any 7”-denotation { F' )7 such that T” coin-
cides with T" for atoms in V', and then we project the supports
taking Hy . In doing so, we can just consider maximal H’s in
( F)T". As might be expected, projecting the T-denotation
of a fork F' on a superset V' D At(F) of its atoms produces
no effect, thatis, { F')¥ = ( F')T. More interestingly, the
V-T-denotation of F' can be used to precisely characterise its
projected stable models and projective strong equivalence.

Theorem 1 For any vocabulary V C At, set of
atoms T C 'V and forks F, G, the following holds:

i) T e SMy[F|iff (F )y = T].

(i) F 2y Giff (FYL = (G)T for every set T C V of

atoms.
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maximal supports in
T | {(Pn)V
{a} | [{a}]
{0} | [{b}]
{a,0} [ [{a,0} {0} ] [{a,b} {a}]

Figure 2: Forgetting ma and mb in P,.

Example 3 (Ex. 2 continued) We can now check the PSE of
() =(p—=q)A(~g = p)and (2) = (pVg). Todo
so, we have to test if (())T, = () )T forevery T C V
and any vocabulary V not containing g. Since [(1)]T =
[(2)]* for all but T'= {p,q} we can restrict ourselves to
the study to At = {p,q} and V = {p}. Take {( (1) )T first.
Since (1) is a propositional formula (it contains no forks),
we have (D)7 =] [(1)]7, that is, the maximal sup-
ports are just the T-denotations we already obtained in Fig-
ure 1. Now, for vocabulary V = {p} we may only have
T = {p} and T = (). For the first case, the potential candi-
dates 7" such that 7" NV = {p} are the rows T’ = {p} and
T’ = {p,q} from Figure 1. However, the support we have
for the latter is V-unfeasible because it contains H = {p}
with H C {p,q} =T’ and HNV{p} =T'NV. Thus, for
T = {p} we only have the feasible (maximum) support [{p}]
from 7" = {p} which yields { (1) )T = [ {p}]. For T = ()
the only non-empty case is 7" = {q} and, after removing
atom ¢, we obtain [}] as maximum support, i.e., { (1))} =
L[ 0] Ttis easy to see that (2) yields the same result: the
only difference we have is in the last row of Figure 1, for
T’ = {p, q}, but this support is V-unfeasible again, as it also
contains I = {p}. Tosumup (1) )i, = () )7, =I[{p}]
and (D), = (@)% =1[0] so both formulas satisfy
PSE, that is, (1) =y (2).

5 Forgetting

We show now how the addition of forks allows us to define a
strong persistent forgetting operator that is applicable to any
fork and, thus, to any formula. As mentioned in the introduc-
tion, this is not possible without the fork operator. Formally,
given a T-support H, we denote by ®4; a propositional for-
mula such that [ @3 ] = H. Such a formula always exists
and the process to build it was studied by Cabalar and Fer-
raris [2007].

Definition 8 (Forgetting operator) The fork-forgetting op-

erator £k is a function mapping forks and sets of atoms to
forks such that

fk(F7 V) = (I)Hl | | (I)Hn

with {H1, ... H,} being the set of <p-maximal T-supports
in (FY, foralT C V. O

Operator £k is a total, strongly persistent forgetting opera-
tor over forks. This is formalised as follows.

Theorem 2 For every fork F and set V. C At of atoms,
At(fk(F,V)) C V and F =y fk(F,V). O
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’

T maximal supports in { Py, )
{ma,a,b} [{ma,a,b} {ma,a} ]
{mb, a,b} [ {mb,a,b} {mb,b} ]
{ma,mb,a,b} | [ {ma,mb,a,b} {mb,a,b} {mb,b}

{ma,a,b} {ma,a} ]

Figure 3: Some T-views of Pp,.

Example 4 (Ex. 1 continued) Consider program P,, from
the introduction interpreted as the conjunction of its rules,
and assume we want to forget ma and mb. The table
in Figure 2 shows the T-V-denotation of F,, for each
T CV ={a,b}. Cases for T ={a} and T = {b} are
easy to compute. For T = {a,b} we get three candi-
date interpretations, T] = {ma,a,b}, T4 = {mb,a,b} and
T; = {ma,mb,a,b}. The table in Figure 3 shows the
T-views of P, for these T. A first observation is that the
support for T4 = {ma, mb, a, b} is {a, b}-unfeasible because
it contains {ma, a,b} and {mb,a,b} that coincide with T}
for atoms {a, b}. After removing ma, mb in the supports of
the feasible candidates, T} and T3, the respective results are
[{a,b} {a} ] and [ {a,b} {b} ] that are not <-comparable.
Therefore, they become the two <-maximal supports in the
last row of Figure 2. It is also easy to check that the
T-denotations of fork a | b exactly coincide with the one
shown in Figure 2 for P,,. Therefore, P, =y (a | b). It also
can be checked that, after some simplifications, the forgetting
operator, £k(P,,, V'), precisely produces the fork (a | b).

6 Conclusions

We extended the syntax and semantics of Here-and-There
(HT) to deal with a new type of construct ‘|’ called fork. We
studied the property of projective strong equivalence (PSE)
for forks: two forks satisfy PSE for a vocabulary V' iff they
yield the same stable models projected on V' for any context
over V. We also provided a semantic characterisation of PSE
that allowed us to prove that it is always possible to forget
(under strong persistence) an auxiliary atom in a fork, some-
thing recently proved to be false in standard HT.
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