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Abstract
This study aims to represent stories in narrative
works (i.e., creative works that contain stories) with
a fixed-length vector. We apply subgraph-based
graph embedding models to dynamic social net-
works of characters that appeared in stories (char-
acter networks). We suppose that interactions be-
tween characters reflect the content of stories. We
discretize the interactions by discovering the sub-
graphs and learn representations of stories by pre-
dicting occurrences of the subgraphs in correspond-
ing character networks. We find subgraphs rooted
in each character on each scene in multiple scales,
using the WL (Weisfeiler-Lehman) relabeling pro-
cess. To predict occurrences of subgraphs, we ap-
ply two approaches: (i) considering changes in sub-
graphs according to scenes and (ii) focusing on sub-
graphs on the last scene. We evaluated the proposed
models by measuring the similarity between real
movies with vector representations that were gen-
erated by the models.

1 Introduction
Various studies have been conducted to represent stories with
a computational model. Most of the studies [Callaway and
Lester, 2002; Mani, 2012; Jung et al., 2017] concentrated on
what happened in stories (i.e., events). To convey the mean-
ings of events, they have proposed representations that cover
vast and detail information, such as actors in the events (char-
acters), behaviors of the characters, purposes of the charac-
ters, consequences of the behaviors, causality between the
events, and so on. This information was annotated using
graphs [Purdy and Riedl, 2016] or markup languages [Mani,
2016].

Another approach is character networks, which are dy-
namic social networks of characters that appeared in the sto-
ries [Lee and Jung, 2019a; Labatut and Bost, 2019]. The char-
acter network is not comparable with the event-based mod-
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els in terms of semantic-richness. Since the character net-
work represents only the existence and frequency of interac-
tions between the characters, this model cannot handle the
exact meanings of the interactions or events. However, pre-
vious studies have shown that extracting character networks
from narrative multimedia is much easier than composing the
event-based models [Lee and Jung, 2019a]. Also, they exhib-
ited that information in the character network is enough for
a few practical applications: classifying characters [Weng et
al., 2009; Park et al., 2012; Tran and Jung, 2015], summariz-
ing [Tran et al., 2017; Bost et al., 2019], and recommending
[Lee and Jung, 2019b] narrative multimedia. Since a story
is a series of events and interactions between characters de-
scribe the events [McKee, 1997], we can assume the content
of the events from tendencies of the interactions.

However, the above two models have a common limitation.
They are graphical data representations, which aim to repre-
sent a single narrative work. Thus, these models have dif-
ficulties in comparing a story with another story. Although
our previous studies [Lee and Jung, 2018; Lee and Jung,
2019b] attempted to estimate the similarity between stories,
they commonly used hand-crafted and heuristic features. One
of them [Lee and Jung, 2018] used cohesion of communities
in character networks. Another one [Lee and Jung, 2019b]
analyzed locations of major events in stories.

Since these hand-crafted features are designed for particu-
lar media or tasks, they are not much reusable in other appli-
cations or studies. For example, the number of characters and
major events is different from kinds of media. TV series or
epic novels will contain far more characters and major events
than movies. This difference will affect both the community-
based and event-based similarity estimation.

This study aims to learn task-agnostic and media-
independent representations of stories by embedding charac-
ter networks. The existing studies have already shown that
structural features of character networks are effective for an-
alyzing stories [Labatut and Bost, 2019]. Therefore, we apply
unsupervised graph embedding techniques to embed charac-
ter networks.

To focus on the structural features, we discover substruc-
tures from character networks using the WL (Weisfeiler-
Lehman) relabeling process [Shervashidze et al., 2011].
Then, with Doc2Vec [Le and Mikolov, 2014], we represent
a story by predicting which substructures appear in its char-
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acter network. We propose two story embedding models that
consider time-sequential features of stories and not.

2 Preliminaries
This section presents the fundamental concepts and assump-
tions in this study. The existing studies [Lee and Jung, 2019a]
represented the time-sequential features of stories by defining
character networks as dynamic social networks. The nodes
and edges of the character network are characters and inter-
actions between the characters, respectively. Weights on the
edges are interaction frequencies between characters. The
character network is defined as follows;

Definition 1 (Character Network [Lee and Jung, 2019a]).
Suppose that n is the number of characters that appeared in
a narrative work, Cα, and Cα consists of L scenes from sα,1
to sα,L. WhenN(sα,l) indicates a character network on sα,l,
N(sα,l) can be described as a matrix ∈ Rn×n. Each ele-
ment of N(sα,l) denotes interaction frequency between two
characters from sα,1 to sα,l. This can be formulated as:

N(Cα) = N(sα,L) =

a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

 , (1)

where ai,j indicates the proximity of ci to cj when ci is the
i-th character in Cα.

