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Abstract
[Gelfond and Lifschitz, 1991] introduced simple
disjunctive logic programs and defined the answer
set semantics called GL-semantics. We observed
that the requirement of GL-semantics, i.e., an an-
swer set should be a minimal model of the GL-
reduct may be too strong and exclude some answer
sets that would be reasonably acceptable. To ad-
dress this, we present a novel and more permissive
semantics, called determining inference semantics.

1 Introduction
In a seminal paper, [Gelfond and Lifschitz, 1991] introduced
simple disjunctive logic programs, where in rule heads the
disjunction operator “|” is used to express incomplete infor-
mation, and defined the answer set semantics (called GL-
semantics) based on a program transformation (called GL-
reduct) and the minimal model requirement. Our observa-
tions reveal that the requirement of GL-semantics, i.e., an an-
swer set should be a minimal model of rules of the GL-reduct,
may sometimes be too strong and exclude some answer sets
that would be reasonably acceptable, as illustrated in the fol-
lowing example.

Example 1. Consider the simple disjunctive program.

Π : a | b (1)

b← a (2)

c← a (3)

c← ¬c (4)

Intuitively, rule (1) presents two alternatives for answer set
construction, namely a or b, and rules (2) and (3) infer b and c,
respectively if a has already been derived. Rule (4) is a con-
straint stating that there is no answer set that does not contain
c. We distinguish between the following two cases. Suppose
that we choose a from rule (1); then by rules (2) and (3) we
obtain a potential answer set I1 = {a, b, c}. I1 satisfies the
constraint (4), so it is a candidate answer set for Π. Alterna-
tively, suppose that we choose b from rule (1). As a is not
inferred from rule (1), rules (2) and (3) are not applicable;

∗This paper is an extended abstract of the article [Shen and Eiter,
2019] in Artificial Intelligence, 277:1-28, 2019.

so rules (1), (2) and (3) together infer a potential answer set
I2 = {b}. As I2 does not satisfy the constraint (4), it is not
a candidate answer set for Π. Consequently, I1 = {a, b, c}
is a minimal candidate answer set and thus we expect it to be
an answer set of Π. However, I1 is not an answer set under
GL-semantics because it is not a minimal model of Π.

To address this, we present a more permissive semantics:
(1) We present a general answer set semantics for dis-

junctive programs, called determining inference semantics
(DI-semantics for short), which interprets the operator | in
rule heads differently from the classical connective ∨, and
does not require that answer sets should be minimal models.
Specifically, we formalize the rule head operator | by intro-
ducing a head selection function sel , i.e., for every interpre-
tation I and rule head H1 | · · · | Hk, sel(H1 | · · · | Hk, I)
nondeterministically selects one alternative Hi satisfied by I .
Then we define answer sets as follows: (i) Given an interpre-
tation I and a selection function sel , we transform a disjunc-
tive program Π into a normal program ΠI

sel , called disjunctive
program reduct, such that for every rule head(r) ← body(r)
in Π, sel(head(r), I) ← body(r) is in ΠI

sel if I satisfies
body(r); (ii) given a base answer set semantics X for nor-
mal programs, we define I to be a candidate answer set w.r.t.
X if I is an answer set of ΠI

sel under X ; and (iii) we define I
to be an answer set w.r.t.X if I is a minimal candidate answer
set. Such answer sets are called DI-answer sets.

(2) By replacing the base semantics X in the above gen-
eral semantics with the GLnlp-semantics defined by [Gelfond
and Lifschitz, 1988], we induce a DI-semantics for simple
disjunctive programs (definitions follow below). We show
that an answer set under GL-semantics is an answer set un-
der DI-semantics, but not vice versa; the main reason behind
is that GL-semantics interprets the operator | in rule heads
as the classical connective ∨ and further requires that answer
sets must be minimal models; this may exclude some desired
answer sets. To clearly see the essential difference of DI-
semantics from GL-semantics, we also present a new charac-
terization of GL-semantics in terms of a disjunctive program
reduct ΠI

sel . Based on this characterization, we obtain a sat-
isfactory solution to an open problem of [Hitzler and Seda,
1999], which was to characterize split normal derivatives of a
simple disjunctive program Π.

