
Abstract 
We present improvements in maximum a-posteriori 
inference for Markov Logic, a widely used SRL for-
malism. Several approaches, including Cutting Plane 
Aggregation (CPA), perform inference through trans-
lation to Integer Linear Programs. Aggregation ex-
ploits context-specific symmetries independently of 
evidence and reduces the size of the program. We il-
lustrate much more symmetries occurring in long 
ground clauses that are ignored by CPA and can be 
exploited by higher-order aggregations. We propose 
Full-Constraint-Aggregation, a superior algorithm to 
CPA which exploits the ignored symmetries via a 
lifted translation method and some constraint relaxa-
tions. RDBMS and heuristic techniques are involved 
to improve the overall performance. We introduce 
Xeggora as an evolutionary extension of 
RockIt, the query engine that uses CPA. Xe-
ggora evaluation on real-world benchmarks shows 
progress in efficiency compared to RockIt espe-
cially for models with long formulas. 

1 Introduction 
MAP inference is a concerning need in Markov Logic [Rich-
ardson and Domingos, 2006] because of its high complexity. 
Several lifting approaches [Kimmig et al., 2015] including 
Cutting Plane Aggregation (CPA) [Noessner et al., 2013] are 
introduced to speed up inference by detecting symmetries and 
avoiding repetitive computations. CPA improves compilation 
from a ground network to an Integer Linear Program (ILP) 
by decreasing the size of the program and better exposing its 
symmetries. The ILP is further passed to traditional solvers 
and the solution is mapped to a MAP state of the original 
MLN. 

There still exist further symmetries that CPA is unable to 
handle. In this work [Amirian and Shiry Ghidary, 2019], we 
first illustrate some types of these symmetries by introducing 
order of aggregation and showing that CPA is able to 
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perform only aggregations of order one, whereas higher-or-
der aggregations are required to exploit the ignored symme-
tries. Secondly, a superior algorithm, namely Full Constraint 
Aggregation (FCA) is introduced, empowered with any pos-
sible order of aggregation with respect to the model. FCA 
performs a novel translation to efficient ILPs by relaxing 
some constraints. We then propose complementary tech-
niques, including heuristics and RDBMS leverage to choose 
efficiently among multiple candidates the one in which FCA 
fits the best. The proposed methods are implemented within 
an evolutionary extension of RockIt, namely Xeggora. 
Finally, we show that Xeggora’s time-preserving tech-
niques outperform RockIt while applied to models with 
long formulas. 

1.1 MAP Inference in Markov Logic 
Markov Logic allows softening a first-order formula f, by at-
taching a real-valued weight w to it. A positive (negative) 
weight makes the formula support (penalize) worlds in which 
it is satisfied. Hard formulas are regular first-order formulas 
which are expressed with infinite weights and have to be ful-
filled by every possible world. The probability of a possible 
world x in the presence of evidence e is defined as: 

𝑃(𝑋 = 𝑥|𝑒) =
1

𝑍𝑒
𝑒𝑥𝑝 ( ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

) 

where 𝑍𝑒 is a normalization constant with respect to e, and 
𝑛𝑖(𝑥, 𝑒) is the number of true groundings of 𝑓𝑖 in x that satisfy 
e. MAP inference corresponds to inferring the most likely 
possible world, and reduces to finding the interpretation that 
maximizes the sum of the weights of the satisfied clauses.: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃(𝑥|𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥

1

𝑍𝑒
𝑒𝑥𝑝 ( ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

. 

This can be left as an ILP formulation [Wolsey, 1998] for ef-
ficient optimizers to be solved. Huynh and Mooney [2009] 
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proposed a translation of MAP queries to ILPs and Noessner 
et al. [2013] extended the approach by applying constraint 
aggregation. We improve the result by applying higher-order 
aggregations and introduce Full Constraint Aggregation. The 
method is powered with RDBMS and heuristic techniques to 
choose efficiently among candidate clauses to be aggregated. 

