
Abstract
We present improvements in maximum a-posteriori
inference for Markov Logic, a widely used SRL for-
malism. Several approaches, including Cutting Plane
Aggregation (CPA), perform inference through trans-
lation to Integer Linear Programs. Aggregation ex-
ploits context-specific symmetries independently of
evidence and reduces the size of the program. We il-
lustrate much more symmetries occurring in long
ground clauses that are ignored by CPA and can be
exploited by higher-order aggregations. We propose
Full-Constraint-Aggregation, a superior algorithm to
CPA which exploits the ignored symmetries via a
lifted translation method and some constraint relaxa-
tions. RDBMS and heuristic techniques are involved
to improve the overall performance. We introduce
Xeggora as an evolutionary extension of
RockIt, the query engine that uses CPA. Xe-
ggora evaluation on real-world benchmarks shows
progress in efficiency compared to RockIt espe-
cially for models with long formulas.

1 Introduction
MAP inference is a concerning need in Markov Logic [Rich-
ardson and Domingos, 2006] because of its high complexity.
Several lifting approaches [Kimmig et al., 2015] including
Cutting Plane Aggregation (CPA) [Noessner et al., 2013] are
introduced to speed up inference by detecting symmetries and
avoiding repetitive computations. CPA improves compilation
from a ground network to an Integer Linear Program (ILP)
by decreasing the size of the program and better exposing its
symmetries. The ILP is further passed to traditional solvers
and the solution is mapped to a MAP state of the original
MLN.

There still exist further symmetries that CPA is unable to
handle. In this work [Amirian and Shiry Ghidary, 2019], we
first illustrate some types of these symmetries by introducing
order of aggregation and showing that CPA is able to

* This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Amirian and Shiry Ghidary, 2019]

perform only aggregations of order one, whereas higher-or-
der aggregations are required to exploit the ignored symme-
tries. Secondly, a superior algorithm, namely Full Constraint
Aggregation (FCA) is introduced, empowered with any pos-
sible order of aggregation with respect to the model. FCA
performs a novel translation to efficient ILPs by relaxing
some constraints. We then propose complementary tech-
niques, including heuristics and RDBMS leverage to choose
efficiently among multiple candidates the one in which FCA
fits the best. The proposed methods are implemented within
an evolutionary extension of RockIt, namely Xeggora.
Finally, we show that Xeggora’s time-preserving tech-
niques outperform RockIt while applied to models with
long formulas.

1.1 MAP Inference in Markov Logic
Markov Logic allows softening a first-order formula f, by at-
taching a real-valued weight w to it. A positive (negative)
weight makes the formula support (penalize) worlds in which
it is satisfied. Hard formulas are regular first-order formulas
which are expressed with infinite weights and have to be ful-
filled by every possible world. The probability of a possible
world x in the presence of evidence e is defined as:

𝑃(𝑋 = 𝑥|𝑒) =
1

𝑍𝑒
𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

)

where 𝑍𝑒 is a normalization constant with respect to e, and
𝑛𝑖(𝑥, 𝑒) is the number of true groundings of 𝑓𝑖 in x that satisfy
e. MAP inference corresponds to inferring the most likely
possible world, and reduces to finding the interpretation that
maximizes the sum of the weights of the satisfied clauses.:

𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃(𝑥|𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥

1

𝑍𝑒
𝑒𝑥𝑝 (∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

.

This can be left as an ILP formulation [Wolsey, 1998] for ef-
ficient optimizers to be solved. Huynh and Mooney [2009]

Xeggora: Exploiting Immune-to-Evidence Symmetries with Full Aggregation
in Statistical Relational Models (Extended Abstract)*

Mohammad Mahdi Amirian1 and Saeed Shiry Ghidary2
1Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran

2Department of Math & Computer Science, Amirkabir University of Technology, Tehran, Iran

{m.amirian, shiry}@aut.ac.ir

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5010

proposed a translation of MAP queries to ILPs and Noessner
et al. [2013] extended the approach by applying constraint
aggregation. We improve the result by applying higher-order
aggregations and introduce Full Constraint Aggregation. The
method is powered with RDBMS and heuristic techniques to
choose efficiently among candidate clauses to be aggregated.

