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Abstract

We consider a scenario where self-interested Elec-
tric Vehicle (EV) aggregators compete in the day-
ahead electricity market in order to purchase the
electricity needed to meet EV requirements. We
propose a novel decentralised bidding coordina-
tion algorithm based on the Alternating Direction
Method of Multipliers (ADMM). Our simulations
using real market and driver data from Spain show
that the algorithm is able to significantly reduce
energy costs for all participants. Furthermore, we
postulate that strategic manipulation by deviating
agents is possible in decentralised algorithms like
ADMM. Hence, we describe and analyse different
possible attack vectors and propose a mathemati-
cal framework to quantify and detect manipulation.
Our simulations show that our ADMM-based algo-
rithm can be effectively disrupted by manipulative
attacks achieving convergence to a different non-
optimal solution which benefits the attacker. At the
same time, our proposed manipulation detection al-
gorithm achieves very high accuracy.

1 Introduction

To date, there exists a world-wide fleet of well over five mil-
lion electric vehicles (EVs) and EV sales are growing expo-
nentially [International Energy Agency, 2019]. Despite their
great environmental benefits, EVs present a novel and heavy
strain to electricity networks and markets, which will need
to accommodate a new type of consumer with high demand
[Rigas et al., 2015]. This challenge is addressed by using EV
aggregators: intermediaries between a fleet of EVs and the
electricity grid and markets which are able to make informed
charging decisions [Kempton et al., 2001].

In this paper we focus on the interaction of a number of
self-interested EV aggregators with the electricity day-ahead
market, where increased electricity demand means increased
prices, the so-called price impact. Here, reduced overall costs
can be achieved by inter-aggregator coordination, produc-
ing more informed and optimised collective bidding. A cen-
tralised solution has been studied in [Perez-Diaz et al., 2018a;

*This paper is an extended abstract of the following article pub-
lished in JAIR: [Perez-Diaz et al., 2020]

5095

Perez-Diaz et al., 2018b]. However, these and other cen-
tralised approaches require a trusted environment and sharing
private information with the central coordinator. In order to
address these shortcomings, we propose a decentralised coor-
dination algorithm using the Alternating Direction Method of
Multipliers (ADMM) [Boyd et al., 2010].

However, although this novel decentralised algorithm tack-
les the shortcoming described above, it introduces the possi-
bility of strategic manipulation, where an aggregator deviates
from the vanilla ADMM algorithm with the aim to decrease
its energy costs, in detriment of other aggregators. We ex-
plore this issue by defining several attack vectors which seek
to improve an aggregator’s own energy allocation. Further-
more, in order to address this problem, we propose a manipu-
lation detection algorithm that monitors the behaviour of the
aggregators to identify deviations. Note that this issue exists
in any ADMM decentralised optimisation scenario with ra-
tional and self-interested agents, and is not limited to our EV
setting.

2 The Day-Ahead Market Model

Day-ahead markets divide each day into 24 hourly slots, each
running a separate uniform-priced double-sided auction. Be-
fore closure time (usually noon) on a given day, bids and of-
fers for each hourly slot of the next day must be submitted
to the market. Then, a matching algorithm determines the
accepted bids and offers, and establishes an hourly uniform
price using marginal pricing, this is, the price of the intersec-
tion between supply and demand.

As a consequence, the arrival of a new buy order pushes
the clearing price up if it gets accepted, the so-called price
impact. This highlights the importance of eliminating unnec-
essary bid overlapping, i.e. spreading energy orders over time
to avoid a high price impact at any given hour. Formally, if
the bids an offers for a given hour ¢ are known, we can com-
pute the price impact function P; relating an amount of extra
energy big, E, with the resulting price: P(E).

3 The EV Aggregator Model

In our model, EVs arrive and depart dynamically over time.
When an EV arrives to the charging point, it communicates
the desired departure time and desired state of charge at de-
parture to the aggregator. We assume that arrival time and
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state of charge and can be automatically inferred by the ag-
gregator. Each EV has a maximum charging speed in kW,
which depends on two factors: the available physical infras-
tructure, and the EV’s battery. These requirements will fully
characterise the EV and will be used to constrain the aggrega-
tor bidding. The charging schedule of the EV is then left at the
aggregator’s discretion, which can choose when to perform
the charging while guaranteeing the desired state of charge
by departure time. This flexibility allows charging the bat-
tery in an informed way, rather than randomly, or at arrival,
providing cheaper electricity costs.