In this study, we extract the character network from movie
scripts. Characters were identified by their names, scenes
were segmented using scene headings, and ai,j was measured
by the number of dialogues that ci spoke to cj .

The character network represents interactions between
characters. Since the interactions are designed to describe
events in scenes, we can roughly estimate the meanings of
events by analyzing the interactions. For example, in ‘The
Godfather’ (1972), interaction frequencies of ‘Michael Cor-
leone’ for his family members became larger according to
running time. This change reflects that ‘Michael Corleone’
turned from normal people to a mafia boss. Therefore, we as-
sume that vector representations of character network struc-
tures reflect the content of corresponding stories. We call the
vector representations ‘story vectors.’ This is defined as fol-
lows;

Definition 2 (Story Vector). Let Φ (Cα) be a story vector
of Cα. Closer locations of Φ (Cα) and Φ (Cβ) indicate that
N (Cα) and N (Cβ) have more similar structures. We sup-
pose that when Cα and Cβ contain similar stories, N (Cα)
and N (Cβ) are structurally similar. This is formulated as:

k (Cα,Cβ) ' k (N (Cα) , N (Cβ)) = 〈Φ (Cα) ,Φ (Cβ)〉 , (2)

where k (·, ·) indicates a kernel function.

3 Story Embedding
This section presents methods of how we apply the graph
structure embedding methods to character networks in con-
sideration of narrative characteristics.
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Figure 1: Steps of the proximity-aware WL relabeling process from
degree 0 to 1, where ci, cj , ck, and cl appear on sα,l. Darkness of
nodes and kinds of lines indicate degree of centrality and proximity
of characters, respectively.

3.1 Social Roles of Characters
Various substructures are used for embedding structural fea-
tures of graphs, such as subgraphs, subtrees, meta-paths, and
so on. This study employs subgraphs and uses the WL rela-
beling process to discover the subgraphs. The WL relabeling
describes local structures around each node in multiple scales.
Character networks are relatively smaller than ordinary social
networks, and communities of characters are placed around
the protagonists [McKee, 1997]. Therefore, the subgraphs,
which represent structures around nodes with specific ranges,
are appropriate for embedding character networks.

The WL relabeling considers only adjacency between
nodes. However, interaction frequencies between characters
are as important as the existence of interactions. For example,
a character has interactions with both the protagonist and an-
tagonist. Which one is closer to the character than the other
is significant for determining the character’s role. Thus, as
shown in Fig. 1, we modified the WL relabeling process to
cover the proximity information. We call this modification
‘proximity-aware WL relabeling.’

In character networks, all nodes are intrinsic. To apply
the WL relabeling, we should assign labels on the charac-
ters and interactions. We cluster the characters and interac-
tions into three categories according to their centrality and
weights, respectively [Weng et al., 2009; Park et al., 2012;
Tran and Jung, 2015]. As shown in Fig. 1 (a) and (b), charac-
ters are clustered into main (M ), minor (m), and extra (e)
characters. Also, interactions are clustered into high (H),
meddle (M), and low (L) proximity. We use the k-means
clustering method with three initial centroids: maximum, me-
dian, and minimum. Additionally, a character with the high-
est centrality is labeled as the protagonist (P ).

Then, as shown in Fig. 1 (c), we describe subgraphs rooted
in each character by using labels of adjacent characters and
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interactions. We assign the description on the character as a
new label. In practice, we make a list by combining labels
of adjacent characters and interactions (e.g., MH,mH, eH
for ci in Fig. 1). We sort the list, put a label of the character
at first, and apply the hash function for the list. By iterat-
ing the description and relabeling, labels of characters repre-
sent broader structures. Initial labels (P , M , m, and e) are
subgraphs on degree 0. Each iteration makes subgraphs on
degree d+ 1 using subgraphs on degree d.

