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Abstract
The ability to conduct logical reasoning is a fun-
damental aspect of intelligent human behavior, and
thus an important problem along the way to human-
level artificial intelligence. Traditionally, logic-ba-
sed symbolic methods from the field of knowledge
representation and reasoning have been used to
equip agents with capabilities that resemble human
logical reasoning qualities. More recently, how-
ever, there has been an increasing interest in using
machine learning rather than logic-based symbolic
formalisms to tackle these tasks. In this paper, we
employ state-of-the-art methods for training deep
neural networks to devise a novel model that is able
to learn how to effectively perform logical reason-
ing in the form of basic ontology reasoning.

1 Introduction
Implementing human-like logical reasoning has been among
the major goals of artificial intelligence (AI) research ever
since, and has recently also enjoyed increasing attention in
the field of machine learning (ML). However, a notice-
able commonality of previous approaches in this area is that
they, with a few very recent exceptions [Serafini and d’Avila
Garcez, 2016; Cai et al., 2017; Rocktäschel and Riedel, 2017;
Cingillioglu and Russo, 2018; Dai et al., 2018; Evans et al.,
2018; Manhaeve et al., 2018], entertain a quite informal no-
tion of reasoning, which is often simply identified with a
particular kind of prediction task. This contrasts the (tradi-
tional) understanding of reasoning as an application of math-
ematical proof theory, like it is used in the context of logic-
based knowledge representation and reasoning (KRR). In-
terestingly, however, it can be observed that, under certain
provisions, even the best reasoning models based on ML are
still not in a position to compete with their symbolic coun-
terparts. To close this gap between learning-based and KRR
methods, we introduce a novel model architecture, called re-
cursive reasoning network (RRN), which makes use of recent
advances in the area of deep neural networks [Bengio, 2009].
By design, this model is much closer to logic-based symbolic
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Ontology: human(X)← holds(X,_).
Only humans can hold things.

object(Y)← holds(_,Y).
Only objects can be held.

⊥← object(X)∧ human(X).
Objects are not human beings and vice versa.

isAt(Y,Z)← holds(X,Y)∧ isAt(X,Z).
Objects are at the same location as the one holding them.

⊥← isAt(X,Y)∧ isAt(X,Z)∧ Y6=Z.
Nobody/nothing can be at two locations at the same time.

Facts: holds(mary,apple), isAt(mary,kitchen).

Queries: ?human(apple)
Is the apple human?→ false

?isAt(apple,kitchen)
Is the apple in the kitchen?→ true

?isAt(mary,bedroom)
Is Mary in the bedroom?→ false

Figure 1: A simple example of an ontology (inspired by the well-
known bAbI tasks [Weston et al., 2015]) that describes a few rules
for reasoning over human beings, objects, and their locations. Com-
bined with the stated facts, it allows for answering queries like »Is
the apple a human being?« or »Is Mary in the bedroom?«.

methods than most of the other learning-based approaches,
but the fact that it employs ML allows for overcoming many
obstacles that we encounter with KRR methods in practice.

Ontology reasoning refers to a common scenario where the
inference rules to be used for reasoning, called the ontology
in this context, are specified alongside the factual information
that we seek to reason about. (Fig. 1 provides an example of
this setting.) The rationale behind this separation of ontology
and facts is that it allows for adopting the same set of rules
for reasoning about different, independent data. One may ask
why we would like to set about this problem by means of
ML in the first place. Most KRR formalisms that are used
for reasoning today are rooted in symbolic logic, and thus, as
mentioned above, employ mathematical proof theory to an-
swer queries about a given problem. However, while this, in
theory, allows for answering any kind of (decidable) question
accurately, most of these approaches suffer from a number of
issues in practice, like difficulties with handling incomplete,
conflicting, or uncertain data, to name just a few. In contrast
to this, ML models are often highly scalable, more resistant
to disturbances in the data, and capable of providing predic-
tions even if the formal effort fails. By using state-of-the-art
techniques of deep learning, we aim to manage the balancing
act between approximating the highly desirable (theoretical)
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properties of the formal approach, on the one hand, and uti-
lizing the robustness of ML, on the other.

The main contributions of this paper are briefly as follows.

• We present a novel deep neural architecture for a model
that is able to effectively perform logical reasoning in
the form of basic ontology reasoning.

• We present and make freely available several very large,
diverse, and challenging datasets for learning and bench-
marking ML approaches to basic ontology reasoning.

• We present extensive experimental evaluations on these
benchmarks, which show that our model is able to learn
to perform highly accurate ontology reasoning.

