Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

Proving Semantic Properties as First-Order Satisfiability
(Extended Abstract)*

Salvador Lucas’
Valencian Research Institute for Artificial Intelligence (VRAIN)
Universitat Politecnica de Valencia, Spain
slucas@dsic.upv.es

Abstract

The semantics of computational systems (e.g., rela-
tional and knowledge data bases, query-answering
systems, programming languages, etc.) can often
be expressed as (the specification of) a logical the-
ory Th. Queries, goals, and claims about the be-
havior or features of the system can be expressed as
formulas ¢ which should be checked with respect
to the intended model of Th, which is often huge
or even incomputable. In this paper we show how
to prove such semantic properties @ of Th by just
finding a model Aof ThU {p} U Z,, where Z,, is
an appropriate (possibly empty) theory depending
on ¢ only. Applications to relational and deductive
databases, rewriting-based systems, logic program-
ming, and answer set programming are discussed.

1 Introduction

Logic is often used to implement the expected functionality
of databases (queries) or programs (executing them). In this
setting, the following approach is naturally adopted [Green
and Raphael, 1968]:

can ¢ be proved from Th? (written Th - ¢) (D

where Th is a logical theory representing the computational
system and ¢ represents a computation.

Example 1 (Running example) Consider the following re-
lational database about teachers a,b, c,d (of sort Teacher)
and students p, q, r (of sort Student) together with a relation
teach giving information about the students taught by each
teacher, according to the table [Reiter, 1977, page 59]

teach | Teacher Student |
a

Lajte Jyte Je]

a
b
c

TPartially supported by the EU (FEDER), projects RTI2018-
094403-B-C32, PROMETEO/2019/098, and SP20180225.

“Extended abstract of an article entitled Proving semantic prop-
erties as first-order satifiability, published in the Artificial Intelli-
gence Journal [Lucas, 2019].

5075

This table describes a (many-sorted) first-order theory Teach
consisting of the following facts:

teach(a,p), teach(b,q), teach(a,q), teach(c,r)

where teach is a binary predicate with arguments of sort
Teacher and Student, respectively. A query asking for the
students taught by teacher a would be encoded as:

(Jy : Student) teach(a,y) (2)

McCune’s (first-order) theorem prover Prover9' [McCune,
2005 2010] obtains a proof of (2).

Logic can also be used to prove properties of computational
systems. For instance, knowledge stored in databases or com-
putational properties of programs.

Example 2 The claim “every student is taught by some
teacher” is expressed as follows:

(Vy : Student)(3x : Teacher) teach(z,y) 3)

Prover9 fails to prove (3). This is not surprising as (3) is
not a logical consequence of Teach. Example 2 suggests that
the logical-reasoning-as-logical-consequence approach (1) is
“too strong” in some cases: our intuition that (3) should hold
is not supported by (1).

As remarked by Clark, sentences expressing properties
should be checked with respect to a given canonical model
only [Clark, 1980, Chapter 4]. Similarly, in the logical ap-
proach to relational databases [Nicolas and Gallaire, 19771,
solving queries and checking functional dependencies and in-
tegrity constraints is thought as the evaluation of logical for-
mulas ¢ with respect to the facts stored in the database which
are considered as a logical interpretation (or canonical, Her-
brand model). Thus, we naturally consider the following:

is ¢ satisfiable in Zt,? (written Z1,, = ¢) 4)

where Zty, represents such a canonical model. Note that ¢ in
(4) does not need to be a theorem of Th (as in (1)); thus, we
better generically call ¢ in (4) a semantic property of Th. As
we prove in Example 14, (3) is a semantic property of Teach,
thus recovering our intuition.