1.2 Preface 
In the next section we describe the ILP formulation and con-
straint aggregation methods. Section 3 is composed of the 
FCA algorithm description. Section 4 describes add-on tech-
niques that leverage RDBMS and related heuristics to im-
prove the overall performance. The reader is referred to the 
original paper for details, examples, soundness proofs, ILP 
solving analytics, and the empirical evaluation of FCA on six 
benchmark MLNs. 

2 MAP ILP Formulation Techniques 
In all parts of the process, formulas are supposed to be com-
posed of disjunctive clauses. The traditional ILP formulation, 
and the enhancements of constraint aggregation are intro-
duced here. We then continue by introducing symmetries that 
CPA fails to exploit. 

2.1 Traditional ILP Formulation  
Given a set of ground clauses 𝒢 as input, one binary ILP var-
iable 𝑥ℓ is associated with each ground atom ℓ occurring in 
the set, assigning it a value 1 provided ℓ is true and 0 other-
wise. Each evidence atom can be represented as a linear con-
straint of the form 𝑥ℓ ≤ 0 or 𝑥ℓ ≥ 1. For each ground clause 
𝑔 ∈ 𝒢 with weight 𝑤𝑔 ∈ ℝ, a binary variable 𝑧𝑔 with coeffi-
cient 𝑤𝑔 is added to the objective. The objective totally be-
comes: 

maximize ∑ 𝑤𝑔𝑧𝑔𝑔∈𝒢 . 

It is straightforward to design constraints considering 𝑧𝑔 to 
be assigned 1 provided its corresponding ground clause is sat-
isfied in the MAP solution and 0 otherwise. For a clause with 
𝑤𝑔 > 0, the following constraint is added to the ILP: 

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 𝑧𝑔 

where 𝐿+(𝑔) and 𝐿-(𝑔) refer to the sets of all ground atoms 
occurring unnegated and negated in 𝑔, respectively. A truth 
value assignment to any ground atom that fulfills the disjunc-
tive clause 𝑔, makes the left-hand side of the constraint posi-
tive, thus, 𝑧𝑔 can take its maximum possible value 1.  
For hard clauses (𝑤𝑔 = ∞), no term is added to the objective 
and 𝑧𝑔 in the constraint is simply replaced with 1: 

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 1. 

For a clause with 𝑤𝑔 < 0, the optimizer tries to lower 𝑧𝑔 to 
its minimum possible value 0. The following constraint is 
added to permit this only if none of its constituting ground 
atoms satisfy 𝑔: 

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≤ (|𝐿+(𝑔)| + |𝐿-(𝑔)|) 𝑧𝑔. 

Finally, for clauses with zero weights, no constraint is added 
to the ILP. 

2.2 Cutting Plane Aggregation 
Grounding formulas in MLN often results in symmetries in 
multiple ground clauses, and consequently, in the ILP con-
straints. Constraint aggregation proposes aggregating ground 
clauses that include symmetries, resulting in smaller con-
straint matrices and aiding symmetry detection algorithms of 
the ILP solver. The candidate sets of ground clauses to which 
aggregation can be applied are defined as follows: 

Definition 1 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses 
and let c be a ground clause. We say that 𝐺 can be aggre-
gated with respect to c if (a) all ground clauses in 𝐺 have the 
same weight and (b) for every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have 
that 𝑔𝑖 = ℓ𝑖 ∨ 𝑐 where ℓ𝑖 is a positive or a negative literal. 

For such a set, all corresponding ILP constraints can be re-
placed by fewer constraints with the following rules: 

Definition 2 (First-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be a 
set of n ground clauses with weight 𝑤𝐺 that can be aggre-
gated with respect to a ground clause c. 

I. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corre-
sponding terms in the ILP objective with a new integer 
variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺: 

maximize 𝑤𝐺𝑧𝐺 + rest of the objective. 

If 𝑤𝐺 > 0, replace the corresponding ILP constraints 
with: 

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) +
∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺, 

and if 𝑤𝐺 < 0, with: 
∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 ≤ 𝑧𝐺, 
𝑛𝑥ℓ ≤ 𝑧𝐺             𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐), 
𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐). 