2 The Recursive Reasoning Network (RRN)
With the introduction of RRNs, we replace formal ontology
reasoning with computing a learned deep neural network to
remedy the issues outlined above. Thereby, following the
spirit of the considered problem, every RRN is trained rel-
ative to a particular ontology, and thus, like the formal coun-
terpart, independent of the specific facts that it is provided
with. To that end, the vocabulary of classes and relations
used by the ontology determines the recursive layers that are
available in an RRN, and hence the structure of the same. In
contrast to this, however, the rules that are used for reasoning
are not provided to the model directly, but have to be learned
from the training data. When a trained model is applied to
a particular set of facts, then, on the face of it, it operates in
two stages: first, it generates vector representations (so-called
embeddings) for all individuals that appear in the considered
data, and second, it computes predictions for queries solely
based on these generated vectors.

RRNs are based on the idea that we can encode all the
available information about an individual, both specified and
inferable, in its embedding. A similar idea is used, for exam-
ple, in the context of natural language processing, where real
vectors are used to represent the meaning of text [Mikolov et
al., 2013]. Given a set of facts, specified as triples, we start by
randomly generating initial embeddings for all the individuals
that appear in any of them. After this, the model iterates over
all the triples, and, for each of them, updates the embeddings
of the individuals involved. Any such update is supposed to
store the considered triple in the individuals’ embeddings for
one thing, but also to encode possible inferences based on the
same. So, intuitively, a single update step conducts local rea-
soning based on what is encoded in the embeddings already
as well as on the new information that was gained through
the provided fact. An obvious necessity implied by this lo-
cal reasoning scheme is that the model, in general, has to sift
through all the data multiple times. This is essential in or-
der to allow for multi-step, also called multi-hop, reasoning,
which is based on several triples at the same time, since infor-
mation might need to transpire from one individual’s embed-
ding to another’s. The actual number of iterations required
depends on the respective dataset, though.

From a technical perspective, the outlined procedure for
generating embeddings corresponds to computing a recursive
neural network [Pollack, 1990] that receives the randomly

generated initial embeddings as input and provides the final
embeddings as output. The structure of the network depends
on the set of facts being processed, and its recursive layers
compute the update operations described above, which is why
we refer to them as update layers.

Once the desired embeddings are generated, they can be
used to answer atomic queries about the data that they are
computed from. To that end, the model provides various
multi-layer perceptrons (MLPs) for computing predictions
about relations between two individuals and class member-
ships of a single individual. Notice that the only inputs pro-
vided to these MLPs are the embeddings of the individu-
als that are involved in a particular query, which is why the
model has to ensure that all the information that is needed for
answering such is effectively encoded during the first step.
Thus, the second step is just needed to uncover the knowl-
edge that is encoded in individual embeddings, while the ac-
tual reasoning happens before.

A notable characteristic of the RRN is that it performs de-
ductive inference over entire knowledge bases, and, like its
symbolic stencil, aims to encode all possible inferences in
the created individual embeddings, rather than answering just
a single query. Because of this, the model is able to unravel
complex relationships that are hard to detect if we try to eval-
uate the inferability of an isolated triple of interest only. Fur-
thermore, the fact that the RRN conducts logical inference
over all classes and relations simultaneously allows for lever-
aging interactions between any of them, and thus further adds
to improving the model’s predictive performance.

3 Evaluation
In this section, we summarize the experimental results that
we obtained with the RRN on five different datasets.

3.1 Datasets
To assess the suggested approach, we trained and evaluated
an RRN on five different datasets, two out of which were ar-
tificially created toy datasets, two were extracted from real-
world knowledge bases, and one was a generated dataset
based on a real-world ontology:

• Family trees. In this toy dataset (Fig. 2), samples de-
scribe pedigrees of different sizes such that the only facts
that are available in any of them are the genders of the peo-
ple involved and the immediate ancestors (i.e., parent-of rela-
tions) among them. Besides this, the used ontology specifies
rules for reasoning about 28 different family relations, rang-
ing from »easy« inferences (e.g., fatherhood) to more elabo-
rate ones (e.g., being a girl first cousin once removed).
• Countries. The second toy dataset is based on the coun-
tries knowledge base [Bouchard et al., 2015], which describes
the adjacency of countries together with their locations in
terms of regions and subregions. In every sample knowledge
base, some of the countries’ regions and subregions, respec-
tively, are not stated as facts, but supposed to be inferred from
the information that is provided about their neighborhoods.
Following Nickel et al. [2016], we constructed three different
versions of the dataset: S1 (easy), S2, and S3 (hard). An in-
teresting characteristic of the latter two versions of the dataset
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Humperdink Elvira Fergus Downy

Goostave Daphne Quackmore Hortense Scrooge

Gladstone Donald Della

Huey Dewey Louie

great aunt of

Figure 2: An example of a family tree, like it is found in the first toy
dataset that the RRN model was tested on. While the genders of all
people involved as well as the immediate relations between parents
and their children are provided as facts, all other family relations
have to be inferred. The figure depicts an example of a four-hop
inference, namely, Daphne being a great aunt of Huey.

is that the sample knowledge bases are constructed such that
parts of the missing relations cannot be inferred by means of
the ontology at all, which challenges the model’s ability to
generalize beyond pure ontology reasoning.

