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Abstract
The distinctive driving force of constraint pro-
gramming (CP) to solve combinatorial problems
has been a privileged access to problem structure
through the high-level models it uses. We investi-
gate a richer propagation medium for CP made pos-
sible by recent work on counting solutions inside
constraints. Beliefs about individual variable-value
assignments are exchanged between contraints and
iteratively adjusted. Its advantage over standard be-
lief propagation is that the higher-level models do
not tend to create as many cycles, which are known
to be problematic for convergence. We find that it
significantly improves search guidance.

1 Introduction
The distinctive driving force of Constraint Programming (CP)
to solve combinatorial problems has been a privileged access
to problem structure through the high-level models it uses.
From that exposed structure in the form of so-called global
constraints, powerful inference algorithms have shared infor-
mation between constraints by propagating it through shared
variables’ domains, traditionally by removing unsupported
values. The paper investigates a richer propagation medium
made possible by recent work on model counting inside con-
straints.

Many forms of message passing algorithms have been in-
vestigated in AI. One of the earliest and best known, Be-
lief Propagation (BP) also known as sum-product message
passing, was proposed by Pearl [1982] to perform inference
on graphical models. From a joint probability distribution it
computes approximations of the marginal distributions onto
individual variables (i.e. beliefs). Each message is a real-
valued function over the domain of a variable that expresses
a probability that the variable takes a given value in a model.
BP is known to converge to the exact marginal distributions
on tree topologies but may not converge in general.

In CP, constraint propagation can also be viewed as
a message passing algorithm, announcing value deletions
from domains through the constraint network and necessar-
ily converging because some quantity, namely the size of the

∗The full version of this paper was published as [Pesant, 2019].

Cartesian product of the domains, decreases monotonically
[Horsch and Havens, 2013; Werner, 2015]. From the per-
spective of message passing, the deleted values being prop-
agated are messages taking the form of simpler Boolean-
valued functions evaluating to false for these deleted values
and to true otherwise, which is rather flat information since
all non-deleted values are on an equal footing. One way to
view a variable’s filtered domain with respect to a constraint
is as a set of variable-value pairs having non-zero frequency
among its solution set [Dechter et al., 2010] — if instead we
share the whole frequency distribution over individual vari-
ables we can discriminate between values from the perspec-
tive of each constraint and, for example, use it for branch-
ing in the search tree. Once we consider the frequency of a
variable-value pair as its likelihood, or probability, of appear-
ing in a solution to the given constraint, we come very close
to belief propagation and other message passing algorithms
for probabilistic inference. Beliefs about individual variable-
value assignments are exchanged between contraints and iter-
atively adjusted. It generalizes standard support propagation
in CP and aims to converge to the true marginal distributions
of the solutions over individual variables. Its advantage over
standard belief propagation is that the higher-level models of
CP featuring large-arity (global) constraints do not tend to cre-
ate as many cycles, which are known to be problematic for
convergence.

Since in general we don’t have an explicit description of
the solution set of a constraint, that frequency distribution is
not readily available and would have to be approximated, per-
haps very coarsely. However recent work on solution count-
ing is bringing it within reach to compute exact (or close) dis-
tributions for several families of constraints [Pesant, 2017].
Counting-based search [Pesant et al., 2012], a family of ef-
fective branching heuristics, drives search toward areas where
there are many satisfying assignments to (some of) the con-
straints taken individually. These are expressed through the
concept of solution density: given a constraint c(x1, . . . , xk),
its number of solutions #c(x1, . . . , xk), respective finite do-
mains D(xj) 1≤j≤k, a variable xi in the scope of c, and a
value v ∈ D(xi),

σ(xi, v, c) =
#c(x1, . . . , xi−1, v, xi+1, . . . , xk)

#c(x1, . . . , xk)

defines the solution density of variable-value pair (xi, v) in
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1 2 3 4
θa 0 1/2 1/2 0
θb 0 1/2 1/2 0
θc 1 0 0 0
θd 1 0 0 0

Table 1: True marginals

constraint c, given as the fraction of solutions to c which in-
clude that assignment. Depending on the constraint and the
combinatorial structure it encapsulates, such counting may
be intractable. Nevertheless the recent work on counting-
based search has provided efficient algorithms to count ei-
ther exactly or approximately for several important families
of constraints [Pesant et al., 2012; Brockbank et al., 2013;
Pesant, 2015].