(3) By replacing the base semantics X with the well-
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justified semantics defined by [Shen et al., 2014], we further
induce a DI-semantics for general disjunctive programs con-
sisting of rules of the form H1 | · · · | Hk ← B, where B
and every Hi are arbitrary first-order formulas. This closes
the open issue of [Shen et al., 2014] how to extend the well-
justified semantics from general normal programs with rules
of the form H1 ← B to general disjunctive programs.

(4) Finally, we show that in the propositional case decid-
ing whether a simple disjunctive program Π has some DI-
answer set is NP-complete, and deciding whether a ground
literal is true in some (resp. every) DI-answer set of Π is
Σp2-complete (resp. Πp

2-complete). This is in contrast to GL-
semantics, where deciding whether a simple disjunctive pro-
gram has GL-answer sets is Σp2-complete [Eiter and Gottlob,
1995]. For general disjunctive programs, the complexity of
DI-semantics increases to Σp2-completeness for DI-answer set
existence and to Σp3-completeness and Πp

3-completeness for
brave and cautious reasoning, respectively.

For an extensive discussion of historical and philosophical
background, we refer to [Shen and Eiter, 2019].

2 Disjunctive Programs
We take a first-order logic language LΣ with equality. A first-
order theory (or theory) is a set T of closed formulas. ByNΣ

we denote the set of all ground (variable-free) terms of Σ, and
by HΣ the set of all ground atoms. An interpretation I is a
subset ofHΣ such that for any ground atomA, I satisfiesA if
A ∈ I , and ¬A ifA 6∈ I . The notion of satisfaction/models of
a formula/theory in I is defined as usual. A theory T entails
a closed formula F , denoted T |= F , if all models of T are
models of F . For an interpretation I , we let I− = HΣ \ I
and ¬I− = {¬A | A ∈ I−}.
Definition 1. A general disjunctive program (disjunctive pro-
gram for short) is a finite set of rules of the form

H1 | · · · | Hk ← B (1)
where k > 0, and B and the Hi’s are first-order formulas.

For a rule r, we refer to B and H1 | · · · | Hk as its body
and head, denoted body(r) and head(r), respectively. We
also refer to each Hi as a head formula. A constraint is a rule
of the form ⊥ ← B. A rule A← ¬A amounts to a constraint
⊥ ← ¬A. A disjunctive program is a general normal pro-
gram (normal program for short) if k = 1 for every rule; a
simple disjunctive program if each Hi is an atom and B is a
conjunction of literals, and a simple normal program if addi-
tionally k = 1. A positive simple normal/disjunctive program
is a simple normal/disjunctive program without negative lit-
erals. The grounding of a disjunctive program Π, obtained
by substituting the free variables in Π with constants in all
possible ways, is denoted ground(Π).

An interpretation I satisfies a rule head H1 | · · · | Hk if
it satisfies some Hi; I satisfies a rule r if it either satisfies
head(r) or it does not satisfy body(r); I is a model of a dis-
junctive program Π if I satisfies every rule r ∈ ground(Π).

Let Π be a simple disjunctive program and I an interpreta-
tion. The GL-reduct of Π w.r.t. I , written as ΠI , is obtained
from ground(Π) by (1) removing all rules whose bodies con-
tain some ¬Ci with Ci ∈ I , and (2) removing from the re-
maining rules all ¬Ci. The GL-semantics defines I to be an

answer set of Π (referred to as GL-answer set) if I is a mini-
mal model of ΠI [Gelfond and Lifschitz, 1991]. When Π is a
simple normal program, the GLnlp-semantics defines I to be
an answer set of Π if I is the least model of ΠI . For simple
normal programs, GL- and GLnlp-semantics coincide.
Remark 1. If we replace | with ∨ in rule heads and let ΠI

∨ be
ΠI with all occurrences of | replaced by ∨, then ΠI has the
same minimal models as ΠI

∨. Thus I is an answer set of Π
under GL-semantics iff I is a minimal model of ΠI iff I is a
minimal model of ΠI

∨. This means that in GL-semantics the
use of | in rule heads amounts in essence to disjunction ∨.