 

II. In case of an infinite weight (𝑤𝐺 = ∞), only replace the 
corresponding ILP constraints with: 

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) +
∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛. 

According to the aggregation rules, 𝑧𝐺 is considered to be 
assigned the number of satisfied ground clauses in 𝐺; it gains 
the maximum value n provided a solution satisfies the ground 
clause c, otherwise it is equal to the number of the literals (of 
the form p or ¬q) satisfied by the solution. The CPA algo-
rithm chooses greedily among sets that can be aggregated to 
a more compact ILP and applies constraint aggregation. 

2.3 CPA Failure 
There still exist similarities between clauses in the following 
example, but in addition, diversity in more than one literal. 

Example 1 Consider an MLN with a single formula of weight 
2.3 stating that each kid may be happy of having a kind parent 
who has fun with him (her): 
2.3 Child(k, p) ∧ Kind(p) ∧ HasFun(p, k) ⇒ Happy(k). 
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By grounding and applying the evidence: 
Child(Mary, Jack), Child(Mary, Rose) 
the essential ground clauses in normal form would be: 
2.3 ¬Kind(Jack) ∨ ¬HasFun(Jack, Mary) ∨ Happy(Mary) 
2.3 ¬Kind(Rose) ∨ ¬HasFun(Rose, Mary) ∨ Happy(Mary) 

These symmetries are ignored by the CPA algorithm; it al-
lows only one literal to be distinct while all others must be 
identical. This is the justification of naming the method first-
order aggregation. This failure often happens in models con-
taining long formulas. We introduce Full-Constraint-Aggre-
gation that can exploit this type of symmetry. 

3 Full Constraint Aggregation  
We start by illustrating symmetry types that appear in ground 
clauses as in Example 1, based on a parameter we name order 
of aggregation. Then we describe our superior algorithm 
which performs higher-order aggregations. 

Definition 3 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses 
and let c be a ground clause with non-zero length. We say 
that 𝐺 can be aggregated of order k with respect to c, if (a) 
all ground clauses in 𝐺 have the same weight and (b) for 
every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have that 𝑔𝑖 = 𝐿𝑖 ∨ 𝑐 where 𝐿𝑖 
is a ground clause of maximum length k. We call k the aggre-
gation order of 𝐺, if k is the minimum order of which 𝐺 can 
be aggregated (with respect to any ground clause c). 

Due to Definition 3, the constraint aggregation method is 
only applicable to the sets of ground clauses with aggregation 
order of 1, performing first-order aggregation. For a set of a 
higher aggregation order, we need to associate disjunctions 
of literals with binary terms in the optimization program, e.g. 
𝑎 ∨ 𝑏 ≡ 𝑥𝑎 + 𝑥𝑏 − 𝑥𝑎𝑥𝑏. This results in an Integer Polyno-
mial Program. To be more precise, a kth order trivial aggre-
gation may be performed to formulate the MAP inference 
problem as an integer kth order mathematical program. The 
program can be further linearized to an equivalent ILP using 
the classic linearization method outlined by Watters [1967], 
as previously done in a different MAP inference method by 
Sarkhel et al. [2014]. However, the resulting ILP would carry 
much more variables and constraints and last longer to be 
solved than the one from the traditional ILP formulation. 

To overcome this issue, we propose a novel relaxed trans-
lation of MLNs to ILPs by associating auxiliary variables 
with disjunctive clauses. This is done through higher-order 
aggregation rules. 