The aim of the aggregator is to charge its EVs while min-
imising electricity costs. Recall that, due to the nature of the
day-ahead market, electricity bids need to be placed in ad-
vance, before knowing one’s real requirements. This requires
the aggregators, and all market participants, to forecast their
electricity needs and the hourly prices, and bid accordingly
(we will denote forecasts by a hat). The aggregator’s optimi-
sation problem is then defined as follows: given an EV aggre-
gator’s forecasted energy requirements and price impact func-
tions, find the optimal distribution of energy quantities to bid
across the 24 hourly slots of the next day, E = (Ey, . .., Fa3),
in order to satisfy its clients’ charging needs while minimis-
ing the total cost of the purchased energy:

?gnZﬁt(Et)~Et 1)
g
subject to: forecasted requirement constraints 2)

We refer to the full paper [Perez-Diaz er al., 2020] for details.

4 The Decentralised Coordination Algorithm

The bidding algorithm detailed in the previous section for a
single aggregator is the basis for the novel ADMM-based de-
centralised coordination algorithm proposed next. In essence,
the goal is to produce an iterative decentralised algorithm,
where each EV aggregator solves a local optimisation prob-
lem using only their own private information. The solutions
to each local problem are coordinated by a global consensus
step, and this procedure is iterated. Consensus refers to the
fact that, asymptotically, all the local variables will coincide.

Following the model from Section 3, let El =
(E§,...,FEis) be the energy schedule for aggregator i.

Moreover, let E = (E', ..., E") be the joint vector encapsu-
lating each individual energy schedule. We can now rewrite
Eq. (1) as:

23
min E
E
t=0

2, (ZEi) -ZEz] _
=1 =1

n 23 n
:InEinZ S |E-P| D E 3)
i=1 |t=0 j=1

This way, the objective function is expressed as a sum of n
terms, as required by the ADMM formulation. Note that,
given that the price impact of each aggregator affects every-
body else, we cannot separate Eq. (3) in the variable ¢, i.e.
the equation is coupled and the sum’s terms cannot be inde-
pendently distributed among the aggregators. This type of
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problem is suited to be formulated as a global variable con-
sensus problem [Boyd et al., 2010], which works as follows.
Consider a minimisation problem in the following form:

m);m Zn: fi(x)
i=1

where the goal is that each term in the sum can be handled
independently. In the cases where the variable x is not sep-
arable in 4, local variables x* and a global variable z can be
introduced, rewriting the problem as:

min Y~ f(x")
1S e
subjectto: x' —z=0,V=1,...,n

As mentioned above, the problem constraints require all local
variables to agree with each other and with the global vari-
able. This way, global consensus on the solution is achieved.
Also, note that f; uses only aggregator ¢’s individual con-
straints, which can be embedded into the function f; itself.

In a similar vein and focusing on our scenario, let E and
E(® be the global and local variables respectively, each of
which comprises a vector with dimension 24n i.e. E(Y) =
(ED, .. EOn) and ED = (E((f)’], . Egg}’-’). Fol-
lowing Eq. (3), the functions f; are given by:

fi (BD) = [Etm,z P, (Z}Ll Etu)u)] if con-
straints (2) are met by E®)%, and f; (E®) = oo otherwise.
This poses the problem in a way that can be iteratively solved
by using the ADMM algorithm [Boyd et al., 2010].

Given this, the iterative algorithm works as follows: at it-
eration k, each EV aggregator solves their local problem and
updates their local copy of the energy schedule, EE;{)] Then,
an aggregation step collects all the local solutions proposed
by each aggregator and updates the global energy schedule,
E;;, reporting this vector back to all the aggregators. Lastly,
each aggregator updates their local copy of the dual variable
and proceeds to the new iteration. This procedure is iterated
until every aggregator’s local solutions are close enough.

5 Strategic Manipulation of the ADMM
Algorithm

The ADMM-based algorithm described in the previous sec-
tion asymptotically reaches the global optimum if every par-
ticipating agent runs the algorithm faithfully. In our case,
where agents are assumed to be self-interested, an aggrega-
tor could deviate from their assigned local algorithm and/or
misreport their local solutions with the aim of improving their
allocation. More specifically, in our scenario we assume a po-
tential attacker aims to reduce its energy costs (i.e. increase
its utility). Note that we do not look at all possible manip-
ulation vectors, as this is not feasible, but instead focus on
several intuitive and specific types of manipulation that are
beneficial for the attacker in our setting.