3 Determining Inference (DI) Semantics
Under the constructive view of the operator | as a nonde-
terministic inference operator, every rule head H = H1 |
· · · | Hk in a disjunctive program can be viewed as a set
{H1, · · · , Hk} of alternatives. As these alternatives may have
different variants (i.e., every Hi can be expressed as different
yet logically equivalent formulas) and appear in different or-
ders in rule heads, we introduce a notion of variant rule heads.
Definition 2. Rule heads H1 = E1 | · · · | Ek and H2 =
F1 | · · · | Fl, where the Ei’s and Fj’s are closed formulas,
are variant rule heads if for every Ei in H1 some Fj in H2

exists with Ei ≡ Fj , and vice versa for every Fj in H2 some
Ei inH1 exists with Ei ≡ Fj .

Intuitively, variant rule heads H1 and H2 represent the
same set of alternatives and should be treated the same. If
k > l, then H1 must have some head formulas that are logi-
cally equivalent. Moreover, rule heads in a simple disjunctive
program are variant rule heads iff they have the same atoms.
Definition 3. Let Π be a disjunctive program and I the col-
lection of all interpretations. Let HDΠ be the set of all rule
heads in ground(Π), andHFΠ the set of all head formulas in
HDΠ. A head selection for Π is a function sel : HDΠ×I →
HFΠ ∪ {⊥} such that for every interpretation I ∈ I and ev-
ery rule r ∈ ground(Π),

sel(head(r), I) =

{
Fi, if head(r) has some head formula

Fi that is satisfied by I
⊥, otherwise,

such that for every variant rule heads H1 and H2 in HDΠ,
sel(H1, I) ≡ sel(H2, I).

A head selection function sel formalizes the operator |
as a nondeterministic operator; i.e., for any interpretation I ,
sel(F1 | · · · | Fk, I) returns from a rule head F1 | · · · | Fk
one of the alternatives Fi satisfied by I , or it returns⊥ if there
is no Fi that is satisfied by I . For variant rule heads, it returns
logically equivalent alternatives that are satisfied by I .
Definition 4. Let Π be a disjunctive program, I an interpre-
tation and sel a head selection function. The reduct of Π
w.r.t. I and sel is ΠI

sel = {sel(head(r), I) ← body(r) | r ∈
ground(Π) s.t. I satisfies body(r)}.

A reduct ΠI
sel is a normal program; therefore we can ap-

ply any existing answer set semantics for normal programs to
compute answer sets of ΠI

sel . Intuitively I is a candidate an-
swer set of Π if I is an answer set of ΠI

sel , and I is an answer
set of Π if I is minimal among all candidate answer sets.
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Definition 5. Let I be a model of a disjunctive program Π,
and X be an answer set semantics for normal programs. Then
I is an answer set of Π w.r.t. X if (1) for some head selection
function sel , I is an answer set of ΠI

sel under X , and (2) Π
has no model J ⊂ I satisfying condition (1).

Due to the use of head selection functions, the above se-
mantics interprets the disjunctive rule head operator | differ-
ently from the classical connective ∨. Let H1 = E1 | · · · |
Ek and H2 = E1 ∨ · · · ∨ Ek be two rule heads and let I be
an interpretation that satisfies H2. Then there may be up to
k head selection functions forH1, each selecting one alterna-
tive Ei that is satisfied by I , which leads to at most k disjunc-
tive program reducts; in contrast, there is only one head se-
lection function forH2, i.e., sel(H2, I) = H2, which leads to
only one disjunctive program reduct. Different reducts may
lead to different candidate answer sets and thus disjunctive
programs with rule heads likeH1 are different from programs
with rule heads likeH2.