A subgraph represents the interactions of a character at a
scale. Since we can conjecture the character’s role from the
interactions, we call the subgraph ‘social role.’ This is defined
as follows;

Definition 3 (Social Role). Let c(d)i,l be a social role of ci on

sα,l at a degree d ∈ [0, D]. c
(d)
i,l is expressed by one-hop

connectivity of ci at degree d− 1. This is formulated as:

c
(d)
i,l =

〈
c
(d−1)
i,l ;H(d−1)

i,l ,M(d−1)
i,l ,L(d−1)

i,l

〉
, (3)

where H(d−1)
i,l , M(d−1)

i,l , and L(d−1)
i,l indicate sets of social

roles rooted in neighborhoods of ci at degree d − 1. These
sets include neighborhoods that receive high, medium, and
low proximity from ci, respectively.

In this study, we use Doc2Vec [Le and Mikolov, 2014] for
embedding character networks. Doc2Vec trains vector rep-
resentations by predicting occurrences of words in fixed-size
windows. However, in graphs, the number of neighboring
nodes is not constant. Narayanan et al. [2016] have pro-
posed radial neighborhoods that define neighborhoods of a
subgraph as subgraphs rooted in neighboring nodes on adja-
cent degrees. Since social roles also have temporal adjacency,
we extend radial neighborhoods to temporal-radial neighbor-
hoods as subgraphs rooted in neighboring nodes on adjacent
degrees and scenes. This can be formulated as:

N
(
c
(d)
i,l

)
=
{
c
(e)
j,m

∣∣∣|i− j| ≤ ∆L,

|d− e| ≤ ∆D, cj ∈ N (ci)
}
, (4)

where N (·) indicates neighborhood sets of nodes or sub-
graphs, and ∆L and ∆D are window sizes for scenes and
degrees, which are commonly 1 in this study.

3.2 Learning Representations of Stories
We embed character networks using which social roles occur
in the character networks. In other words, stories are rep-
resented by which types of characters appear in the stories.
For learning the occurrences, we propose two models: (i)
flow-oriented Story2Vec (Story2Vec-F) and (ii) denouement-
oriented Story2Vec (Story2Vec-D).

Since stories are time-sequential, Story2Vec-F learns
changes in social roles according to narrative time. Using
the PV-DM (distributed memory model of paragraph vec-
tor) method in Doc2Vec, we predict co-occurrence proba-
bility between social roles in the temporal-radial neighbor-
hoods. We estimate the co-occurrence probability of a so-
cial role given stories and neighboring social roles. As with

the negative sampling [Mikolov et al., 2013], the estimation
is conducted by applying the sigmoid function to inner prod-
ucts between vector representations of the case and condition.
Since Story2Vec-F has multiple conditions, we make a repre-
sentative vector of the conditions by averaging vectors for the
conditions. This is formulated as:

P
(
c
(d)
i,l

∣∣∣N (c(d)i,l ) ,Φ (Cα)
)
' σ

(
Φ
(
c
(d)
i,l

)ᵀ
ΦN

(
c
(d)
i,l

))
, (5)

where σ(·) indicates the sigmoid function, and ΦN (·) denotes
a representative vector of conditions.

Therefore, an objective function of Story2Vec-F maxi-
mizes the co-occurrence probability of occurred social roles
given stories and neighborhoods and minimizes the probabil-
ity of the other social roles. This can be formulated as:

LF
(
c
(d)
i,l

)
= logP

(
c
(d)
i,l

∣∣∣N (c(d)i,l ) ,Φ (Cα)
)

−
∑

∀Sb 6=c(d)i,l

logP
(
Sb
∣∣∣N (c(d)i,l ) ,Φ (Cα)

)
, (6)

where Sb is an arbitrary social role, and
∑

indicates the arith-
metic mean operator. However, we cannot examine all social
roles; 37,631 social roles were in 142 movies. Thus, we use
the negative sampling to reduce computational loads for the
negative samples. The second term of Eq. 6 is estimated as:

k∑
j=1

ESb∼Pn(S)
[
log σ

(
−Φ (Sb)ᵀ ΦN

(
c
(d)
i,l

))]
, (7)

where Pn (S) ∝ U(S)
3
4 indicates a noise distribution of so-

cial roles, which is proportional to their unigram distribution.
The first term is as with Eq. 5. The vector representations
are updated by the gradient of the objective function for the
representations.