Formally, the electricity costs incurred by aggregator i
when a global allocation E = (El7 R E") is reached are
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given by:
23 n ]
cost; = Z E; - Py Z E] 4)
t=0 j=1

In order to reduce these costs, the attacker aims to minimise
the price impact on their desired hours, which in turn can be
achieved by moving other aggregators’ overlapping alloca-
tions to different hours. To this end, we consider different at-
tack vectors, namely Shift, Proportional, Freeze, FreezeShifft,
FreezeProp and Adversarial attacks, as summarised in Table
1. Each attack has an attack strength that can be varied. For
FreezeProp, it is denoted by A. This will be discussed em-
pirically in Section 7. Also, we consider All- variants for
the Shift, Proportional, FreezeShift and FreezeProp attacks,
where all the other aggregators—not just one—are attacked.
Finally, note that we assume that an attacker performs a given
attack vector with a given intensity in every round.

6 Detecting Manipulation

In this section, we detail a mathematical framework for quan-
tifying the influence of a given ADMM participant, i.e. an EV
aggregator, onto the rest of participants. The aim is to be able
to detect outliers that are symptom of strategic manipulation
in the system. Although this framework is general, and can
be applied to any ADMM (or variant) scenario, we focus on
our particular case for ease of exposition.

The basic idea is that any group of aggregators with over-
lapping energy requirements should influence each other’s
schedules with similar intensity. If a particular aggregator ¢
is self-interested and wants to improve its allocation by de-
viating from the ADMM algorithm, it will exert a heavier
influence onto its competitors’ allocations. Conversely, as
happens in the adversarial attack, an aggregator that tries to
wrongly flag another benign aggregator as deviator would ex-
ert too little influence.

A key point is that each aggregator 7 produces a (local) pro-
posed schedule for all the n participating aggregators. For-

Attack name | Short description

.. | Shift the proposed allocation for one attacked
Shift -
aggregator to more expensive hours

Scale down the proposed allocation for the

Proportional attacked aggregator

Propose its individually optimal allocation for
Freeze | itself (without considering the competitor
aggregators)

FreezeShift | Freeze + Shift

FreezeProp | Freeze + Proportional

Attempt to incriminate a benign aggregator
Adversarial | as deviator by artifically favouring their
allocations

Table 1: Summary of the proposed attack vectors. In addition, Shift,
Proportional, FreezeShift and FreezeProp have All- variants where
all the other aggregators—not just one—are attacked.
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mally, focusing on the algorithm’s iteration number k:

@) _ (gl (i)om
E[k]_(E[k] L E) )

Hence, this local solution proposed by aggregator ¢ at itera-

tion k contains its own schedule, Eflgl and all the schedules

for all the other participants, E%j for j # i. We assume

that each aggregator, benign or deviator, is truthful about their
own allocations in their proposed local solutions and that the
deviating behaviour starts from the second ADMM round,
when every aggregator has seen the proposals from each other
aggregator. This allows us to focus on the first two iterations
(k = 0,1) for ease of exposition.

Now, in order to study the influences among different ag-
gregators, we define the difference matrix, a square matrix
of dimension n storing how much each aggregator affects its
competitors’ self-proposed allocations:

ij _ (4),J (4),7
a9 = BT~ BG))

Moreover, we normalise this matrix to account for the natural
differences due to the size of the different aggregators, using
the total amount of energy allocated by each aggregator to
itself as a proxy to potentially unknown aggregator size. For-

mally, we can write: size; = fio E[(é]) " and the proportion

of the size of aggregator ¢ among the whole group of aggre-
S1Z¢€;

>, size;

difference matrix, d, is given by:

gators is given by: p; = Then, the normalised

Jid — HE(i)»j B E(j)J” - \/p7 (5)
(1] (0] size; + size;

This scaling function was chosen as it empirically flattens the

entries of the matrix d corresponding to benign aggregators,

eliminating most of the dependence on aggregator size.

Lastly, we assume that n — 1 aggregators are benign and
only one of them can potentially be a deviator. This is mo-
tivated by the fact that, with a perfect detection algorithm,
there exists a Nash equilibrium in which no-one wants to de-
viate. Note that the proposed detection algorithm, which we
are now ready to introduce, could be extended to deal with
the more general case of having any number of deviators.