Moreover, the above semantics does not require that an-
swer sets should be minimal models; it only requires answer
sets to be minimal among all candidate answer sets.

In order to stress the intuition that candidate answer sets
are determined by means of a chosen head selection function
for applying rulesH1 | · · · | Hk ← Body , where one alterna-
tive Hi from the head is inferred when Body is satisfied, we
refer to the above answer set semantics as determining infer-
ence (DI) semantics for disjunctive programs; we call answer
sets of DI-semantics DI-answer sets and models satisfying
condition (1) of Definition 5 candidate DI-answer sets.

4 DI-Semantics for Simple Disjunctive
Programs

By replacing the base semantics X in Definition 5 with
GLnlp-semantics we induce a DI-answer set semantics for
simple disjunctive programs.
Definition 6. A model I of a simple disjunctive program Π is
a DI-answer set of Π, if (1) for some head selection function
sel , I is an answer set of ΠI

sel under GLnlp-semantics, and
(2) Π has no model J ⊂ I satisfying condition (1).

A DI-answer set is not necessarily a GL-answer set, but
for simple normal programs and positive simple disjunctive
programs, DI-semantics agrees with GL-semantics.
Theorem 1. Let Π be a simple normal program or a positive
simple disjunctive program. Then an interpretation I is a DI-
answer set of Π iff I is a GL-answer set of Π.

It is particularly interesting to observe that GL-semantics
can also be characterized using the disjunctive program
reduct ΠI

sel of Definition 4 simply by requiring that for every
(instead of some) head selection function sel , I is an answer
set of ΠI

sel under GLnlp-semantics. This reveals the essential
difference between DI-semantics and GL-semantics.
Theorem 2. A model I of a simple disjunctive program Π is
a GL-answer set of Π iff for every head selection function sel ,
I is an answer set of ΠI

sel under GLnlp-semantics.
As GL-answer sets of a simple disjunctive program Π are

minimal models of Π, the following corollary is immediate.

Corollary 1. Let Π be a simple disjunctive program. If I is a
GL-answer set, then I is a DI-answer set.

5 DI-Semantics for General Programs
General normal programs consist of rules of the form H ←
B, where H and B are first-order formulas. To overcome the
problem of circular justifications with those answer set se-
mantics for general normal programs such as those in [Pearce,
2006; Truszczynski, 2010; Bartholomew et al., 2011; Faber et
al., 2011; Ferraris et al., 2011] based on classical logic, [Shen
et al., 2014] presented the well-justified semantics whose an-
swer sets have a level mapping and thus are free of circu-
lar justifications, in analogy to the level mapping of GLnlp-
semantics for simple normal programs [Fages, 1994]. [Shen
et al., 2014] left extending the well-justified semantics to gen-
eral disjunctive programs as an open problem; we can ele-
gantly close it by replacing the base semantics X in Defini-
tion 5 with the well-justified semantics.

The well-justified semantics is based on the one-step prov-
ability operator TΠ(O,N), which extends the well-known
immediate consequence operator [van Emden and Kowalski,
1976] from Horn programs to general normal programs.

Definition 7 ([Shen et al., 2014]). Let Π be a general normal
program, and let O and N be two first-order theories. Then

TΠ(O,N) = {head(r) | r∈ ground(Π), O∪N |= body(r)}.

Informally, TΠ(O,N) collects all heads of grounded rules
whose bodies are entailed by O ∪N . For fixed N , the entail-
ment |= is monotone in O, so TΠ(O,N) is monotone w.r.t.
O, i.e., for any theories O1 ⊆ O2, we have TΠ(O1, N) ⊆
TΠ(O2, N). As moreover TΠ(O,N) is finitary, the inference
sequence 〈T iΠ(∅, N)〉∞i=0, where T 0

Π(∅, N) = ∅ and for i ≥ 0

T i+1
Π (∅, N) = TΠ(T iΠ(∅, N), N), will converge to a least fix-

point, denoted lfp(TΠ(∅, N)).
The well-justified (WJ) semantics is then defined in terms

of lfp(TΠ(∅,¬I−)), i.e., derivability under the closed-world
assumption applied to candidate answer I , as follows.