Thus, given a first-order theory Th, the following ques-
tions arise: (i) How to provide a generic notion of “canonical

'http://www.cs.unm.edu/~mccune/prover9/.

http://www.cs.unm.edu/~mccune/prover9/

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

model” for Th? (ii) Accordingly, given a logical statement ¢,
what does it mean that ¢ “is a property” of Th? (iii) How to
prove and disprove such properties? (iv) How to use the stan-
dard notions of provability and satisfiability for this purpose?
(v) What kind of problems can be investigated in this way?
Providing answers to these questions and related issues was
one of the main goals of [Lucas, 2019] (although (i)—(v) are
not explicitly formulated there). In the following, we provide
answers to these questions.

Along the paper, we use standard notions of many-sorted
first order-logic (MS-FOL), see [Goguen and Meseguer,
1987; Hodges, 1993; Mendelson, 1997].

2 Semantic Properties of FO Theories

A natural candidate to play the role of canonical model for a
theory Th is the set Th"™ of ground atoms which can be proved
from Th. Such a set of atoms can be seen as a Herbrand in-
terpretation Lty each function symbol f is interpreted as a
mapping which, given a tuple ¢y, ..., % of ground terms re-
turns a ground term f(¢q,...,tx); each predicate symbol P
is interpreted as the set of atoms P(t1,...,t,) in Th™ (more
precisely, as the set of tuples (¢1,...,t,) of ground terms
such that P(tq,...,t,) € Th"). This answers question (i)
above: Z1}, is intended to be the canonical model for Th. In
general, though, Zty, may fail to be a model of Th [van Em-
den and Kowalski, 1976]: for Th = {p(a) V p(b)}, we have
Th™ = (); thus, Zy, does not satisfy Th. However, for Horn
theories> Th, Z7i, |= Th holds [van Emden and Kowalski,
1976]. Question (ii) is answered with the following defini-
tion.

Definition 3 (Semantic property) A formula ¢ is a seman-
tic property of a theory Th iff Zti, = Th U {¢}.

Remark 4 If Z1,, |= Th, then either ¢ or —p is a semantic
property of Th. If Iy, |= — holds, then It = ¢ does not
hold and we say that o is not a semantic property of Th. In
contrast, there are theories Th and formulas p where neither
@ nor —p can be proved in Th (which is often said to be an
incomplete theory).

Regarding questions (iii) and (iv), for Horn theories Th, if
¢ can be proved from Th, then ¢ is a semantic property of
Th. We can use any proof calculus (see [Fitting, 1996] for
instance).

Remark 5 Theories usually specify true instances of rela-
tions only [Clark, 1977] and no negative information can be
derived from them by logical reasoning. This means that us-
ing theorem proving to verify a semantic property —A for a
given atom A is often hopeless.

We show that semantic properties ¢ of theories Th can be
proved as satisfiability of an extended theory ThU {¢} U Z,
where Z, is an auxiliary (possibly empty) theory which de-
pends on the shape of ¢ only (see Corollary 13). For this
purpose, we use the results in Section 3, based on the notion
of preservation of logic formulas [Hodges, 1993].

A clause is a disjunction Ly V ---V Ly, of literals L; (which
can be atoms A; or negations of atoms —A;). A Horn theory is a set
of clauses each of them having at most one atom.

Examples of use. Finally, regarding question (v), compu-
tational systems that can benefit from our approach, involv-
ing the specification of clausal or even Horn theories, include
Relational and Deductive Databases; Logic and Answer Set
Programming; and Rewriting-Based Systems. See [Lucas,
2019, Section 4] and also Section 6 below.

In this section we have advanced some answers to questions
(i)—(v) above. The next sections provide further details.

3 Preservation of MSFO Sentences

In the following, Th is a theory and we consider sentences ¢
in prenex form (5) as follows:

m n;

(Qiwy :51) - (Qr @ Sk) \/ /\ Li;)

i=1j=1

where (a) forall 1 <¢ < mand 1 < j < ny, L;j; are literals
L;; = A;j or Ljj = —A;; for some atom A;; (in the first
case, we say that (the sign of) L;; is positive; otherwise, it
is negative [van Emden and Kowalski, 1976]) (b) z1, ...,z
for some £ > 0 are the variables occurring in those liter-
als (of sorts sq, . .., Sk, respectively), and (c) @1, . . ., Qj are
universal/existential quantifiers. A sentence (5) is said to be
positive if all literals are; if, additionally,), = 3 for all
1 < g <k, then it is an Existentially Closed Boolean Combi-
nation of Atoms (ECBCA).