• DBpedia. This dataset was extracted from the well-
known DBpedia knowledge base [Bizer et al., 2009], which
represents part of the knowledge that is available in terms of
natural language on Wikipedia. As this data does not natu-
rally separate into samples, we extracted sample knowledge
bases that are subgraphs of the original knowledge graph such
that each of them contains a total of 200 individuals. DBpe-
dia employs a massive vocabulary consisting of thousands of
classes and relations, respectively. To make the according ex-
periments more computationally feasible, we restricted this
to the 101 most frequent classes and those 518 relation types
that allow for the greatest numbers of inferences.

• Claros. This data was extracted from Claros, which is a
formalization of a catalog of archaeologic artifacts [Nenov et
al., 2015]. Like for DBpedia, we extracted sample knowledge
bases over 200 individuals each. However, we used all the
Claros ontology, consisting of 33 classes and 77 relations.

• UMLS reasoning. In addition to this, we created
a dataset based on the Unified Medical Language Sys-
tem (UMLS) [McCray, 2003], an ontology that has been in-
troduced for describing concepts from the biomedical domain
in a uniform way by means of 127 classes and 53 relations.
Interestingly, UMLS is commonly used as a benchmark for
methods of knowledge graph completion [Kok and Domin-
gos, 2007]. In this context, however, UMLS is not interpreted
as an ontology, but simply viewed as an ordinary knowl-
edge graph. To avoid confusion, we use the term »UMLS-
reasoning« to refer to our own dataset in order to set it apart
from the benchmark by Kok and Domingos [2007].

Classes
Dataset Facts Inferences

Acc. F1 Acc. F1

family trees 1.000 1.000 1.000 1.000
countries (S1) — — 1.000 1.000
countries (S2) — — 1.000 1.000
countries (S3) — — 1.000 1.000
DBpedia — — 0.998 0.997
Claros — — 0.999 0.999
UMLS-reasoning — — 0.990 0.994

Relations
Dataset Facts Inferences

Acc. F1 Acc. F1

family trees 1.000 1.000 0.999 0.976
countries (S1) 1.000 1.000 0.999 0.999
countries (S2) 0.999 0.997 0.999 0.929
countries (S3) 0.999 0.996 0.999 0.916
DBpedia 0.998 0.998 0.989 0.962
Claros 0.999 0.999 0.996 0.997
UMLS-reasoning 0.997 0.996 0.997 0.989

Table 1: Summary of experimental results. Accuracy and F1 sco-
re are reported separately for class memberships and relations, and
within each group, for those triples that describe specified knowl-
edge (i.e., facts) and those that represent inferable information.

Each of the datasets above is a collection of sample knowl-
edge bases that share a common ontology—5000 for training,
500 for validation, and 500 for testing. During training and
evaluation, the model was provided with all the facts in the
considered samples, and had to compute predictions for both
facts and inferences that were derivable from the same.

3.2 Results

Table 1 summarizes the results that have been achieved in our
experiments, and there are a number of interesting aspects
to notice across all the considered reasoning tasks. First, we
see that the RRN is able to effectively encode provided facts,
about both classes and relations, as these are predicted cor-
rectly from the created embeddings with an accuracy greater
than 98.9%, and except for UMLS-reasoning, even with more
than 99.8%. Furthermore, we observe that the model also
learns to reason over classes with an equally high accuracy
of 99.8% on all datasets except UMLS-reasoning, for which
we find an accuracy of 99.0%. This difference is not sur-
prising, though, as the UMLS ontology specifies by far the
largest taxonomy of classes. For reasoning over relations, we
find a slightly lower accuracy of 98.9% on DBpedia, while
derivable relations in other datasets are predicted correctly in
at least 99.6% of all cases. Again, however, this difference is
not surprising, as DBpedia is by far the most complex among
the ontologies that were used in our experiments, and might
thus require a larger training dataset in order to achieve an
even higher accuracy. Also, it was to be expected that the
model would generally perform better in predicting inferable
classes than relations, since most of these are inferences de-
pending on single triples only.
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4 Learning-based vs. Symbolic Methods

