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Abstract

[Gelfond and Lifschitz, 1991] introduced simple
disjunctive logic programs and defined the answer
set semantics called GL-semantics. We observed
that the requirement of GL-semantics, i.e., an an-
swer set should be a minimal model of the GL-
reduct may be too strong and exclude some answer
sets that would be reasonably acceptable. To ad-
dress this, we present a novel and more permissive
semantics, called determining inference semantics.

1 Introduction

In a seminal paper, [Gelfond and Lifschitz, 1991] introduced
simple disjunctive logic programs, where in rule heads the
disjunction operator “|” is used to express incomplete infor-
mation, and defined the answer set semantics (called GL-
semantics) based on a program transformation (called GL-
reduct) and the minimal model requirement. Our observa-
tions reveal that the requirement of GL-semantics, i.e., an an-
swer set should be a minimal model of rules of the GL-reduct,
may sometimes be too strong and exclude some answer sets
that would be reasonably acceptable, as illustrated in the fol-
lowing example.

Example 1. Consider the simple disjunctive program.

II: alb (1)
b+ a (2)
c+a (3)
¢ e (4)

Intuitively, rule (1) presents two alternatives for answer set
construction, namely a or b, and rules (2) and (3) infer b and c,
respectively if a has already been derived. Rule (4) is a con-
straint stating that there is no answer set that does not contain
c. We distinguish between the following two cases. Suppose
that we choose a from rule (1); then by rules (2) and (3) we
obtain a potential answer set [; = {a, b, c}. I satisfies the
constraint (4), so it is a candidate answer set for II. Alterna-
tively, suppose that we choose b from rule (1). As a is not
inferred from rule (1), rules (2) and (3) are not applicable;

*This paper is an extended abstract of the article [Shen and Eiter,
2019] in Artificial Intelligence, 277:1-28, 2019.

so rules (1), (2) and (3) together infer a potential answer set
I, = {b}. As I, does not satisfy the constraint (4), it is not
a candidate answer set for II. Consequently, I; = {a,b,c}
is a minimal candidate answer set and thus we expect it to be
an answer set of II. However, I is not an answer set under
GL-semantics because it is not a minimal model of I1.

To address this, we present a more permissive semantics:

(1) We present a general answer set semantics for dis-
junctive programs, called determining inference semantics
(DI-semantics for short), which interprets the operator | in
rule heads differently from the classical connective V, and
does not require that answer sets should be minimal models.
Specifically, we formalize the rule head operator | by intro-
ducing a head selection function sel, i.e., for every interpre-
tation [ and rule head Hy | -+ | Hy, sel(Hy | --- | Hg,I)
nondeterministically selects one alternative H; satisfied by I.
Then we define answer sets as follows: (i) Given an interpre-
tation I and a selection function sel, we transform a disjunc-
tive program IT into a normal program I1% ,, called disjunctive
program reduct, such that for every rule head(r) < body(r)
in II, sel(head(r),I) < body(r) is in IIL , if I satisfies
body(r); (ii) given a base answer set semantics X for nor-
mal programs, we define [ to be a candidate answer set w.r.t.
X if I is an answer set of Hiel under X’; and (iii) we define [
to be an answer set w.r.t. X' if ] is a minimal candidate answer
set. Such answer sets are called DI-answer sets.

(2) By replacing the base semantics X in the above gen-
eral semantics with the GL.,,;,,-semantics defined by [Gelfond
and Lifschitz, 1988], we induce a DI-semantics for simple
disjunctive programs (definitions follow below). We show
that an answer set under GL-semantics is an answer set un-
der DI-semantics, but not vice versa; the main reason behind
is that GL-semantics interprets the operator | in rule heads
as the classical connective V and further requires that answer
sets must be minimal models; this may exclude some desired
answer sets. To clearly see the essential difference of DI-
semantics from GL-semantics, we also present a new charac-
terization of GL-semantics in terms of a disjunctive program
reduct ITZ ;. Based on this characterization, we obtain a sat-
isfactory solution to an open problem of [Hitzler and Seda,
1999], which was to characterize split normal derivatives of a
simple disjunctive program II.

(3) By replacing the base semantics X with the well-
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justified semantics defined by [Shen et al., 2014], we further
induce a DI-semantics for general disjunctive programs con-
sisting of rules of the form Hy | --- | Hy < B, where B
and every H; are arbitrary first-order formulas. This closes
the open issue of [Shen er al., 2014] how to extend the well-
justified semantics from general normal programs with rules
of the form H; < B to general disjunctive programs.