Theorem 6 Let A be a model® of Th, and ¢ as (5) be such
that (a) for all g, 1 < q < k, if Qq = V then h, is surjec-
tive* and (b) for all negative literals ~P(ty, ... ,t,) in ¢ and
ground substitutions o, if (h(c(t1)),...,h(o(t,))) € PA
then (o(ty),...,0(t,)) € PT™. If A |= =, then Iy, = —¢.

Remark 7 (Verification as satisfiability) We can verify
whether ¢ is a semantic property of a Horn theory Th by
satisfiability as follows: (i) let p be —p; then (ii) find a
structure A satisfying (a) and (b) with regard to and such
that (iii) A = ThU{¢} holds (note that = and ¢ coincide).
By Theorem 6, It |= ¢ holds. Since Ity = Th holds, ¢ is a
semantic property of Th (Definition 3).

Models A required in Theorem 6 can be obtained from Th U
{} by using model generators like AGES® [Gutiérrez and
Lucas, 2019a] or Mace4® [McCune, 2005 2010].

Example 8 The question “is d teaching someone?” can be
expressed as an ECBCA:

(Jy : Student) teach(d,y) (6)
With AGES, we obtain a model of Teach U {—(6)}, i.e., of
Teach U {—(3y : Student) teach(d,y)} 7

A (many-sorted) structure A is an interpretation of sorts s as
sets As (the carriers), function symbols f : s1---s; — s as map-
pings f4 : A, x --- x As, — As, and predicate symbols P as
relations P C As, X - x A, . If A satisfies all formulas in a
theory Th, we say that A is a model of Th.

“A mapping f : A — B is surjective if for all b € B there is
a € A such that f(a) = b.

Shttp://zenon.dsic.upv.es/ages/

®https://www.cs.unm.edu/~mccune/prover9/

5076

http://zenon.dsic.upv.es/ages/
https://www.cs.unm.edu/~mccune/prover9/

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

where Agiugent = {—1,0,1} and Areacher = N — {0}. For
constants of sort Teacher, a* = bA = cA = 1, and d* =
6; for all constants of sort Student, p* = q* = r* = 1.
Predicate teach is interpreted by teach”™ (z,y) < x < 3. By
Theorem 6, (6) is not a semantic property of Teach.

The treatment of condition (a) in Theorem 6 (surjectivity of
hs for a given sort s) is considered in Section 4. Regard-
ing condition (b) (if negative literals =P (1, ..., t,) are used
in ¢), given a predicate P : w where w = s7:--s, for
Sorts s1,...,8n, let Nth(P) = I, — PT™ be the tuples
(t1,...,tn) (of terms ¢1,...,t, of sorts s1,...,s,) which
are obtained as the complement of the) interpretation of P
in Zrh. Let Nth(P) = {=P(t1,....tn) | (t1,...,tn) €
Nth(P)} be these tuples viewed as negative literals.
Remark 9 In general, N7y, (P) is infinite and incomputable.
A finite description of N (P) can be given if the set Ts.,, of
terms of sort s; is finite for all 1 < i < n.

With N, , = UﬁP(ﬂ in o N7h(P), we recast Theorem 6:
Corollary 10 Let A be a model of Th U Ny, , such that for
allq, 1 < q <k, if Qg = Y then h_ is surjective. If A |= =,
then Ity = —.

Example 11 According to Remark 7, we prove that (3) is a
semantic property of Teach by first obtaining —(3), i.e.,

(Jy : Student)(Vx : Teacher) —teach(x,y) (8)
and then applying Corollary 10 with p = (8). Since

N(teach) = {(t,s)|te€ {a,b,c,d},s€ {p,a,r}}
- {(aa P)7 (a’ q)? (bv q)v (C,I‘)}

we have to consider Nteach —(3) = Nteach(s), Which is

{—teach(a,r), "teach(b,p), ~teach(b, r), ~teach(c,p),
—teach(c,q), “teach(d,p), —teach(d,q), "teach(d,r)}

The proof finishes in Example 14 below.

