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Abstract

Despite a multitude of empirical studies, little con-
sensus exists on whether neural networks are able
to generalise compositionally. As a response to this
controversy, we present a set of tests that provide a
bridge between, on the one hand, the vast amount of
linguistic and philosophical theory about composi-
tionality of language and, on the other, the success-
ful neural models of language. We collect differ-
ent interpretations of compositionality and translate
them into five theoretically grounded tests for mod-
els that are formulated on a task-independent level.
To demonstrate the usefulness of this evaluation
paradigm, we instantiate these five tests on a highly
compositional data set which we dub PCFG SET,
apply the resulting tests to three popular sequence-
to-sequence models, and provide an in-depth anal-
ysis of the results.

1 Introduction
Most current models of natural language processing use ar-
tificial neural networks (ANNs). The architectural design of
such models is not motivated by knowledge about linguistics
or human processing, but they are nevertheless more success-
ful than earlier-age (sub)symbolic models on a variety of nat-
ural language processing tasks. However, it remains difficult
to assess if the composition functions that ANNs implement
are truly appropriate for natural language and, importantly, to
what extent they are in line with the vast amount of knowl-
edge and theories about semantic composition from formal
semantics and (psycho)linguistics.

One particular question that has recently attracted the at-
tention of several researchers is whether ANNs are capa-
ble of learning compositional solutions. Despite a multi-
tude of empirical studies on this topic, little concensus ex-
ists. One issue standing in the way of more clarity on this
matter is that different researchers have different interpre-
tations of what exactly it means to say that a model is or

∗This paper is an extended abstract of a paper published in the
Journal of Artificial Intelligence Research [Hupkes et al., 2020].
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is not compositional, a point exemplified by the vast num-
ber of different tests that exist for compositionality [Lake
and Baroni, 2018; Hupkes et al., 2018; Johnson et al., 2017;
Bahdanau et al., 2018; Saxton et al., 2019; Loula et al., 2018;
Dessı̀ and Baroni, 2019; Liška et al., 2018; Bowman et al.,
2015; Mul and Zuidema, 2019]. We argue that to empirically
test models for compositionality, it is necessary to first estab-
lish what is to be considered compositional behaviour.

With this work, we aim to contribute to clarity on this point,
by presenting a study in which we collect different aspects of
and intuitions about compositionality of language from lin-
guistics and philosophy. We translate them into concrete tests
that provide insight into the composition functions learned by
neural models trained end-to-end on a downstream task.

2 Testing Compositionality
We individuate five aspects of compositionality that are ex-
plicitly motivated by theoretical literature on this topic.

Systematicity. The first property we test for is systematic-
ity. The term was introduced by Fodor and Pylyshyn, who
used it to denote that “[t]he ability to produce/understand
some sentences is intrinsically connected to the ability to pro-
duce/understand certain others” [Fodor and Pylyshyn, 1988].
This ability concerns the recombination of known parts and
rules: anyone who understands a number of complex expres-
sions also understands other complex expressions that can be
built up from the constituents and syntactical rules employed
in the familiar expressions.

Here, we ask not only if a model infers a systematic so-
lution, but also whether the rules and constituents the model
uses are in line with what we believe to be the actual rules
and constituents underlying a particular data set or language.
We test for systematicity by testing if a model can recombine
constituents that have not been seen together during training.
In particular, we focus on combinations of words a and b that
meet the requirements that the model has only been famil-
iarised with a in contexts excluding b and vice versa but the
combination a b is plausible given the rest of the corpus.

Productivity. A notion closely related to systematicity is
productivity, which concerns the open-ended nature of natu-
ral language: language appears to be infinite, but has to be
stored with finite capacity. Hence, there must be some pro-
ductive way to generate new sentences from this finite storage
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(a) Systematicity

+

(b) Productivity (c) Substitutivity (d) Localism (e) Overgeneralisation

Figure 1: A schematic depiction of our five compositionality tests.

Non-terminal rules
S → FU S | FB S , S
S → X
X → XX

Lexical rules
FU → copy | reverse | shift | echo | swap | repeat
FB → append | prepend | remove first | remove second
X → A | B | . . . | Z | A2 | . . . | B2 | . . .