(4) Finally, we show that in the propositional case decid-
ing whether a simple disjunctive program II has some DI-
answer set is NP-complete, and deciding whether a ground
literal is true in some (resp. every) DI-answer set of II is
Y:D-complete (resp. IT5-complete). This is in contrast to GL-
semantics, where deciding whether a simple disjunctive pro-
gram has GL-answer sets is 35 -complete [Eiter and Gottlob,
1995]. For general disjunctive programs, the complexity of
DI-semantics increases to 3-completeness for DI-answer set
existence and to X%-completeness and IT5-completeness for
brave and cautious reasoning, respectively.

For an extensive discussion of historical and philosophical
background, we refer to [Shen and Eiter, 2019].

2 Disjunctive Programs

We take a first-order logic language Ly, with equality. A first-
order theory (or theory) is a set T of closed formulas. By N
we denote the set of all ground (variable-free) terms of 3, and
by Hsx the set of all ground atoms. An interpretation [ is a
subset of Hy, such that for any ground atom A, [ satisfies A if
A € I,and —Aif A ¢ I. The notion of satisfaction/models of
a formula/theory in [ is defined as usual. A theory T entails
a closed formula F', denoted T' |= F, if all models of T" are
models of F. For an interpretation I, we let I~ = Hyx \ I
and—I- ={-A|Ael }

Definition 1. A general disjunctive program (disjunctive pro-
gram for short) is a finite set of rules of the form

Hy |- |Hp« B (1)
where k > 0, and B and the H;’s are first-order formulas.
For a rule r, we refer to B and H; | --- | Hy as its body

and head, denoted body(r) and head(r), respectively. We
also refer to each H; as a head formula. A constraint is a rule
of the form L < B. A rule A < = A amounts to a constraint
1 + —A. A disjunctive program is a general normal pro-
gram (normal program for short) if k& = 1 for every rule; a
simple disjunctive program if each H; is an atom and B is a
conjunction of literals, and a simple normal program if addi-
tionally k = 1. A positive simple normal/disjunctive program
is a simple normal/disjunctive program without negative lit-
erals. The grounding of a disjunctive program II, obtained
by substituting the free variables in II with constants in all
possible ways, is denoted ground (II).

An interpretation I satisfies a rule head Hy | --- | Hy if
it satisfies some H;; I satisfies a rule r if it either satisfies
head(r) or it does not satisfy body(r); I is a model of a dis-
junctive program IT if I satisfies every rule r € ground(II).

Let II be a simple disjunctive program and [ an interpreta-
tion. The GL-reduct of IT w.r.t. I, written as II7, is obtained
from ground(II) by (1) removing all rules whose bodies con-
tain some —~C; with C; € I, and (2) removing from the re-
maining rules all ~C;. The GL-semantics defines I to be an

5041

answer set of II (referred to as GL-answer set) if I is a mini-
mal model of TI [Gelfond and Lifschitz, 1991]. When IT is a
simple normal program, the GL,,;,-semantics defines I to be
an answer set of II if I is the least model of IT/. For simple
normal programs, GL- and GL,;;,-semantics coincide.

Remark 1. If we replace | with V in rule heads and let IT/, be
17 with all occurrences of | replaced by V, then II? has the
same minimal models as I, Thus [ is an answer set of IT
under GL-semantics iff I is a minimal model of 17 iff I is a
minimal model of TT{,. This means that in GL-semantics the
use of | in rule heads amounts in essence to disjunction V.

3 Determining Inference (DI) Semantics
Under the constructive view of the operator | as a nonde-

terministic inference operator, every rule head H = H;p |
-+« | Hy in a disjunctive program can be viewed as a set
{Hy,--- , Hy} of alternatives. As these alternatives may have

different variants (i.e., every H; can be expressed as different
yet logically equivalent formulas) and appear in different or-
ders in rule heads, we introduce a notion of variant rule heads.

Definition 2. Rule heads #; = E; | --- | E and Ho =
Fy | --- | F}, where the E;’s and F}’s are closed formulas,
are variant rule heads if for every E; in H; some F} in Ho
exists with E; = F}, and vice versa for every F; in H, some
E; in H, exists with E; = F.

Intuitively, variant rule heads H; and Ho represent the
same set of alternatives and should be treated the same. If
k > [, then H; must have some head formulas that are logi-
cally equivalent. Moreover, rule heads in a simple disjunctive
program are variant rule heads iff they have the same atoms.