There is a well-established connection between probabilis-
tic inference and weighted model counting [Chavira and Dar-
wiche, 2008]. From the perspective of weighted counting, the
concept of solution density has an underlying assumption that
the likelihood of values in each domain follows a uniform dis-
tribution, thereby leading to all solutions having equal weight.
We need to abandon this assumption and consider arbitrary
distributions arising from the variable-to-constraint messages
that reflect the belief acquired from the other constraints and
which is iteratively adjusted.

The paper promotes a richer propagation medium in CP,
made possible by extending the work on solution density
to weighted counting inside constraints and close in spirit
to message passing algorithms. It also contributes an in-
stantiation of belief propagation that is less affected by cy-
cles through the use of higher-order potentials corresponding
to CP’s global constraints, weighted-counting algorithms for
some of the latter, and a publicly-available implementation
for further research.

2 An Example
Consider the following example to illustrate our approach:

i. alldifferent(a, b, c)

ii. a+ b+ c+ d = 7

iii. c ≤ d
three constraints with variables a, b, c, d ∈ {1, 2, 3, 4}. There
are two solutions to that CP problem: (a = 2, b = 3, c =
1, d = 1) and (a = 3, b = 2, c = 1, d = 1). Even if we
enforce domain consistency on each constraint, no filtering
occurs. To solve it we would thus be left to branch on vari-
ables having identical domains.

Variable a takes value 2 in one of the two solutions, value
3 in one solution as well, and values 1 and 4 in no solution. If
we look at the set of solutions as a multivariate discrete dis-
tribution, its projection onto a yields 〈0, 1, 1, 0〉 and under the
assumption that either solution is equally likely the marginal
probability distribution for a is then θa = 〈0, 1/2, 1/2, 0〉.
Table 1 gives the marginal for each variable and Table 2, the
marginals local to each constraint taken individually and over
its own set of solutions. We see that from the point of view
of the alldifferent constraint and for variable a (line

1 2 3 4
θia 1/4 1/4 1/4 1/4
θiia 10/20 6/20 3/20 1/20
θib 1/4 1/4 1/4 1/4
θiib 10/20 6/20 3/20 1/20
θic 1/4 1/4 1/4 1/4
θiic 10/20 6/20 3/20 1/20
θiiic 4/10 3/10 2/10 1/10
θiid 10/20 6/20 3/20 1/20
θiiid 1/10 2/10 3/10 4/10

Table 2: Marginals local to each constraint

1 2 3 4
θa .01 .52 .46 .01
θb .01 .52 .46 .01
θc .98 .02 .00 .00
θd .90 .10 .00 .00

Table 3: Computed marginals after ten iterations

θia) each value is equally likely since it appears in the same
number of solutions to that constraint. Whereas for that same
variable but from the point of view of the linear equality con-
straint (line θiia ) value 1 is ten times more likely than value
4. Note also that for variable d the two local marginals give
conflicting beliefs.

Table 3 presents the computed marginals after ten iterations
of belief propagation on this CP model using exact weighted
counting on each constraint. Note how close these got to the
true marginals in Table 1. To motivate our interest in tak-
ing advantage of the high-level modelling typically present in
CP, made up of a relatively low number of high-arity con-
straints, consider Table 4 showing the impact of replacing
the alldifferent constraint by its decomposition into three
disequality constraints: a 6= b, a 6= c, b 6= c. The computed
marginals are much further from the true marginals.

3 Belief Propagation in a CP Solver
Our prototype1 is built on top of MiniCP, a recent bare-bones
open-source CP solver developed for academic purposes and
written in Java [Michel et al., 2017]. Though few constraints
and filtering algorithms are currently implemented, its small
and clean architecture made it easier to implement the re-
quired architectural changes to the core of the solver with-
out worrying about the potential impacts on a more complex
system. We briefly describe the main changes.

In our setting a message corresponds to the frequency
(marginal) distribution of a variable. In order to maintain the
marginal distribution of a variable, each value in its domain is
given a weight attribute. Variables are provided with simple
methods to receive and send messages: incoming messages
from constraints are combined by multiplying them and an
outgoing message sent to a constraint excludes its own con-
tribution to the distribution (this is termed the outside belief ).

1Its current implementation is available at https://github.com/
PesantGilles/MiniCPBP

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5101

https://github.com/PesantGilles/MiniCPBP
https://github.com/PesantGilles/MiniCPBP


1 2 3 4
θa .37 .40 .20 .03
θb .37 .40 .20 .03
θc .61 .37 .02 .00
θd .40 .45 .13 .02

Table 4: Computed marginals after ten iterations but using a decom-
position of alldifferent

Constraints are also provided with methods to receive and
send messages, and another method to perform the weighted
counting.