1.2 Preface
In the next section we describe the ILP formulation and con-
straint aggregation methods. Section 3 is composed of the
FCA algorithm description. Section 4 describes add-on tech-
niques that leverage RDBMS and related heuristics to im-
prove the overall performance. The reader is referred to the
original paper for details, examples, soundness proofs, ILP
solving analytics, and the empirical evaluation of FCA on six
benchmark MLNs.

2 MAP ILP Formulation Techniques
In all parts of the process, formulas are supposed to be com-
posed of disjunctive clauses. The traditional ILP formulation,
and the enhancements of constraint aggregation are intro-
duced here. We then continue by introducing symmetries that
CPA fails to exploit.

2.1 Traditional ILP Formulation
Given a set of ground clauses 𝒢 as input, one binary ILP var-
iable 𝑥ℓ is associated with each ground atom ℓ occurring in
the set, assigning it a value 1 provided ℓ is true and 0 other-
wise. Each evidence atom can be represented as a linear con-
straint of the form 𝑥ℓ ≤ 0 or 𝑥ℓ ≥ 1. For each ground clause
𝑔 ∈ 𝒢 with weight 𝑤𝑔 ∈ ℝ, a binary variable 𝑧𝑔 with coeffi-
cient 𝑤𝑔 is added to the objective. The objective totally be-
comes:

maximize ∑ 𝑤𝑔𝑧𝑔𝑔∈𝒢 .

It is straightforward to design constraints considering 𝑧𝑔 to
be assigned 1 provided its corresponding ground clause is sat-
isfied in the MAP solution and 0 otherwise. For a clause with
𝑤𝑔 > 0, the following constraint is added to the ILP:

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 𝑧𝑔

where 𝐿+(𝑔) and 𝐿-(𝑔) refer to the sets of all ground atoms
occurring unnegated and negated in 𝑔, respectively. A truth
value assignment to any ground atom that fulfills the disjunc-
tive clause 𝑔, makes the left-hand side of the constraint posi-
tive, thus, 𝑧𝑔 can take its maximum possible value 1.
For hard clauses (𝑤𝑔 = ∞), no term is added to the objective
and 𝑧𝑔 in the constraint is simply replaced with 1:

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 1.

For a clause with 𝑤𝑔 < 0, the optimizer tries to lower 𝑧𝑔 to
its minimum possible value 0. The following constraint is
added to permit this only if none of its constituting ground
atoms satisfy 𝑔:

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≤ (|𝐿+(𝑔)| + |𝐿-(𝑔)|) 𝑧𝑔.

Finally, for clauses with zero weights, no constraint is added
to the ILP.

2.2 Cutting Plane Aggregation
Grounding formulas in MLN often results in symmetries in
multiple ground clauses, and consequently, in the ILP con-
straints. Constraint aggregation proposes aggregating ground
clauses that include symmetries, resulting in smaller con-
straint matrices and aiding symmetry detection algorithms of
the ILP solver. The candidate sets of ground clauses to which
aggregation can be applied are defined as follows:

Definition 1 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses
and let c be a ground clause. We say that 𝐺 can be aggre-
gated with respect to c if (a) all ground clauses in 𝐺 have the
same weight and (b) for every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have
that 𝑔𝑖 = ℓ𝑖 ∨ 𝑐 where ℓ𝑖 is a positive or a negative literal.

For such a set, all corresponding ILP constraints can be re-
placed by fewer constraints with the following rules:

Definition 2 (First-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be a
set of n ground clauses with weight 𝑤𝐺 that can be aggre-
gated with respect to a ground clause c.

I. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corre-
sponding terms in the ILP objective with a new integer
variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺:

maximize 𝑤𝐺𝑧𝐺 + rest of the objective.

If 𝑤𝐺 > 0, replace the corresponding ILP constraints
with:

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) +
∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺,

and if 𝑤𝐺 < 0, with:
∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 ≤ 𝑧𝐺,
𝑛𝑥ℓ ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐),
𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐).

II. In case of an infinite weight (𝑤𝐺 = ∞), only replace the
corresponding ILP constraints with:

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) +
∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛.

According to the aggregation rules, 𝑧𝐺 is considered to be
assigned the number of satisfied ground clauses in 𝐺; it gains
the maximum value n provided a solution satisfies the ground
clause c, otherwise it is equal to the number of the literals (of
the form p or ¬q) satisfied by the solution. The CPA algo-
rithm chooses greedily among sets that can be aggregated to
a more compact ILP and applies constraint aggregation.