Definition 3. Let II be a disjunctive program and Z the col-
lection of all interpretations. Let H Dy be the set of all rule
heads in ground(IT), and HF1y the set of all head formulas in
HDri. A head selection for 11 is a function sel : HDyy X Z —
HFm U {L} such that for every interpretation I € Z and ev-
ery rule r € ground(II),

F;, if head(r) has some head formula
F;; that is satisfied by 1
1, otherwise,

sel(head(r),I) = {

such that for every variant rule heads #; and Hsy in HDyy,
sel(Hy,I) = sel(Ha, I).

A head selection function sel formalizes the operator |
as a nondeterministic operator; i.e., for any interpretation I,
sel(Fy | -+ | Fg,I) returns from a rule head Fy | --- | Fy
one of the alternatives F; satisfied by I, or it returns _L if there
is no Fj that is satisfied by I. For variant rule heads, it returns
logically equivalent alternatives that are satisfied by 1.

Definition 4. Let II be a disjunctive program, I an interpre-
tation and sel a head selection function. The reduct of 11
w.rt. I and sel is TTZ ; = {sel(head(r),I) + body(r) | r €
ground(IT) s.t. I satisfies body(r)}.

A reduct I/ ; is a normal program; therefore we can ap-
ply any existing answer set semantics for normal programs to
compute answer sets of I17 ;. Intuitively I is a candidate an-
swer set of ITif I is an answer set of IT{ ;, and [ is an answer

sel?
set of IT if I is minimal among all candidate answer sets.
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Definition 5. Let I be a model of a disjunctive program II,
and X be an answer set semantics for normal programs. Then
I is an answer set of IT w.r.t. X" if (1) for some head selection
function sel, I is an answer set of II/ ; under X, and (2) II
has no model J C [ satisfying condition (1).

Due to the use of head selection functions, the above se-
mantics interprets the disjunctive rule head operator | differ-
ently from the classical connective V. Let Hy = Fp | --- |
Ep and Ho = E1 V.-V Ey be two rule heads and let I be
an interpretation that satisfies 5. Then there may be up to
k head selection functions for 1, each selecting one alterna-
tive F; that is satisfied by I, which leads to at most & disjunc-
tive program reducts; in contrast, there is only one head se-
lection function for Ho, i.e., sel(Ha, I) = Ha, which leads to
only one disjunctive program reduct. Different reducts may
lead to different candidate answer sets and thus disjunctive
programs with rule heads like H; are different from programs
with rule heads like Hs.

Moreover, the above semantics does not require that an-
swer sets should be minimal models; it only requires answer
sets to be minimal among all candidate answer sets.

In order to stress the intuition that candidate answer sets
are determined by means of a chosen head selection function
for applying rules H; | - - - | H + Body, where one alterna-
tive H; from the head is inferred when Body is satisfied, we
refer to the above answer set semantics as determining infer-
ence (DI) semantics for disjunctive programs; we call answer
sets of DI-semantics DI-answer sets and models satisfying
condition (1) of Definition 5 candidate DI-answer sets.

4 DI-Semantics for Simple Disjunctive
Programs

By replacing the base semantics X in Definition 5 with
GL,,;-semantics we induce a DI-answer set semantics for
simple disjunctive programs.

Definition 6. A model I of a simple disjunctive program II is
a DI-answer set of 11, if (1) for some head selection function
sel, I is an answer set of ngl under GL,,j,-semantics, and
(2) II has no model J C I satisfying condition (1).

A DI-answer set is not necessarily a GL-answer set, but
for simple normal programs and positive simple disjunctive
programs, DI-semantics agrees with GL-semantics.

Theorem 1. Let 11 be a simple normal program or a positive
simple disjunctive program. Then an interpretation I is a DI-
answer set of IL iff I is a GL-answer set of 11.

It is particularly interesting to observe that GL-semantics
can also be characterized using the disjunctive program
reduct ngl of Definition 4 simply by requiring that for every
(instead of some) head selection function sel, I is an answer
set of ITZ_, under GL,,;,,-semantics. This reveals the essential
difference between DI-semantics and GL-semantics.
Theorem 2. A model I of a simple disjunctive program 11 is
a GL-answer set of L1 iff for every head selection function sel,
I is an answer set of Hg o1 under GLy,,-semantics.

As GL-answer sets of a simple disjunctive program II are
minimal models of II, the following corollary is immediate.

Corollary 1. Let I1 be a simple disjunctive program. If I is a
GL-answer set, then I is a DI-answer set.