Definition 8 ([Shen et al., 2014]). Let I be a model of a gen-
eral normal program Π. Then I is a WJ-answer set of Π if
lfp(TΠ(∅,¬I−)) ∪ ¬I− |= A for every A ∈ I .

By replacing X in Definition 5 with WJ-semantics we in-
duce a DI-answer set semantics for general programs.

Definition 9. A model I of a general disjunctive program Π is
a DI-answer set of Π if (1) for some head selection function
sel , I is a WJ-answer set of ΠI

sel , and (2) Π has no model
J ⊂ I satisfying condition (1).

Intuitively, a DI-answer set is a model that is minimal
among all models that can be nondeterministically (by means
of a head selection function) inferred by iteratively applying
rules via a bottom up fixpoint sequence.

Corollary 2. For a general normal program, I is a DI-
answer set iff I is a WJ-answer set. For a simple disjunctive
program, I is a DI-answer set under Definition 9 iff I is a
DI-answer set under Definition 6.
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6 Computational Complexity
We address the computational complexity of propositional
logic programs, where we focus on the DI-semantics with
the well-justified semantics [Shen et al., 2014] as the base
semantics and refer to it as DI-WJ answer set semantics.
Theorem 3. Given a propositional simple (resp. general) dis-
junctive program Π and a ground literal L, deciding whether
(i) Π has some DI-WJ answer set is NP-complete (resp. Σp2-
complete), (ii) L is true in every DI-WJ answer set of Π is
Πp

2-complete (resp. Πp
3-complete), and (iii) L is true in some

DI-WJ answer set of Π is Σp2-complete (resp. Σp3-complete).
Analogous results hold for other semantics such as FLP-

semantics [Faber et al., 2011]. Compared to GL-/FLP-
semantics, the complexity of brave and cautious reasoning in-
creases under DI-semantics by one level of PH, thus offering
higher problem solving capacity. Computing a DI-WJ answer
set is complete for the NP- resp. Σp2-functions and feasible
with bounded many witness oracle calls [Buss et al., 1993;
Janota and Marques-Silva, 2016] in polynomial time.

7 Difference between Disjunctive Rule Heads
and Choice Constructs

Like disjunctive rule heads, choice constructs [Simons et al.,
2002; Ferraris and Lifschitz, 2005; Calimeri et al., 2012] are
also used to express a set of alternatives. However, a disjunc-
tive rule head a1 | · · · | am and a choice construct of the form
u1{a1, · · · , am}u2, where m > 0, 0 ≤ u1 ≤ u2 ≤ m, and
the ai’s are ground atoms, are essentially different.

Let α= {a1, · · · , am} and β= {γ | γ ⊆ α and u1 ≤
|γ| ≤ u2}. The choice construct u1{a1, · · · , am}u2 says that
any γ ∈ β can be chosen as answer.

For a logic program Π, let AS(Π) denote the set of an-
swer sets of Π. Let Π′ be Π extended with a choice construct
u1{a1, · · · , am}u2. Then the set of answer sets of Π′ is

AS(Π′) =
⋃
γ∈β

AS(Π ∪ {a | a ∈ γ} ∪ {¬b | b ∈ (α \ γ)}).

Example 2. Let Π = {b} and Π′ = Π ∪ {1{a, b}2}. Then
AS(Π′) = AS(Π ∪ {a,¬b}) ∪AS(Π ∪ {¬a, b}) ∪AS(Π ∪
{a, b}). Π ∪ {a,¬b} has no model and thus no answer set,
Π ∪ {¬a, b} has a single answer set {b}, and Π ∪ {a, b} has
a single answer set {a, b}. Therefore, Π′ has in total two
answer sets, {b} and {a, b}.