We are now ready to introduce our threshold-based ma-
nipulation detection algorithm, which makes use of the nor-
malised difference matrix. In more detail, the algorithm looks
at the difference matrix d, computes the median of the ma-
trix entries, fiq /25 and then finds the entry that deviates the
most from the median. This is done separately for off- and
on-diagonal elements (as there are intrinsic magnitude differ-
ences between d*’ and d'/ even when all aggregators are be-
nign) and only the highest deviation of the two is taken as fi-
nal candidate. Lastly, this candidate is classified as deviator if
its deviation from the median is greater than the user-defined
threshold a.

The choice of threshold « is critical and will be studied
empirically in Section 7. Also, although the presented algo-
rithm is designed to work in scenarios with at most one ma-
nipulating agent, by selecting the aggregator that deviates the
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Figure 1: Accuracy analysis for the FreezeProp attack vector under different attack strengths (A) and number of aggregators. Results averaged
over every day of November 2016. All aggregators have capacity for 150 000 EVs. Dashed lines represent the naive benchmark for each

scenario, which considers every aggregator to be benign.

most, it can be easily adapted to a general scenario. The most
straightforward way would be to simply classify as deviator
any aggregator i with [y /5 — d“7| > « for some j. Finally,
we would like to note that the proposed algorithm could be
used in conjunction with other detection methods in order to
provide better results.

7 Empirical Evaluation

In this section we present a summarised analysis of the per-
formance of the different attack vectors (Section 5) and the
manipulation detection framework (Section 6). This empiri-
cal evaluation uses real market and vehicle usage data from
Spain. Full details and extra results are available in [Perez-
Diaz et al., 2020].

As discussed throughout the paper, a deviating aggregator
would try own allocation, that is, artificially reduce its energy
costs, by manipulating the algorithm in a subtle way that goes
unnoticed. Consequently, we identify two key quantities to
analyse in order to assess the efficacy of a given attack vector:
the effectiveness of the considered attack, in terms of utility
increase (i.e. energy cost reduction) for the attacker, and the
convergence of the algorithm under attack. More specifically,
by convergence we refer to whether the iterative ADMM al-
gorithm converges to a global solution.

The performance of the different attack vectors considered
differs is quite varied. For example, FreezeProp present very
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Figure 2: Cost and convergence analysis for the Shift and

FreezeProp attack vectors. Scenarios with four aggregators and av-
eraged over the ten first days of November 2016. All aggregators
have capacity for 150 000 EVs.
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good results, consistently providing reduced costs for the at-
tacker and close to 100% convergence rates for all attack
strengths. On the other hand Shift presents very large cost
reductions but fails to provide algorithm convergence. These
results are depicted in Fig. 2. We would like to note that even
a 1% cost reduction in the scenarios considered in this work
represents savings in the order of hundreds of thousands of
Euros per year.

Finally, in order to assess the efficacy of the manipula-
tion detection algorithm, we turn our attention to its accuracy
[Metz, 1978]. In more detail, accuracies 0 and 1 correspond
to detectors which are always wrong and always right, respec-
tively. Moreover, we will compare the accuracy of our pro-
posed algorithm with that of a naive detector that classifies all
the aggregators as benign. This is motivated by the fact that
our dataset is unbalanced given that we consider at most one
deviator per simulation. A well performing algorithm should
present increased accuracy from this naive benchmark.

Here, we will focus on the FreezeProp attack, which has
shown to be effective at successfully manipulating the coor-
dination algorithm. The detection results are shown in Fig. 1.
We can see that scenarios with larger number of aggregators
are more difficult and that stronger attacks are easier to de-
tect. The proposed algorithm significantly outperforms the
naive benchmark and is able to achieve very high accuracy
for a range of « values.

8 Conclusion

In this paper, we have presented a decentralised coordination
mechanism for multi-EV aggregator bidding in the day-ahead
market which employs the Alternating Direction Method of
Multipliers (ADMM) algorithm. This proposed algorithm ex-
tends previous works in the literature with a focus on privacy.

Moreover, we present the first study of strategic manipula-
tion of ADMM algorithms by self-interested internal agents.
Furthermore, working towards resilient decentralised optimi-
sation, we study how deviating behaviour can be detected
and propose a mathematical framework for detecting strategic
manipulation.

Empirical results in a realistic setting show that a deviating
aggregator is able to successfully manipulate the coordina-
tion mechanism, significantly increasing their utility. Finally,
our proposed detection algorithm clearly outperforms a naive
benchmark and is able to detect manipulation with very high
accuracies.
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