4 Surjective Homomorphisms
In Theorem 6 and Corollary 10, ensuring surjectivity of hg :
Tss — As is important to use them. We guarantee surjectiv-

ity of h, by satisfiability of an appropriate theory. Given a set
T C Ty, of ground terms of sort s, let

SuH! = (Vz:s)\/x:t

teT

Example 12 For T = {a,b,c,d} (containing all terms of
sort Teacher), SUH . oy is

(Vx : Teacher)x =aVax=bVa=cVz=d

If A = ThU {SuH”} holds, then h, is surjective. Expres-

sion Su HST is first-order for finite sets 1" only. Moreover, not
only the number but also the specific shape of terms in 7" can
be important for SuHST to work [Lucas, 2019, Remark 44].
Thus, a complementary approach is necessary, see [Lucas,
2019, Section 6.2] for details and examples. Overall, given a
sentence ¢, let H,, and N, be appropriate (maybe empty) ver-
sions of SuH and N, , as discussed above to be used with
. We finally recast Corollary 10 as follows:

Corollary 13 (Satisfiability criterion) Let Th be a theory,
@ be as (5), and A be a structure.

IfAEThUH-, UN_, U{p}, then Ity = .

Example 14 For SuH%,,,.... in Example 12 and N-reach,~(3)
in Example 11, a model A of

Teach U {SuH%, ;.. } U NTeach,~(3)
U{(Vy : Student)(3z : Teacher) teach(z,y)}

is obtained using Mace4’ where Areacher = Astudent =
{0,1,2,3, at =pA =0, bA =gt =1, cA =r? = 2,
and d* = 3; finally teach* = {(0,0), (0,1), (1,1),(2,2)}.
By Corollary 13, (3) is a semantic property of Teach, as ex-
pected.

5 Refutation Witnesses

A semantic value b such that ~(b) holds is a counterex-
ample to (V) ¢(x). However, it is often desirable to provide
terms t such that t+* = b for a better understanding. Then, we
say that —(t) is a refutation wimess [Lucas, 2019, Definition
53]. In order to obtain them, consider the negation of (5), i.e.,

m NG

(@kxk : Sk) /\ \/ —\Lij(xl, L.

i=1j=1

(Qz1:81) - s Tk) (9)

where @, is ¥ whenever Q; is 3, and 3 whenever Q; is V.

Example 15 The claim “all students are taught by at least
two teachers” is expressed as follows:

(Vz : Student)(3x : Teacher)(Jy : Teacher)

teach(x, z) A teach(y,z) A ~(z =y) (10)

Below, we prove that (10) is not a semantic property of Teach
and show a refutation witness. First, consider its negation

(3z : Student)(Vx : Teacher)(Vy : Teacher)

—teach(z, z) V —teach(y,2z) Ve =y (11)

in the normalized format (5).

Model generators often transform sentences into universally
quantified formulas by Skolemization (see, e.g., [Kim and
Zhang, 1994]). If (9) contains existential quantifiers, we re-
move them by introducing appropriate Skolem function sym-
bols sk : w — s where w is a (possibly empty) sequence of
sorts. Thus, our satisfiability techniques would be applied to
the Skolemized version (—¢)** of the negation of the target
formula ¢.

Example 16 The Skolem normal form of (11) is

(Vx : Teacher)(Vy : Teacher)

—teach(z, sk,) V ~teach(y, sk.) Ve =y (12)

where sk, is a new Skolem constant of sort Student. Thus,
(=(10))%* is (12). According to Corollary 13, we would prove
that (10) is not a semantic property of Teach by obtaining a

"For model generators, like Mace4, which do not support sorts,
all sort information is removed before model generation, see (Sect.
5.2) for technical details.