Unary functions FU : Binary functions FB :
copy x1 · · · xn → x1 · · · xn append x, y → x y

reverse x1 · · · xn → xn · · · x1 prepend x, y → y x

shift x1 · · · xn → x2 · · · xn x1 remove first x, y → y

swap x1 · · · xn → xn x2 · · · xn−1 x1 remove second x, y → x

repeat x1 · · · xn → x1 · · · xn x1 · · · xn

echo x1 · · · xn → x1 · · · xn xn

Figure 2: The context free grammar that describes the entire space of grammatical input sequences in PCFG SET (left) and the interpretation
functions describing how the meaning of PCFG SET input sequences is formed (right).

[Chomsky, 1956; von Humboldt, 1836].
Both systematicity and productivity rely on the recombina-

tion of known constituents into larger compounds. To sepa-
rate systematicity from productivity, in our productivity test
we specifically focus on the aspect of unboundedness. We
test whether a model can understand sentences that are longer
than the ones encountered during training.
Substitutivity. A principle closely related to the principle
of compositionality (here, we consider the version of [Partee,
1995]) is the principle of substitutivity, which states that if
an expression is altered by replacing one of its constituents
with another constituent with the same meaning, this does
not affect the meaning of the expression [Pagin, 2003].

We test for substitutivity by probing under which condi-
tions a model considers two atomic units to be synonymous.
To do so, we artificially introduce synonyms and consider
how the prediction of a model changes when an atomic unit
in an expression is replaced by its synonym. We consider two
different cases. Firstly, we analyse the case in which syn-
onymous words occur equally often and in comparable con-
texts. Secondly, we consider pairs of words in which one of
the words occurs only in very short sentences, which we call
primitive contexts.
Localism. The principle of compositionality does not im-
pose any restrictions on how different elements should be
combined. As a consequence, the interpretation of the prin-
ciple of compositionality depends on the type of constraints
that are put on the semantic and syntactic theories involved
(see e.g. [Janssen, 1983; Zadrozny, 1994]). In global or weak
compositionality, the meaning of an expression follows from
its global structure and the meanings of its atomic parts. In
this interpretation, a compound can have a different meaning,
depending on the larger expression that they are a part of (for
some examples, see [Carnap, 1947]).

We test if a model’s composition operations are local or
global by comparing the meanings the model assigns to stand-
alone sequences to those it assigns to the same sequences
when they are part of a larger compound. More specifically,
we compare a model’s output when it is given a composed se-

quence X, built up from two parts A and B with the output the
same model gives when it is forced to first separately process
A and B in a local fashion.

Overgeneralisation. Lastly, we include also a notion that
concerns the acquisition of the language by a model: we con-
sider if models exhibit overgeneralisation when faced with
non-compositional phenomena. Overgeneralisation is a lan-
guage acquisition term, which refers to the scenario in which
a language learner applies a general rule in a case that forms
an exception to this rule. The relation of overgeneralisation
with compositionality comes from the supposed evidence that
overgeneralisation errors provide for the presence of sym-
bolic rules in the human language system (see e.g. [Penke,
2012]). We follow this line of reasoning and take the applica-
tion of a rule in a case where this is contradicted by the data
as evidence that the model in fact internalised this rule.

We propose an experimental setup where a model’s ten-
dency to overgeneralise is evaluated by monitoring its be-
haviour on exceptions. We identify samples that do not ad-
here to the rules underlying the data distribution – exceptions
– in the training data sets and assess a model’s tendency to
overgeneralise by observing how they respond to these ex-
ceptions during training.

3 Data
We consider an artificial task, which we dub PCFG SET.

Input sequences: syntax. The input alphabet of PCFG
SET contains three types of words: words for unary and bi-
nary functions that represent string edit operations, elements
to form the string sequences that these functions can be ap-
plied to, and a separator to separate the arguments of a binary
function. The input sequences formed with this alphabet de-
scribe how a series of such operations are to be applied to a
string argument. We generate input sequences with a PCFG,
shown in Figure 2 (production probabilities are omitted).