One important question is how to motivate the neural ap-
proach to ontology reasoning in the first place, and how the
RRN relates to purely symbolic methods of logical reason-
ing. First, the presented model is a step towards answer-
ing the wide open problem of how to combine deep learn-
ing technologies with symbolic methods for logical reason-
ing, which is commonly regarded as a prerequisite for further
substantial progress in AI. Implementing symbolic ontology
reasoning with neural networks of very high accuracy in some
sense bridges the gap between neural and symbolic methods,
and offers new ways of providing ML models with reason-
ing capabilities that have previously been reserved for sym-
bolic methods only, which opens up interesting new opportu-
nities. From a ML perspective, the RRN can be considered as
a method of knowledge graph embedding [Wang et al., 2017]
that produces semantically meaningful embeddings of the in-
dividuals in a knowledge graph. These, in turn, may serve as
input to models that are used for learning downstream tasks,
and so allows for leveraging symbolic background knowledge
in learning deep neural networks (and so for knowledge trans-
fer and for learning from smaller amounts of data) as well as
explainable symbolic inference in computing predictions for
improved explainability of the learned neural systems.

Second, the neural approach to ontology reasoning is use-
ful in its own right as an alternative to symbolic methods to
logical reasoning. Although it does not allow for fully ac-
curate logical reasoning, it paves the way for highly scalable
implementations of nearly accurate approximate logical rea-
soning via parallel computations on GPUs. Such implemen-
tations cannot be used for safety-critical applications (such as
for verifying the control of nuclear power plants), but may be
sufficiently accurate for other applications where full accu-
racy is not required (e.g., question answering over the web).

In the same vein, one major issue that many symbolic ap-
proaches, including all reasoning formalisms rooted in clas-
sical logic, suffer from is conflicting information. In prac-
tice, however, information is frequently imperfect, which is
why conflicts inevitably have to be dealt with in many use
cases that symbolic reasoning is applied to. While many rea-
soning methods simply do not work in any such case, our
experiments with the RRN suggest that the model is able to
effectively resolve conflicts and thus better suited for apply-
ing logical reasoning in a real-world scenario. Even though
there exist formalisms for reasoning over inconsistent knowl-
edge bases that are also able to resolve conflicts, such as
inconsistency-tolerant reasoning [Lembo et al., 2010] and
paraconsistent logics [Middelburg, 2011], these approaches
are generally quite limited in practice, since there is a price to
be paid in terms of computational complexity.

Finally, another challenge that is commonly encountered in
practice is missing information, that is, details that are neither
specified as facts in the considered knowledge base nor infer-
able from them via symbolic reasoning. Strictly speaking,
recovering such missing pieces is a prediction rather than a
reasoning task, and hence usually not considered in the con-
text of symbolic reasoning. This is not in line with the re-
quirements that are typically faced in practice, though, as we

frequently seek to do both, compute predictions and perform
reasoning. Again, however, our experiments indicate that this
is exactly what the RRN does. To that end, we observed that
the model is able to provide sensible predictions for any miss-
ing details that are compatible with the considered set of facts
relative to the used ontology in many cases, and that these, in
turn, also affect inferences computed by the model.

5 Related Work
While there has been an increasing interest in the application
of learning-based methods to various kinds of logical reason-
ing in the last few years, ontology reasoning in particular has
received just modest attention. The only published paper that
we are aware of is by Makni and Hendler [2018], who de-
veloped an approach to RDFS reasoning contemporaneously
with the work presented in this article. To that end, Makni
and Hendler use a BiGRU encoder-decoder architecture for
encoding entire knowledge graphs as embedding vectors and
subsequently decoding inference graphs from the same.

Another recent article by Ebrahimi et al. [2018] addresses
reasoning over RDF knowledge base via an adapted version
of end-to-end memory networks [Sukhbaatar et al., 2015].
To that end, Ebrahimi et al. treat triples like text, and map
the elements of any such (i.e., subject, predicate, and object)
to embedding vectors. After this, the embedded triples are
placed in the memory of an adapted memory network, which
computes a prediction for a query that is provided as an em-
bedded triple as well.

Apart from this, a lot of previous work addresses the com-
bination of logic-based symbolic reasoning and deep learning
in some way, but is not related to ontology reasoning per se.
For an overview, see Hohenecker and Lukasiewicz [2020].

6 Summary and Outlook
In this work, we have introduced the RRN as a novel model
architecture for deep-learning-based ontology reasoning, and
presented results of an experimental evaluation of the same on
numerous benchmark datasets. To that end, we have shown
that the RRN learns to conduct highly accurate reasoning in
a logic-based sense, and is able to work with complex real-
world knowledge bases.

Despite the fact that an RRN is effectively guided by the
ontology that it has been trained on, it cannot provide justifi-
cations for predictions yet. As important future work, we are
thus currently extending the presented architecture such that
it allows for inducing rules and explanations, such as infer-
ence graphs, alongside computed predictions, hence making
the model a fully interpretable neural reasoner.
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