5077

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

model of TeachUH 19y UN(10)U{—(10)}. Using (12) instead
of —(10), we rather seek a model of

Teach UH(10) UN(10) U {(12)} (13)

Since universally quantified variables in (10) are of sort

Student, He1y = SUHL,ien: for T = {p,q,r}. Since the
only negative literal in (10) concerns the equality, we let

N(lO):{a#bva#C7a#d7b7éc>b#dac7éd}

using x # y instead of —~(x = y), for short. A model A of
(13) is obtained with AGES, where Agtugent = {—1,0,1}
and Areqener = N U {=1}. For constants of sort Teacher,
at =0,bA =1, c* = —1, and d* = 2; for constants of sort
Student, pA = 0, g4 = —1, and r* = 1. Also, skf =1,
and teachA(x, y) ety <0

Constant sk, in Example 16 represents the existential quan-
tification in (11) (i.e., in (—10)). Value skZ' = 1 represents
the desired counterexample to (10). As discussed above, re-
turning “1” is meaningless to the user, as it has to do with
our proof-as-satisfiability approach. Returning “sk.” is not
helpful either, as symbol sk, is not part of the original user-
defined signature of the problem, being introduced during the
model generation process. Our solution invoves the use of the
inverse of hg for sorts s with Skolem symbols sk : w — s
to retrieve a term of sort s with the same interpretation as sk.
For this purpose, (i) surjectivity of h is required (so that the
existence of terms ¢ of sort s such that h,(t) = sk™ is guar-
anteed), and then (ii) we choose among terms ¢ satisfying this
condition. In this way, we obtain refutation witnesses built
from symbols in the original signature only.

Example 17 For (10), since skf = 1, the only term t €
Ts tudent SUch that t* = skf = 1 is r. We obtain the fol-
lowing refutation witness:

(Vx,y : Teacher) —teach(z,r) V —teach(y,r) Va =y
which, in the following, maybe clearer, equivalent version
—(3x,y : Teacher) teach(z,r) A teach(y,r) Az #y

expresses that r is taught by a single teacher.

6 Related Work and Applications

In the following, we summarize some related work and appli-
cations concerning our approach.

Verification of concurrent systems. Lisitsa investigates
reachability problems for transition systems represented as
finite automata (with the possibility of using some arithmetic
operators together with standard arithmetic properties en-
coded as equations) by using a logic-based approach similar
to ours [Lisitsa, 2013]. Only monadic predicates are consid-
ered, though. Furthermore, only ECBCA sentences are used
as semantic properties.

Protocol verification. Selinger shows how to encode cryp-
tographic protocols as first-order formulas so that a proof of
correctness of a given protocol can be pursued by just find-
ing a model of a set of axioms representing properties of

5078

cryptographic properties together with a description of some
particular protocol, and (the negation of) a formula ¥ which
represents a violation of secrecy [Selinger, 2001]. Goubault-
Larrecq shows that formally checkable proofs of correct-
ness of protocols can be derived from the obtained models
[Goubault-Larrecq, 2010]. He also investigates the specific
interest (concerning decidability issues) of using finite mod-
els in protocol verification (he also shows that some proto-
cols require infinite models). In these two papers, the con-
sidered formulas ¥ are ECBCAs. Jiirgens and Weber use a
similar technique, where theories are restricted to limit sen-
tences, which are universally quantified implications where
some variables in the consequent can be quantified with the
uniqueness quantifier 3! instead [Jiirjens and Weber, 2009].
Sentences to be refuted (called conjectures) must be univer-
sally quantified conjunctions of atoms (VZ) A\!_; 4;. They
consider finite models only, although no strong technical rea-
son is apparently given to justify this restriction (which is not
imposed in [Selinger, 2001], for instance).