Message passing is synchronized in two phases: in the first
phase constraints receive messages from the variables and
then update their beliefs by performing weighted counting
based on these updated marginal distributions; in the second
phase marginals for the variables are reset, constraints send
back messages to the variables, and marginals are normal-
ized. This goes on for a fixed number of iterations.

We solve a problem by backtrack search as usual. At each
node of the search tree we perform belief propagation and
then branch based on the computed marginals.

4 Weighted Model Counting
The main technical challenge of this approach is to design
efficient weighted model counting algorithms for each family
of constraints. Because each has a different combinatorial
structure, the kind of algorithm required likely differs as well.
We present some of them here.

4.1 Table
The table(x1, x2, . . . , xk, T ) constraint restricts the se-
quence of variables 〈x1, x2, . . . , xk〉 to take on a combination
of values appearing in T , the set of allowed tuples. The Com-
pact Table algorithm [Demeulenaere et al., 2016] implement-
ing the table constraint computes bit sets Txv ⊆ T identi-
fying for each variable-value pair (x, v) the tuples in which it
appears. It also maintains a bit set S of currently-supported
tuples (those that could be a solution to the constraint given
the current domains of the variables). Counting the solutions
in which x = v then simply amounts to computing the car-
dinality of Txv ∩ S. For weighted counting we first compute
the weight of each currently-supported tuple 〈v1, v2, . . . , vk〉
as the product of the outside belief of each pair (xi, vi) and
sum the relevant weights for each Txv .

4.2 Sum and Regular
The sum(x1, x2, . . . , xk, y) constraint enforces y =∑k

i=1 xi. It can be used to state inequalities and weighted
sums as well. As previously proposed to achieve domain con-
sistency and to compute solution densities for knapsack
constraints [Pesant and Quimper, 2008], conceptually we
build a layered graph where each path from the first to the
last layer represents a solution, with each component arc cor-
responding to an individual variable assignment. The only
difference here is that now each arc carries a weight equal to
the outside belief of the corresponding variable assignment

and that instead of storing the number of incoming and outgo-
ing paths at each node, we store weighted sums πin and πout
of incoming and outgoing paths respectively where a path’s
weight is the product of the weights on its component arcs.
We compute them through standard forward and backward
passes and then use these weighted sums to compute the lo-
cal beliefs for each variable-value pair.

The regular(x1, x2, . . . , xk,A) constraint restricts the
sequence of variables 〈x1, x2, . . . , xk〉 to spell out a word
belonging to the regular language recognized by automaton
A. The same approach can be used for regular constraints
since a similar layered graph has been proposed to achieve
domain consistency and to count solutions [Pesant et al.,
2012].

4.3 Among
The among(x1, x2, . . . , xk, V, c) constraint makes variable c
correspond to the number of occurrences of values from set
V in {x1, x2, . . . , xk}. By introducing binary indicator vari-
ables y1, y2, . . . , yk such that yi = 1 ⇔ xi ∈ V we rewrite
an among constraint as sum(y1, y2, . . . , yk, c) and use its
weighted counting algorithm.

4.4 Alldifferent
The alldifferent(x1, x2, . . . , xk) constraint re-
stricts variables x1, x2, . . . , xk to take on distinct values.
The one-to-one correspondence between solutions to an
alldifferent constraint and maximum matchings in
the associated bipartite graph is well known. Counting such
matchings in turn corresponds to computing the permanent
of the adjacency matrix A = (aij) of the bipartite graph,

per(A) = Σp∈PΠk
i=1ai,p(i)

where P denotes the set of all permutations of {1, 2, . . . , k}.
Unfortunately this is a #P -complete problem (one of the so-
called “hard to count – easy to decide” problems) [Valiant,
1979]. Nevertheless it is a well-studied problem, even for
more general nonnegative matrices, for which several upper
bounds have been proposed [Soules, 2003] and even polytime
randomized approximation algorithms [Jerrum et al., 2001].
We will cast our weighted counting problem as that of com-
puting the permanent of a nonnegative matrix built from the
marginals.

We first construct matrix A by setting aij to the outside
belief about variable xi taking value j. We interpret the per-
manent of A as a weighted counting of maximum matchings:
if aij = 1 its participation in a matching is fully counted;
the smaller aij is, the more it will be discounted; aij = 0
still means that no matching includes the corresponding as-
signment. For each variable xi and value j, the (unnormal-
ized) local belief is equal to the weighted counting of match-
ings that include assignment xi = j, which we evaluate as
the permanent of the sub-matrix of A obtained by remov-
ing row i and column j. We compute that permanent ex-
actly for sub-matrices whose size does not exceed a given
small threshold τ and otherwise use a quick-to-compute up-
per bound (bound U3 from [Soules, 2003]) thus getting an
approximate weighted counting.
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Figure 1: Number of instances solved with respect to the number of
fails (left) and computation time (right) for the Primes instances.