Output sequences: semantics. The meaning of a PCFG
SET input sequence is constructed by recursively applying

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5066



Experiment LSTMS2S ConvS2S Transformer

Task accuracy∗ 0.79 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

Systematicity∗ 0.53 ± 0.03 0.56 ± 0.01 0.72 ± 0.00

Productivity∗ 0.30 ± 0.01 0.31 ± 0.02 0.50 ± 0.02

Substitutivity, ED † 0.80 ± 0.00 0.95 ± 0.00 0.98 ± 0.00
Substitutivity, P † 0.60 ± 0.01 0.58 ± 0.01 0.90 ± 0.00

Localism† 0.46 ± 0.00 0.59 ± 0.01 0.54 ± 0.02

Overgeneralisation∗ 0.68 ± 0.04 0.79 ± 0.06 0.88 ± 0.07

Table 1: General task accuracy and performance per test for PCFG SET,
averaged over three runs. Two performance measures are used: se-
quence accuracy, indicated by ∗, and consistency score, indicated by †.
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Figure 3: Task accuracy (in red) and productivity scores (in
blue) of the three architectures as a function the length of the
input sequence.

the string edit operations specified in the sequence. This map-
ping is governed by the interpretation functions listed in Fig-
ure 2 (right).
Data construction. We use the probabilistic nature of the
PCFG SET input grammar to enforce a distribution of lengths
and parse tree depth of a more natural data set (WMT2017,
[Bojar et al., 2017]). We set the size of the string alphabet to
520 and create a base corpus of around 100 thousand distinct
input-output pairs, limiting the length of the string arguments
given to the functions to 5. We use 85% of this corpus for
training, 5% for validation and 10% for testing.

4 Experiments and Results
We compare three currently popular neural architectures for
sequence-to-sequence language processing tasks: a recur-
rent architecture (LSTMS2S) [Sutskever et al., 2014], a
convolution-based architecture (ConvS2S) [Gehring et al.,
2017] and a transformer model (Transformer) [Vaswani et al.,
2017]. For every architecture, we train three models.1 A sum-
mary of the results is shown in Table 1.

4.1 Systematicity
The task success results for PCFG SET (Table 1, row 1) al-
ready reflect whether models can recombine functions and
input strings that were not seen together during training. In
the systematicity test, we focus explicitly on models’ ability
to interpret pairs of functions that were never seen together
while training. We select four pairs of functions to evaluate
and redistribute the training and test data such that the train-
ing data does not contain any input sequences including these
specific four pairs and all sequences in the test data contain at
least one.
Results. Following the overall task accuracy, also for the
systematicity test, Transformer obtains higher scores than
both LSTMS2S and ConvS2S. Intriguingly, the systematicity
scores of all models are substantially lower than their over-
all task accuracies. This large difference is surprising, since
PCFG SET is constructed such that a high task accuracy re-
quires systematic recombination. As such, these results serve

1All data, code and models are available online at https://github.
com/i-machine-think/am-i-compositional

as a reminder that models may find unexpected solutions,
even when the data is very carefully constructed.

4.2 Productivity
Longer sequences are more difficult for all models, even if
their length falls within the range of lengths observed dur-
ing training (See Figure 3, red lines). With our productivity
test, we test if this is due to an inherent difficulty of longer
sequences or is related to models’ inability to extrapolate to
unseen lengths. We redistribute the train and test data such
that there is no evidence at all for longer sequences in the
training set. Sequences containing up to eight functions are
collected in the training set, while input sequences containing
at least nine functions are used for evaluation.
Results. All models have great difficulty with extrapolat-
ing to sequences with a higher length than those seen during
training. Figure 3 depicts the performance of the three mod-
els in relation to the length of the input sequences (blue lines)
compared with the task accuracy of the standard PCFG SET
test data for the same lengths. For all models, the productiv-
ity scores are lower for almost all sequence lengths. With the
difficulty of longer sequences factored out, we can conclude
that this decrease in performance is solely caused by the de-
crease in evidence for such sequences and that models in fact
struggle to productively generalise to longer sequences.

4.3 Substitutivity
To test for substitutivity, we select two binary and two
unary functions, for which we artificially introduce synonyms
(Fsyn), during training. The introduced synonyms have the
same interpretation functions as the terms they substitute, and
are thus semantically equivalent to their counterparts. We
consider two different conditions that differ in the syntactic
distribution of the synonyms in the training data.

In the first condition, we randomly replace half of the oc-
currences of the chosen functions F with Fsyn, keeping the
target constant. In this test, F and Fsyn are distributionally
similar. In the second, more difficult condition, we introduce
Fsyn only in primitive contexts, where F is the only function
call in the input sequence. In this primitive condition, the
function F and its synonymous counterpart Fsyn are distri-
butionally not equivalent. We evaluate models on how robust
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they are to the meaning-invariant synonym substitutions in
the input sequence. We quantify this with a consistency score,
which expresses a pairwise equality between the model’s out-
put before and after the synonym substitution.