2.3 CPA Failure
There still exist similarities between clauses in the following
example, but in addition, diversity in more than one literal.

Example 1 Consider an MLN with a single formula of weight
2.3 stating that each kid may be happy of having a kind parent
who has fun with him (her):
2.3 Child(k, p) ∧ Kind(p) ∧ HasFun(p, k) ⇒ Happy(k).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5011

By grounding and applying the evidence:
Child(Mary, Jack), Child(Mary, Rose)
the essential ground clauses in normal form would be:
2.3 ¬Kind(Jack) ∨ ¬HasFun(Jack, Mary) ∨ Happy(Mary)
2.3 ¬Kind(Rose) ∨ ¬HasFun(Rose, Mary) ∨ Happy(Mary)

These symmetries are ignored by the CPA algorithm; it al-
lows only one literal to be distinct while all others must be
identical. This is the justification of naming the method first-
order aggregation. This failure often happens in models con-
taining long formulas. We introduce Full-Constraint-Aggre-
gation that can exploit this type of symmetry.

3 Full Constraint Aggregation
We start by illustrating symmetry types that appear in ground
clauses as in Example 1, based on a parameter we name order
of aggregation. Then we describe our superior algorithm
which performs higher-order aggregations.

Definition 3 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses
and let c be a ground clause with non-zero length. We say
that 𝐺 can be aggregated of order k with respect to c, if (a)
all ground clauses in 𝐺 have the same weight and (b) for
every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have that 𝑔𝑖 = 𝐿𝑖 ∨ 𝑐 where 𝐿𝑖
is a ground clause of maximum length k. We call k the aggre-
gation order of 𝐺, if k is the minimum order of which 𝐺 can
be aggregated (with respect to any ground clause c).

Due to Definition 3, the constraint aggregation method is
only applicable to the sets of ground clauses with aggregation
order of 1, performing first-order aggregation. For a set of a
higher aggregation order, we need to associate disjunctions
of literals with binary terms in the optimization program, e.g.
𝑎 ∨ 𝑏 ≡ 𝑥𝑎 + 𝑥𝑏 − 𝑥𝑎𝑥𝑏. This results in an Integer Polyno-
mial Program. To be more precise, a kth order trivial aggre-
gation may be performed to formulate the MAP inference
problem as an integer kth order mathematical program. The
program can be further linearized to an equivalent ILP using
the classic linearization method outlined by Watters [1967],
as previously done in a different MAP inference method by
Sarkhel et al. [2014]. However, the resulting ILP would carry
much more variables and constraints and last longer to be
solved than the one from the traditional ILP formulation.

To overcome this issue, we propose a novel relaxed trans-
lation of MLNs to ILPs by associating auxiliary variables
with disjunctive clauses. This is done through higher-order
aggregation rules.

Definition 4 (Higher-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be
a set of n ground clauses with weight 𝑤𝐺 with the aggregation
order of 𝑘 > 1, i.e., can be aggregated of order 𝑘 with re-
spect to a ground clause c. Each ground clause 𝐿𝑖 such that
𝐿𝑖 ∨ 𝑐 ∈ 𝐺 is a disjunction of at most k unnegated or negated
ground atoms. For each 𝐿𝑖 with length 1, apply the First-Or-
der Aggregation Rules. For the remainder:

I. Corresponding to each 𝐿𝑖, define a new binary ILP var-
iable 𝑥𝑠𝑖

. Choose one of the following Bound Constraints
(BCs) after the sign of 𝑤𝐺 and add it to the ILP:

Upper-BC: 𝑥𝑠𝑖
≤ ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖)

if 𝑤𝐺 > 0 or 𝑤𝐺 = ∞, and
Lower-BC: ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖) ≤ |𝐿𝑖|. 𝑥𝑠𝑖

if 𝑤𝐺 < 0.

II. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corre-
sponding terms in the ILP objective with a new integer
variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺:

maximize 𝑤𝐺𝑧𝐺 + rest of the objective.

If 𝑤𝐺 > 0, replace the corresponding ILP constraints
with:

∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺,

and if 𝑤𝐺 < 0, with:
∑ 𝑥𝑠𝑖

𝑛
𝑖=1 ≤ 𝑧𝐺,

𝑛𝑥ℓ ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐),
𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐).

III. In case of an infinite weight (𝑤𝐺 = ∞), only replace the
corresponding ILP constraints with:

∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛.