Climaxes and denouements of stories have more influence
on user impressions than the other parts [McKee, 1997].
Story2Vec-D concentrates on structures of character net-
works at last. Using the PV-DBOW (distributed bag-of-
words version of the paragraph vector) method in Doc2Vec,
Story2Vec-D predicts occurrence probability of social roles
in only N(Cα) = N(sα,L). The method for predicting the
occurrence probability is similar to Story2Vec-F. A difference
is that Story2Vec-D has only one condition, stories. This can
be formulated as:

P
(
c
(d)
i,L

∣∣∣Φ (Cα)
)
' σ

(
Φ
(
c
(d)
i,L

)ᵀ
Φ (Cα)

)
. (8)

An objective function of Story2Vec-D maximizes the oc-
currence probability of social roles that appeared in N(sα,L)
and minimizes the probability of the others. This can be for-
mulated as:

LD
(
c
(d)
i,L

)
= logP

(
c
(d)
i,L

∣∣∣Φ (Cα)
)

−
∑

∀Sb /∈S(sα,L)

logP
(
Sb
∣∣∣Φ (Cα)

)
, (9)

where S (sα,L) indicates a set of social roles discovered from
N(sα,L). The second term of the objective function is esti-
mated by the same method with Eq. 7, due to the negative
sampling.
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Figure 2: t-SNE projection results of story vectors composed for 142
real movies by the Story2Vec-U model.

We integrate the above two models by conducting the mod-
els alternately. First, Story2Vec-F predicts all social roles in
a story and updates their representations. Then, Story2Vec-D
also conducts the prediction and update for social roles in the
last scene. We call the combined model ‘unified Story2Vec
(Story2Vec-U).’ Fig. 2 presents the results of the Story2Vec-
U model for real movies.

4 Evaluation
We evaluated the proposed model by comparing its accuracy
for estimating similarity between stories with the genre sim-
ilarity. Similarity between Cα and Cβ was measured by a
multiplication of cosine similarity and inverse of Euclidean
distance between Φ (Cα) and Φ (Cβ). The similarity estima-
tion is conducted for 142 real movies1. The genre similarity
is calculated by applying the Jaccard index on genre sets of
movies, which were annotated in IMDB2. Character networks
were composed by CharNet-Extractor3 by analyzing movie
scripts collected from IMSDb4. As ground truth, we asked 50
human evaluators to annotate similarity between the movies
through a web application5. The accuracy of the estimated
similarity was measured by absolute errors for the annotated
one.

Fig. 3 presents experimental results. The proposed models
exhibited better performance than the genre similarity. The
genre is the most widely-used taxonomy of narrative multi-
media and mostly annotated by domain experts. This result

1https://github.com/O-JounLee/Story2Vec
2https://www.imdb.com/
3https://github.com/O-JounLee/CharNet-Extractor
4https://www.imsdb.com/
5http://recsys.cau.ac.kr:8084/movies/
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Figure 3: Accuracy of the proposed models for measuring the story
similarity. Box-and-whisker plots present the first to third quartiles,
maxima, and minima of absolute errors. Circular dots denote MAE.

underpins the effectiveness of the proposed models. Among
the three proposed models, Story2Vec-D performed the high-
est accuracy. Climaxes and denouements of stories might
have more influence on user impressions than the develop-
ment of stories. Story2Vec-U outperformed only Story2Vec-
F. The method for combining the dynamic and static ap-
proaches was useful, but not enough. Alternately conducting
the two models might give too many learning opportunities to
Story2Vec-F, comparing with Story2Vec-D.

5 Conclusion and Future Research
This study has proposed models for learning representations
of stories by embedding character networks. Story2Vec-
F/D reflect dynamic and static features, respectively, and
Story2Vec-U combines the two approaches. Among the
three, Story2Vec-D had the highest accuracy. Story2Vec-U
improved the variance of the standalone cases but hindered
the accuracy of Story2Vec-D. We should find a better method
for integrating the dynamic and static approaches. This study
also has the following research directions.

• Stories can be defined in various granularity levels, not
only in a narrative work. Lee et al. [2020] partially
solved this issue using the hierarchical representation
learning, but still insufficient.

• Narrative multimedia have other physical features, ex-
cluding stories. We need a multi-modal representation
learning method to cover both features.
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