Results. For the substitutivity experiment where words and
synonyms are equally distributed, the scores of Transformer
and ConvS2S are nearly on par. Furthermore, both architec-
tures put words and their synonyms closely together in the
embedding space (not shown). Surprisingly, even in this rel-
atively simple condition where the words are distributionally
identical, words and synonyms are at very distinct positions
in the LSTMS2S embedding space.

In the primitive substitutivity test, all scores decrease sub-
stantially, although all models do still pick up that there is a
similarity between a word and its synonym. This is reflected
not only in the consistency scores but is also evident from the
distances between words and their synonyms, which are sub-
stantially lower than the average distances to other function
embeddings (not shown here). For LSTMS2S, the average
distance is very comparable to the average distance observed
in the equally distributed setup. Its consistency score, how-
ever, goes down substantially, indicating that word distances
(computed between embeddings) give an incomplete picture
of how well models can account for synonymity when there
is a distributional imbalance.

4.4 Localism
We test for localism by considering models’ behaviour when
a subsequence in an input sequence is replaced with its mean-
ing. More specifically, we compare the output sequence that
is generated by a model for a particular input sequence with
the output sequence that the same model generates when we
explicitly unroll the processing of the input sequence (for an
example, see Figure 4).

Model

Model

Model

C A B B

ABprependCappendecho

A BCappendecho

C A Becho

Figure 4: An example of the unrolled computation of the meaning of
the sequence echo append C , prepend B , A for the localism test.

Results. None of the evaluated architectures obtains a high
consistency score for this experiment. In a small manual anal-
ysis, we observe that the most common mistakes involve un-
rolled samples that contain function applications to string in-
puts with more than five characters.

4.5 Overgeneralisation
To test for overgeneralisation, we manually add exceptions
to the data set. We select four pairs of functions that are as-
signed a new meaning when they appear together in an input
sequence. We monitor the accuracy of both the original and
the exception targets during training and compare how often
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Figure 5: Overgeneralisation profiles for exception percentage 0.1%.

a model correctly memorises the exception target and how of-
ten it overgeneralises to the compositional meaning, despite
the evidence in the data. We summarise a model’s tendency
to overgeneralise by the highest overgeneralisation accuracy
encountered during training, and visualise the development
of both memorisation and overgeneralisation during training.

Results. We test overgeneralisation for several different ex-
ception percentages, which indicate the number of occur-
rences of a function that is replaced by an exception. The
results indicate that all architectures have a tendency to
overgeneralise, but the degree of overgeneralisation depends
strongly on the number of exceptions present in the data. All
architectures show overgeneralisation behaviour for low ex-
ception percentages lower than 0.5%, but hardly any overgen-
eralisation is observed when 0.5% of a function’s occurrence
is an exception. When the percentage of exceptions becomes
too low all models have difficulties memorising them at all.
LSTMS2S, in general, appears to find it difficult to accom-
modate both rules and exceptions at the same time.

5 Conclusion
We proposed an evaluation framework containing a series of
tests that translate theoretical concepts related to composi-
tionality of language into behavioural tests for models of lan-
guage. Our evaluation framework contains five independent
tests that consider complementary aspects of compositional-
ity that are frequently mentioned in the literature.We instanti-
ated the five tests on a compositional artificial data set we dub
PCFG SET. This data set is designed such that modelling it
adequately should require a compositional solution, and it is
generated such that its length and depth distributions match
those of a natural corpus of English. We compared three pop-
ular sequence-to-sequence architectures: an LSTM-based, a
convolution-based and an all-attention model. For each test,
we conducted a number of auxiliary tests that can be used
to further increase the understanding of how this aspect is
treated by a particular architecture.

While the overall accuracy on PCFG SET was relatively
high for all models, a more detailed picture is given by the
five compositionality tests, which indicate that, despite our
careful data design, high scores do still not necessarily im-
ply that the trained models fully represent the true underlying
generative system. These results illustrate well that to test
for compositionality in neural networks, it does not suffice to
consider an accuracy score on a single downstream task, even
if this task is designed to be highly compositional. As such,
the results themselves demonstrate the need for the more ex-
tensive set of evaluation criteria that we aim to provide.
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