5 Combinatorial Search
We investigate CP-based belief propagation’s search guidance
to find a solution to constraint satisfaction problems. We use
the following two-way branching heuristic: max-strength as-
signs the variable-value pair exhibiting the largest positive
difference between its marginal and the reciprocal of the do-
main size (i.e. its marginal strength) and disallows it upon
backtracking. As a baseline we use minimum domain size
variable ordering with random value ordering and report the
average result over ten runs.

We report on three combinatorial problems from the
XCSP3 repository2 that can be modelled using the constraints
from the previous section: Latin Square, Magic Square, and
Primes. We stop an individual run after one hour of compu-
tation time.

5.1 Primes
The CP model for the Primes instances features 100 vari-
ables and many sum constraints. Figure 1 plots the number
of instances solved against the number of failed search-tree
nodes reached during search (left) and against the compu-
tation time (right). Each curve represents a particular con-
figuration of the algorithm: mindom is our baseline branch-
ing heuristic (minimum domain size with random value or-
dering) with standard support propagation; all the others use
the max-strength branching heuristic, with SBP/BP indicating
that belief propagation is used with/without prior application
of support propagation and the integer label (1, 2, 5, 10) rep-
resenting the number of BP iterations used at each search-tree
node.

We start with the number of fails. The SBP curves show
that search guidance improves with the number of BP itera-
tions, as expected. Remarkably for most instances the max-
strength branching heuristic guides directly to a solution, cul-
minating at 10 iterations with 26 out of 32 instances being
solved backtrack-free. Branching heuristic mindom does not
guide nearly as well and only solves 4 instances backtrack-
free. In general it exhibits several orders of magnitude more
fails. Turning to computation time (right plot) we see that
the gap between mindom and max-strength almost closes be-
cause of the computational cost of exact counting over the
many sum constraints but the latter nevertheless solves a few
more instances within the time limit.

2http://www.xcsp.org/
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Figure 2: Number of instances solved with respect to the number
of fails (left) and computation time (right) for the Magic Square in-
stances.
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Figure 3: Number of instances solved with respect to the number
of fails (left) and computation time (right) for the Latin Square in-
stances.

5.2 Magic Square

The CP model for these 9 × 9 partially-filled instances fea-
tures sum and alldifferent constraints. Figure 2 shows
that heuristic mindom requires on average tens of thousands
of fails to solve any of them but manages to solve almost
all of them given one order of magnitude more fails. SBP
with 5 and 10 iterations requires a few orders of magnitude
fewer fails than mindom. Because weighted counting on the
alldifferent constraint is not exact until few unbound
variables remain, not applying support propagation (the BP
curves) deteriorates performance. Turning to computation
time, even though mindom eventually catches up on the last
few instances solved, for the most part it is about one order of
magnitude slower than max-strength.

5.3 Latin Square

The CP model for these 30 × 30 partially-filled instances
features alldifferent constarints. Figure 3 shows that
heuristic mindom only manages to solve 17 out of 40 in-
stances within the time limit on average. Again max-
strength’s search guidance improves with the number of itera-
tions and SBP 5 solves all but one instance. Because no con-
straint initially performs exact weighted counting here and
therefore very little domain filtering will occur, not applying
support propagation (the BP curves) is not advisable. Ob-
serving the foot of the SBP curves, where the number of fails
is almost the same, gives an indication of the computational
cost of each iteration of BP.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5103

http://www.xcsp.org/


References
[Brockbank et al., 2013] Simon Brockbank, Gilles Pesant,

and L.-M. Rousseau. Counting Spanning Trees to Guide
Search in Constrained Spanning Tree Problems. In Chris-
tian Schulte, editor, Principles and Practice of Constraint
Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. Proceedings,
volume 8124 of Lecture Notes in Computer Science, pages
175–183. Springer, 2013.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On Probabilistic Inference by Weighted Model
Counting. Artif. Intell., 172(6-7):772–799, 2008.

[Dechter et al., 2010] R. Dechter, B. Bidyuk, R. Mateescu,
and E. Rollon. On the Power of Belief Propagation: A
Constraint Propagation Perspective. In Festschrift book in
honor of Judea Pearl. 2010.

[Demeulenaere et al., 2016] Jordan Demeulenaere, Renaud
Hartert, Christophe Lecoutre, Guillaume Perez, Laurent
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