Definition 4 (Higher-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be 
a set of n ground clauses with weight 𝑤𝐺 with the aggregation 
order of 𝑘 > 1, i.e., can be aggregated of order 𝑘 with re-
spect to a ground clause c. Each ground clause 𝐿𝑖 such that 
𝐿𝑖 ∨ 𝑐 ∈ 𝐺 is a disjunction of at most k unnegated or negated 
ground atoms. For each 𝐿𝑖 with length 1, apply the First-Or-
der Aggregation Rules. For the remainder: 

I. Corresponding to each 𝐿𝑖, define a new binary ILP var-
iable 𝑥𝑠𝑖

. Choose one of the following Bound Constraints 
(BCs) after the sign of 𝑤𝐺 and add it to the ILP:  

Upper-BC: 𝑥𝑠𝑖
≤ ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖)       

if 𝑤𝐺 > 0 or 𝑤𝐺 = ∞, and 
Lower-BC: ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖) ≤ |𝐿𝑖|. 𝑥𝑠𝑖

   

if 𝑤𝐺 < 0. 
 

II. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corre-
sponding terms in the ILP objective with a new integer 
variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺: 

maximize 𝑤𝐺𝑧𝐺 + rest of the objective. 

If 𝑤𝐺 > 0, replace the corresponding ILP constraints 
with: 

∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺, 

and if 𝑤𝐺 < 0, with: 
∑ 𝑥𝑠𝑖

𝑛
𝑖=1 ≤ 𝑧𝐺, 

𝑛𝑥ℓ ≤ 𝑧𝐺             𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐), 
𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐). 

 

III. In case of an infinite weight (𝑤𝐺 = ∞), only replace the 
corresponding ILP constraints with: 

∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛. 

The Upper-BC and Lower-BC pair if used altogether, rep-
resent the disjunction operator(s) of 𝐿𝑖 in the ILP. Intuitively, 
to correspond a logical OR operator for two Boolean varia-
bles: 𝑐 ≡ 𝑎 ∨ 𝑏 in the integer space, one may add two ine-
qualities: 𝑥𝑐 ≤ 𝑥𝑎 + 𝑥𝑏 ≤ 2𝑥𝑐. Similar inequalities would 
represent the disjunction of k Boolean variables. Now if 𝑥𝑐 is 
involved in either maximization or minimization, one can 
drop the corresponding inessential constraint. The reader is 
referred to the original paper [Amirian and Shiry Ghidary, 
2019] for the soundness proof. 

4 Leveraging RDBMS and Heuristics  
In the original paper, we showed analytically a major differ-
ence between the first-order and higher-order aggregations. 
First-order aggregation, if applicable, reduces the ILP size on 
the order of the number of aggregated clauses, which results 
in much faster program solving. This is also verified through 
experiments on the artificial data. Desired metrics may be ob-
tained to compare the efficiency of possible clustering 
schemes. However, this is not trivial because efficiency is an 
abstract measure that relates to the cost of the aggregation 
procedure in terms of size and runtime, along with the cost of 
solving the ILP. Moreover, involving a metric in the algo-
rithm would acquire time-consuming computations. Instead, 
we propose a heuristic approach to choose an appropriate 
clustering scheme for aggregation as described in the follow-
ing algorithm. In order to benefit from query optimization 
technologies, this algorithm leverages RDBMS to compute 
the compactness of possible aggregations. The idea of 
RDBMS leverage for MAP inference in Markov Logic was 
inspired by Riedel [2008] and evolved by Niu et al. [2011] 
and Noessner et al. [2013]. They used RDBMS in the ground-
ing phase and also in finding the violated constraints, but the 
computation of counting features was not implemented with 
RDBMS because it requires storing or regeneration of the 
ground table which is often inefficient for first-order 
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aggregation. In the case of higher-order aggregations how-
ever, counting the number of rows is required several times 
which is done by the COUNT DISTINCT query. It is a stand-
ard SQL query used for counting the number of distinguish-
able rows on the specified columns in a table. Extensionally, 
MySQL permits using it multiple times in a single query. 
 