Proof by consistency. The idea of proving logic formulas
 with respect to a theory Th by showing that Th U {¢} is
not contradictory is called proof by consistency in [Kapur and
Musser, 1987]. The authors point that this proof method is,
in general, unsound, but can be faithfully used with strongly
complete proof systems, which are those guaranteeing that,
whenever a formula ¢ can be added as an axiom to the proof
system without introducing inconsistencies, then ¢ is also a
theorem of the system. Kapur and Musser focus on many-
sorted equational proof systems consisting of a subset C' of
ground terms and a set of equations ¥ where equational logic
is used as proof system. Their proof by consistency method
is used to prove equations (with implicit universal quantifi-
cation) with respect to the considered systems. Furthermore,
additional requirements like unambiguity are required on the
considered systems (i.e., theories, see [Kapur and Musser,
1987, Theorem 9.2], for instance. Moreover, Kapur and
Musser do not use satisfiability to show consistency of the
theory (although both notions are equivalent) Instead, proof-
theoretic (rewriting-based) methods are used to prove consis-
tency.

Feasibility framework. The framework in [Gutiérrez and
Lucas, 2019b] has been recently extended to automatically
prove and disprove ECBCAs (as feasibility goals). The
system infChecker® provides a first implementation of the
framework which has been shown successful in the infeasibil-
ity competition of the 2019 Confluence Competition [Middel-
dorp et al., 2019, Section 5.2] for Conditional Term Rewriting
Systems. By infeasibility it is meant the absence of a substi-
tution o which makes a boolean combination \/;”; A2, Ajj
of atoms A;; provable after instantiation with o. As shown
in [Lucas, 2020], infeasibility of first-order formulas is also
useful in proofs of operational termination of programs in
general logics [Meseguer, 1989].

8http://zenon.dsic.upv.es/infChecker/

http://zenon.dsic.upv.es/infChecker/

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

References

[Clark, 1977] Keith L. Clark. Negation as failure. In Hervé
Gallaire and Jack Minker, editors, Logic and Data Bases,
Symposium on Logic and Data Bases, Centre d’études et
de recherches de Toulouse, France, 1977, Advances in
Data Base Theory, pages 293-322, New York, 1977. Ple-
mum Press.

[Clark, 1980] Keith L. Clark. Predicate logic as a computa-
tional formalism. PhD thesis, Queen Mary University of
London, UK, 1980.

[Fitting, 1996] Melvin Fitting. First-Order Logic and Auto-
mated Theorem Proving, Second Edition. Graduate Texts
in Computer Science. Springer, 1996.

[Goguen and Meseguer, 1987] Joseph A. Goguen and José
Meseguer. Models and equality for logical programming.
In Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and
Ugo Montanari, editors, TAPSOFT’87: Proceedings of the
International Joint Conference on Theory and Practice of
Software Development, Pisa, Italy, March 23-27, 1987,
Volume 2: Advanced Seminar on Foundations of Innova-
tive Software Development Il and Colloquium on Func-
tional and Logic Programming and Specifications (CFLP),
volume 250 of Lecture Notes in Computer Science, pages
1-22. Springer, 1987.

[Goubault-Larrecq, 2010] Jean Goubault-Larrecq. Finite
models for formal security proofs. Journal of Computer
Security, 18(6):1247-1299, 2010.

[Green and Raphael, 1968] C. Cordell Green and Bertram
Raphael. The use of theorem-proving techniques in
question-answering systems. In Proceedings of the 1968
23rd ACM National Conference, ACM ’68, page 169181,
New York, NY, USA, 1968. Association for Computing
Machinery.

[Gutiérrez and Lucas, 2019a] Radl Gutiérrez and Salvador
Lucas. Automatic generation of logical models with
AGES. In Pascal Fontaine, editor, Automated Deduction
- CADE 27 - 27th International Conference on Automated
Deduction, Natal, Brazil, August 27-30, 2019, Proceed-
ings, volume 11716 of Lecture Notes in Computer Science,
pages 287-299. Springer, 2019.

[Gutiérrez and Lucas, 2019b] Radl Gutiérrez and Salvador
Lucas. infChecker, a tool for Checking Infeasibility .
In Maria Alpuente, Julia Sapifia, and Roberto Rodriguez-
Echeverria, editors, Actas de las XIX Jornadas de Progra-
macion y Lenguajes (PROLE 2019), page 12. SISTEDES,
2019.