5 DI-Semantics for General Programs

General normal programs consist of rules of the form H
B, where H and B are first-order formulas. To overcome the
problem of circular justifications with those answer set se-
mantics for general normal programs such as those in [Pearce,
2006; Truszczynski, 2010; Bartholomew et al., 2011; Faber et
al.,2011; Ferraris ef al., 2011] based on classical logic, [Shen
et al., 2014] presented the well-justified semantics whose an-
swer sets have a level mapping and thus are free of circu-
lar justifications, in analogy to the level mapping of GL,,-
semantics for simple normal programs [Fages, 1994]. [Shen
et al., 2014] left extending the well-justified semantics to gen-
eral disjunctive programs as an open problem; we can ele-
gantly close it by replacing the base semantics X in Defini-
tion 5 with the well-justified semantics.

The well-justified semantics is based on the one-step prov-
ability operator T11(O, N), which extends the well-known
immediate consequence operator [van Emden and Kowalski,
1976] from Horn programs to general normal programs.

Definition 7 ([Shen ef al., 2014]). Let IT be a general normal
program, and let O and N be two first-order theories. Then

T11(O, N) = {head(r) | r € ground(II), OUN |= body(r)}.

Informally, T1;(O, N) collects all heads of grounded rules
whose bodies are entailed by O U N. For fixed NV, the entail-
ment |= is monotone in O, so T1;(O, N) is monotone w.r.t.
O, i.e., for any theories O; C Os, we have T11(O1, N) C
T11(O2, N). As moreover T11(O, N) is finitary, the inference
sequence (T} (0, N))$2,, where T (0, N) = 0 and fori > 0
TEH (0, N) = Tu (T4 (0, N), N), will converge to a least fix-
point, denoted Ifp(Tr (0, N)).

The well-justified (WJ) semantics is then defined in terms
of Ifp(Tr1(0,—I7)), i.e., derivability under the closed-world
assumption applied to candidate answer I, as follows.

Definition 8 ([Shen ez al., 2014]). Let I be a model of a gen-
eral normal program II. Then I is a WJ-answer set of II if
Ifp(T(0,—I7))U—I~ = Aforevery A € I.

By replacing & in Definition 5 with WJ-semantics we in-
duce a DI-answer set semantics for general programs.

Definition 9. A model I of a general disjunctive program II is
a DI-answer set of 11 if (1) for some head selection function
sel, T is a WJ-answer set of IT_;, and (2) IT has no model
J C I satisfying condition (1).

Intuitively, a DI-answer set is a model that is minimal
among all models that can be nondeterministically (by means
of a head selection function) inferred by iteratively applying
rules via a bottom up fixpoint sequence.

Corollary 2. For a general normal program, I is a DI-
answer set iff I is a WJ-answer set. For a simple disjunctive
program, I is a DI-answer set under Definition 9 iff I is a
DI-answer set under Definition 6.

5042



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

6 Computational Complexity

We address the computational complexity of propositional
logic programs, where we focus on the DI-semantics with
the well-justified semantics [Shen et al., 2014] as the base
semantics and refer to it as DI-WJ answer set semantics.

Theorem 3. Given a propositional simple (resp. general) dis-
Jjunctive program 11 and a ground literal L, deciding whether
(i) 11 has some DI-WJ answer set is NP-complete (resp. Eg -
complete), (ii) L is true in every DI-WJ answer set of 11 is
I18-complete (resp. 114-complete), and (iii) L is true in some
DI-WJ answer set of I1 is ¥5-complete (resp. X5-complete).

Analogous results hold for other semantics such as FLP-
semantics [Faber et al., 2011]. Compared to GL-/FLP-
semantics, the complexity of brave and cautious reasoning in-
creases under DI-semantics by one level of PH, thus offering
higher problem solving capacity. Computing a DI-WJ answer
set is complete for the NP- resp. ¥5-functions and feasible
with bounded many witness oracle calls [Buss et al., 1993;
Janota and Marques-Silva, 2016] in polynomial time.

7 Difference between Disjunctive Rule Heads
and Choice Constructs

Like disjunctive rule heads, choice constructs [Simons et al.,
2002; Ferraris and Lifschitz, 2005; Calimeri et al., 2012] are
also used to express a set of alternatives. However, a disjunc-
tive rule head aq | - - - | a,,, and a choice construct of the form
ui{ai, - ,amus, where m > 0,0 < u; < ug < m, and
the a;’s are ground atoms, are essentially different.

Let a={a1, - ,am} and B={y | v € aandu; <
|7| < ug}. The choice construct ui{ay, - -« , am fug says that
any y € 3 can be chosen as answer.