The Upper-BC and Lower-BC pair if used altogether, rep-
resent the disjunction operator(s) of 𝐿𝑖 in the ILP. Intuitively,
to correspond a logical OR operator for two Boolean varia-
bles: 𝑐 ≡ 𝑎 ∨ 𝑏 in the integer space, one may add two ine-
qualities: 𝑥𝑐 ≤ 𝑥𝑎 + 𝑥𝑏 ≤ 2𝑥𝑐. Similar inequalities would
represent the disjunction of k Boolean variables. Now if 𝑥𝑐 is
involved in either maximization or minimization, one can
drop the corresponding inessential constraint. The reader is
referred to the original paper [Amirian and Shiry Ghidary,
2019] for the soundness proof.

4 Leveraging RDBMS and Heuristics
In the original paper, we showed analytically a major differ-
ence between the first-order and higher-order aggregations.
First-order aggregation, if applicable, reduces the ILP size on
the order of the number of aggregated clauses, which results
in much faster program solving. This is also verified through
experiments on the artificial data. Desired metrics may be ob-
tained to compare the efficiency of possible clustering
schemes. However, this is not trivial because efficiency is an
abstract measure that relates to the cost of the aggregation
procedure in terms of size and runtime, along with the cost of
solving the ILP. Moreover, involving a metric in the algo-
rithm would acquire time-consuming computations. Instead,
we propose a heuristic approach to choose an appropriate
clustering scheme for aggregation as described in the follow-
ing algorithm. In order to benefit from query optimization
technologies, this algorithm leverages RDBMS to compute
the compactness of possible aggregations. The idea of
RDBMS leverage for MAP inference in Markov Logic was
inspired by Riedel [2008] and evolved by Niu et al. [2011]
and Noessner et al. [2013]. They used RDBMS in the ground-
ing phase and also in finding the violated constraints, but the
computation of counting features was not implemented with
RDBMS because it requires storing or regeneration of the
ground table which is often inefficient for first-order

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5012

aggregation. In the case of higher-order aggregations how-
ever, counting the number of rows is required several times
which is done by the COUNT DISTINCT query. It is a stand-
ard SQL query used for counting the number of distinguish-
able rows on the specified columns in a table. Extensionally,
MySQL permits using it multiple times in a single query.

Algorithm CHOOSEFORAGGREGATION
 Input ℱ: a first-order disjunctive clause
 Input 𝒢: a SQL table, containing all essential ground

clauses of ℱ
 Output appropriate clustering scheme as the target

for aggregation
1: L  𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠_𝑜𝑓 (ℱ)
2: 𝒱  𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠_𝑜𝑓 (L)
3: if |L| = 1
4: candidate_sets  {∅}
5: else
6: candidate_sets  {}
7: foreach non-empty 𝑉 ⊆ 𝒱
8: identical_literals  {ℓ𝑖 ∈ 𝐿| 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑜𝑓(ℓ𝑖) ⊆

𝑉}
9: if identical_literals  candidate_sets
 and identical_literals ≠ L
10: add identical_literals to candidate_sets
11: if candidate_sets contains any sets of literals with the
 size of |L| - 1
12: return best of them greedily to be further
 first-order aggregated
13: else
14: query  ‘SELECT ’
15: foreach identical_part ∈ candidate_sets
16: query  query + ‘COUNT (DISTINCT ’

 + 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (identical_part) + ‘) as ’
 + 𝐶𝑎𝑝𝑡𝑖𝑜𝑛 (identical_part)
 [+ ‘,’] // except for the last loop

17: query  query + ‘FROM ’ + 𝒢
18: execute query into #clusters
19: best_candidate_sets 
 {argmin#𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 candidate_sets}
20: return argmaxcardinality best_candidate_sets