A disjunctive rule head a1 | · · · | am infers one atom
ai from α and differs essentially from a choice construct
1{a1, · · · , am}u. When u = 1, the choice construct 1{a1,
· · · , am}1 in a logic program Π enforces every answer set
of Π to contain exactly one ai from α. In contrast, though
a1 | · · · | am infers only one ai from α, a DI-answer set may
contain other atoms aj ∈ α, which are inferred by other rules
in a disjunctive program. When u > 1, the choice construct
1{a1, · · · , am}u allows for answer sets I and J with I ⊂ J .
This will not happen with a1 | · · · | am for DI-answer sets.

8 Relation to Split and Fork Programs
For simple disjunctive programs Π, [Hitzler and Seda, 1999]
proposed to split Π into a collection of simple normal

programs, called normal derivatives P (Π), which infor-
mally are obtained from ground(Π) by replacing every rule
A1| · · · |Ak ← body(r), k ≥ 2, arbitrarily with one or more
rules Ai ← body(r), 1 ≤ i ≤ k. E.g., Π = {p | q ← ¬s}
has three normal derivatives: P1(Π) = {p ← ¬s}, P2(Π) =
{q ← ¬s}, and P3(Π) = {p← ¬s, q ← ¬s}.

[Hitzler and Seda, 1999] aimed to use normal derivatives
to characterize GL-semantics of a simple disjunctive pro-
gram Π. They showed that every answer set of Π under GL-
semantics is an answer set of some normal derivative of Π
under GLnlp-semantics. E.g. for the program Π from above,
I = {p} is an answer set of Π under GL-semantics and an an-
swer set of P1(Π) under GLnlp-semantics. However, they left
a precise characterization open, stated as the problem to deter-
mine for every interpretation I some normal derivatives such
that I is an answer set of Π under GL-semantics iff I is an an-
swer set of these normal derivatives under GLnlp-semantics.

The characterization of GL-semantics by the disjunctive
program reduct (Theorem 2) enables us to provide a solution
for this open problem. For a logic program Π, an interpreta-
tion I and a head selection sel on I , let

Psel(Π, I) = {sel(head(r), I)← body(r) | r∈ ground(Π)},
ND(Π, I) = {Psel(Π, I) | sel is a head selection on I}.
Note that ND(Π, I) is the collection of normal derivatives
obtained by applying every head selection on I . Thus for any
head selection sel on a model I , we have
Psel(Π, I) = {sel(head(r), I)← body(r) | r∈ ground(Π)}

= ΠI
sel ∪ {sel(head(r), I)← body(r) | r∈ ground(Π)

and body(r) is not satisfied by I}.
A solution to the above open problem is then as follows.

Theorem 4. An interpretation I is an answer set of a simple
disjunctive program Π under GL-semantics iff I is an answer
set of every P (Π)∈ND(Π, I) under GLnlp-semantics.

In independent work and parallel to ours, [Aguado et al.,
2019] proposed a new construct “|” for answer programs
called fork, which aims at overcoming problems with omit-
ting auxiliary atoms in choice constructs. Informally, under
fork semantics the answer sets of {E |F} ∪Π are the answer
sets of {E}∪Π plus the answer sets of {F}∪Π. Accordingly,
P = {a | b, b | c} has the fork-answer sets {a, b}, {a, c}, {b}
and {b, c}, while its DI-answer sets are {a, c} and {b}. They
diverge as DI-semantics operates in a sense globally on alter-
natives in different rules (by item (2) in Definition 5), while
fork semantics operates locally treating them independently.

Notably, selection functions similar to ours were used in
[Vennekens et al., 2004] to define probabilistic semantics for
logic programs with annotated disjunctions. However, they
do not depend on an interpretation and result (disregarding
probabilities) in all normal derivatives picking always a single
rule Ai ← body (in the example, P1(Π) and P2(Π)). Thus
like fork semantics, this semantics has a local flavor.
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