[Hodges, 1993] Wilfrid Hodges. Model theory, volume 42 of
Encyclopedia of mathematics and its applications. Cam-
bridge University Press, 1993.

[Jiirjens and Weber, 2009] Jan Jiirjens and Tjark Weber. Fi-
nite models in fol-based crypto-protocol verification. In
Pierpaolo Degano and Luca Vigano, editors, Foundations
and Applications of Security Analysis, Joint Workshop on
Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security, ARSPA-WITS 2009, York,

5079

UK, March 28-29, 2009, Revised Selected Papers, volume
5511 of Lecture Notes in Computer Science, pages 155—
172. Springer, 2009.

[Kapur and Musser, 1987] Deepak Kapur and David R.
Musser. Proof by consistency. Artif. Intell., 31(2):125-
157, 1987.

[Kim and Zhang, 1994] Sun Kim and Hantao Zhang. Mod-
gen: Theorem proving by model generation. In Barbara
Hayes-Roth and Richard E. Korf, editors, Proceedings of
the 12th National Conference on Artificial Intelligence,
Seattle, WA, USA, July 31 - August 4, 1994, Volume 1,
pages 162—-167. AAAI Press / The MIT Press, 1994.

[Lisitsa, 2013] Alexei Lisitsa. Finite reasons for safety - pa-
rameterized verification by finite model finding. J. Autom.
Reasoning, 51(4):431-451, 2013.

[Lucas, 2019] Salvador Lucas. Proving semantic properties
as first-order satisfiability. Artif. Intell., 277, 2019.

[Lucas, 2020] Salvador Lucas. Using well-founded relations
for proving operational termination. J. Autom. Reasoning,
64(2):167-195, 2020.

[McCune, 2005 2010] William McCune. Prover9 & Maced4.
Technical report, 2005-2010.

[Mendelson, 1997] Elliott Mendelson. Introduction to math-
ematical logic (4. ed.). Chapman and Hall, 1997.

[Meseguer, 1989] José Meseguer. General logics. In H.-D.
Ebbinghaus, J. Fernandez-Prida, M. Garrido, D. Lascar,
and M. Rodriquez Artalejo, editors, Logic Colloquium’87,
volume 129 of Studies in Logic and the Foundations of
Mathematics, pages 275 — 329. Elsevier, 1989.

[Middeldorp et al., 2019] A. Middeldorp, J. Nagele, and
K. Shintani. Confluence Competition 2019. In D. Beyer,
M. Huisman, F. Kordon, and B. Steffen, editors, Proc. of

Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’19, pages 25—40. Springer, 2019.

[Nicolas and Gallaire, 1977] Jean-Marie Nicolas and Hervé
Gallaire. Data base: Theory vs. interpretation. In Hervé
Gallaire and Jack Minker, editors, Logic and Data Bases,
Symposium on Logic and Data Bases, Centre d’études et
de recherches de Toulouse, France, 1977, Advances in
Data Base Theory, pages 33—54, New York, 1977. Plemum
Press.

[Reiter, 1977] Raymond Reiter. On closed world data bases.
In Hervé Gallaire and Jack Minker, editors, Logic and
Data Bases, Symposium on Logic and Data Bases, Cen-
tre d’études et de recherches de Toulouse, France, 1977,
Advances in Data Base Theory, pages 55-76, New York,
1977. Plemum Press.

[Selinger, 2001] Peter Selinger. Models for an adversary-
centric protocol logic. Electron. Notes Theor. Comput.
Sci., 55(1):69-84, 2001.

[van Emden and Kowalski, 1976] Maarten H. van Emden
and Robert A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23(4):733-742,
1976.

	Introduction
	Semantic Properties of FO Theories
	Preservation of MSFO Sentences
	Surjective Homomorphisms
	Refutation Witnesses
	Related Work and Applications