The algorithm is provided with a disjunctive clause and a

table containing all of its essential groundings in the rows and
its constituting variables in the columns. Inessential ground-
ings (e.g. by the substitution of {𝑘 ↦ 𝐵𝑜𝑏, 𝑝 ↦ 𝑅𝑜𝑠𝑒} in Ex-
ample 1) should have been previously ignored in order to pro-
duce an effective output. The algorithm first acquires the set
of all literals that constitute the clause and also all variables
that participate in grounding (lines 1, 2). In lines 3-6, a set is
initialized for storing all feasible partitioning schemes of the
literals. Each candidate set is a representative for the set of
identical literals (i.e., clause c in Definition 3), so the com-
plementary literals are considered distinct. The cardinality of
a candidate set represents the clause length minus its

proposing order of aggregation. ∅ is by default a feasible can-
didate set. However, it is added only for first-order aggrega-
tion as it would not be efficient for higher orders, as consid-
ered in Definition 3. Lines 7-10 collect candidate sets for ag-
gregation. One may trivially collect the sets based on ground
literals; however, we build the collection method upon non-
empty sets of variables, in order to avoid producing infeasible
candidate sets. It starts with partitioning the variables. Each
partitioning scheme of variables specifies a feasible partition-
ing scheme of literals which in turn corresponds to a cluster-
ing scheme of the essential ground clauses. Line 11 discovers
if any candidates are present for first-order aggregation, to be
in case the arguments of a call to the procedure (line 12). If
there exist more than one candidate, one would be chosen
greedily as done in CPA. Lines 14-18 contain the code for
generating and executing the SQL query that counts the num-
ber of clusters aggregated according to each partitioning
scheme. Each single clause that is not aggregated is consid-
ered in a singleton cluster. We involve the query output #clus-
ters as a lookup table which returns the number of clusters
given a candidate set. Finally, the candidate partitioning
scheme that offers the minimum number of clusters is se-
lected. If there exist multiple solutions, the one with the low-
est aggregation order is returned (lines 19-20). This is moti-
vated from the analysis on the artificial data; keeping other
parameters fixed, lower-order aggregations often produce
slightly more efficient ILPs.

5 Empirical Evaluation
We implemented the proposed methods within an evolution-
ary extension of RockIt, namely Xeggora, besides fix-
ing minor bugs of the previous system. Finally, we proved
enhancements with comprehensive experiments upon two
benchmark sets. The first set of artificial benchmarks ex-
plores the effect of higher-order aggregation as compared to
the first-order aggregation with respect to the length of
clauses. The results confirm the intuition developed through
the theoretic side. On practical benchmarks for the entire sys-
tem, we showed that FCA retains the enhancements of previ-
ous works on instances where higher-order aggregation is not
applicable, but provides a large benefit in instances where it
is.

References

[Amirian and Shiry Ghidary, 2019] Mohammad Mahdi
Amirian and Saeed Shiry Ghidary. Xeggora: Exploiting
Immune-to-Evidence Symmetries with Full Aggregation
in Statistical Relational Models, Journal of Artificial
Intelligence Research, 66: 33-56, 2019.

[Huynh and Mooney, 2009] Tuyen N. Huynh and Raymond
J. Mooney. Max-margin weight learning for Markov
logic networks. In Proceedings of ECML PKDD 2009,
Part I, volume 5781 of Lecture Notes in Computer
Science, pages 564-579, Springer, 2009.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5013

[Kimmig et al., 2015] Angelika Kimmig, Lilyana Mihalkova,
and Lisa Getoor. Lifted graphical models: a survey.
Machine Learning, 99: 1-45, 2015.

[Niu et al., 2011] Feng Niu, Christopher Ré, AnHai Doan,
and Jude Shavlik. Tuffy: Scaling up statistical inference
in Markov logic networks using an RDBMS. In
Proceedings of the VLDB Endowment, 4(6): 373-384,
2011.

[Noessner et al., 2013] Jan Noessner, Mathias Niepert, and
Heiner Stuckenschmidt. RockIt: Exploiting Parallelism
and Symmetry for MAP Inference in Statistical
Relational Models. In Proceedings of AAAI, pages 739-
745, 2013.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine
Learning, 62: 107-136, 2006.

[Riedel, 2008] Sebastian Riedel. Improving the accuracy and
efficiency of MAP inference for Markov Logic. In
Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, pages 468-475, 2008.

[Sarkhel et al., 2014] Somdeb Sarkhel, Deepak Venugopal,
Parag Singla, and Vibhav Gogate. An Integer Polynomial
Programming Based Framework for Lifted MAP
Inference. Advances in Neural Information Processing
Systems, pages 3302-3310, 2014.

[Watters, 1967] Lawrence J. Watters. Reduction of Integer
Polynomial Programming Problems to Zero-One Linear
Programming Problems. Operations Research, 15(6):
1171-1174, 1967.

[Wolsey, 1998] Laurence A. Wolsey. Integer Programming.
Wiley-Interscience, New York, 1998.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5014