Algorithm CHOOSEFORAGGREGATION 
 Input ℱ: a first-order disjunctive clause 
 Input 𝒢: a SQL table, containing all essential ground 

clauses of ℱ 
 Output appropriate clustering scheme as the target 

for aggregation 
1:   L  𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠_𝑜𝑓 (ℱ) 
2:   𝒱  𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠_𝑜𝑓 (L) 
3:   if |L| = 1 
4:       candidate_sets   {∅} 
5:   else 
6:       candidate_sets   {} 
7:   foreach non-empty 𝑉 ⊆ 𝒱 
8:       identical_literals  {ℓ𝑖 ∈ 𝐿| 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑜𝑓(ℓ𝑖) ⊆ 

𝑉} 
9:       if identical_literals  candidate_sets  
          and identical_literals ≠ L 
10:         add identical_literals to candidate_sets 
11: if candidate_sets contains any sets of literals with the 
      size of |L| - 1 
12:     return best of them greedily to be further 
          first-order aggregated 
13: else 
14:     query  ‘SELECT ’  
15:     foreach identical_part ∈ candidate_sets 
16:         query  query + ‘COUNT (DISTINCT ’ 

                   + 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (identical_part) + ‘) as ’  
        + 𝐶𝑎𝑝𝑡𝑖𝑜𝑛 (identical_part) 
                   [+ ‘,’] // except for the last loop 

17:     query  query + ‘FROM ’ + 𝒢 
18:     execute query into #clusters 
19:     best_candidate_sets   
                   {argmin#𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 candidate_sets} 
20:     return argmaxcardinality best_candidate_sets 

 
The algorithm is provided with a disjunctive clause and a 

table containing all of its essential groundings in the rows and 
its constituting variables in the columns. Inessential ground-
ings (e.g. by the substitution of {𝑘 ↦ 𝐵𝑜𝑏, 𝑝 ↦ 𝑅𝑜𝑠𝑒} in Ex-
ample 1) should have been previously ignored in order to pro-
duce an effective output. The algorithm first acquires the set 
of all literals that constitute the clause and also all variables 
that participate in grounding (lines 1, 2). In lines 3-6, a set is 
initialized for storing all feasible partitioning schemes of the 
literals. Each candidate set is a representative for the set of 
identical literals (i.e., clause c in Definition 3), so the com-
plementary literals are considered distinct. The cardinality of 
a candidate set represents the clause length minus its 

proposing order of aggregation. ∅ is by default a feasible can-
didate set. However, it is added only for first-order aggrega-
tion as it would not be efficient for higher orders, as consid-
ered in Definition 3. Lines 7-10 collect candidate sets for ag-
gregation. One may trivially collect the sets based on ground 
literals; however, we build the collection method upon non-
empty sets of variables, in order to avoid producing infeasible 
candidate sets. It starts with partitioning the variables. Each 
partitioning scheme of variables specifies a feasible partition-
ing scheme of literals which in turn corresponds to a cluster-
ing scheme of the essential ground clauses. Line 11 discovers 
if any candidates are present for first-order aggregation, to be 
in case the arguments of a call to the procedure (line 12). If 
there exist more than one candidate, one would be chosen 
greedily as done in CPA. Lines 14-18 contain the code for 
generating and executing the SQL query that counts the num-
ber of clusters aggregated according to each partitioning 
scheme. Each single clause that is not aggregated is consid-
ered in a singleton cluster. We involve the query output #clus-
ters as a lookup table which returns the number of clusters 
given a candidate set. Finally, the candidate partitioning 
scheme that offers the minimum number of clusters is se-
lected. If there exist multiple solutions, the one with the low-
est aggregation order is returned (lines 19-20). This is moti-
vated from the analysis on the artificial data; keeping other 
parameters fixed, lower-order aggregations often produce 
slightly more efficient ILPs. 

5 Empirical Evaluation  
We implemented the proposed methods within an evolution-
ary extension of RockIt, namely Xeggora, besides fix-
ing minor bugs of the previous system. Finally, we proved 
enhancements with comprehensive experiments upon two 
benchmark sets. The first set of artificial benchmarks ex-
plores the effect of higher-order aggregation as compared to 
the first-order aggregation with respect to the length of 
clauses. The results confirm the intuition developed through 
the theoretic side. On practical benchmarks for the entire sys-
tem, we showed that FCA retains the enhancements of previ-
ous works on instances where higher-order aggregation is not 
applicable, but provides a large benefit in instances where it 
is. 
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