For a logic program II, let AS(II) denote the set of an-
swer sets of TI. Let IT" be IT extended with a choice construct
ui{ay, -+ ,amtus. Then the set of answer sets of I1' is

AS(I) = | J AS(MU{a|a ey} U{=b|be (a\N)}).
veB

Example 2. Let II = {b} and IT" = IT U {1{a, b}2}. Then
AS(II") = AS(ITU {a, —b}) U AS(ITU {—a,b}) U AS(ITU
{a,b}). TI U {a,—b} has no model and thus no answer set,
ITU {—a, b} has a single answer set {b}, and IT U {a, b} has
a single answer set {a,b}. Therefore, IT' has in total two
answer sets, {b} and {a, b}.

A disjunctive rule head a;| --- |a,, infers one atom
a; from o« and differs essentially from a choice construct
a1, -+ ,am}u. When u = 1, the choice construct 1{a1,

-, a1 in a logic program II enforces every answer set
of II to contain exactly one a; from «. In contrast, though
ay | -+ | an, infers only one a; from «, a DI-answer set may
contain other atoms a; € «, which are inferred by other rules
in a disjunctive program. When v > 1, the choice construct
{ay,- -+ ,am}u allows for answer sets I and J with I C J.
This will not happen with a; | - - - | a,, for DI-answer sets.

8 Relation to Split and Fork Programs

For simple disjunctive programs II, [Hitzler and Seda, 1999]
proposed to split IT into a collection of simple normal

programs, called normal derivatives P(IT), which infor-
mally are obtained from ground(IT) by replacing every rule
Ayl |Ag < body(r), k > 2, arbitrarily with one or more
rules A; + body(r),1 < i < k. Eg, I = {p|q + —s}
has three normal derivatives: Py (II) = {p + —s}, Po(Il) =
{q < —s}, and P3(II) = {p < —s,q < —s}.

[Hitzler and Seda, 1999] aimed to use normal derivatives
to characterize GL-semantics of a simple disjunctive pro-
gram II. They showed that every answer set of II under GL-
semantics is an answer set of some normal derivative of Il
under GL,,;,,-semantics. E.g. for the program 1I from above,
I = {p} is an answer set of IT under GL-semantics and an an-
swer set of P; (IT) under GL,,;,-semantics. However, they left
a precise characterization open, stated as the problem to deter-
mine for every interpretation I some normal derivatives such
that [ is an answer set of I under GL-semantics iff I is an an-
swer set of these normal derivatives under GL,,j;,-semantics.

The characterization of GL-semantics by the disjunctive
program reduct (Theorem 2) enables us to provide a solution
for this open problem. For a logic program II, an interpreta-
tion I and a head selection sel on I, let

Py (I1, I) = {sel(head(r),I) < body(r) | r € ground(II)},
ND(IL, I) = {Pse(IL, I) | sel is a head selection on I'}.

Note that ND(II, I) is the collection of normal derivatives
obtained by applying every head selection on I. Thus for any
head selection sel on a model I, we have

Psoi (T, I) = {sel(head(r),I) <+ body(r)|r € ground(II)}
=1, U {sel(head(r), I) < body(r) |r € ground(II)
and body(r) is not satisfied by I}.
A solution to the above open problem is then as follows.

Theorem 4. An interpretation I is an answer set of a simple
disjunctive program 11 under GL-semantics iff I is an answer
set of every P(II) € ND(I1, I) under GL,,,-semantics.

In independent work and parallel to ours, [Aguado er al.,
2019] proposed a new construct “|” for answer programs
called fork, which aims at overcoming problems with omit-
ting auxiliary atoms in choice constructs. Informally, under
fork semantics the answer sets of { E'|F'} U II are the answer
sets of { £} UII plus the answer sets of { F'} UII. Accordingly,
P = {a|b, b|c} has the fork-answer sets {a, b}, {a,c}, {b}
and {b, c}, while its DI-answer sets are {a, c} and {b}. They
diverge as DI-semantics operates in a sense globally on alter-
natives in different rules (by item (2) in Definition 5), while
fork semantics operates locally treating them independently.

Notably, selection functions similar to ours were used in
[Vennekens et al., 2004] to define probabilistic semantics for
logic programs with annotated disjunctions. However, they
do not depend on an interpretation and result (disregarding
probabilities) in all normal derivatives picking always a single
rule A; < body (in the example, P, (IT) and P»(II)). Thus
like fork semantics, this semantics has a local flavor.
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