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Abstract

This paper takes a step towards the theoretical
analysis of the relationship between word embed-
dings and context embeddings in models such as
word2vec. We start from basic probabilistic as-
sumptions on the nature of word vectors, context
vectors, and text generation. These assumptions are
supported either empirically or theoretically by the
existing literature. Next, we show that under these
assumptions the widely-used word-word PMI ma-
trix is approximately a random symmetric Gaus-
sian ensemble. This, in turn, implies that context
vectors are reflections of word vectors in approxi-
mately half the dimensions. As a direct application
of our result, we suggest a theoretically grounded
way of tying weights in the SGNS model.1

1 Introduction and Main Result

Today word embeddings play an important role in many natu-
ral language processing tasks, from predictive language mod-
els and machine translation to image annotation and ques-
tion answering, where they are usually plugged into a larger
model. An understanding of their properties is of interest as
it may allow the development of embeddings that are better
both in interpretability and quality of models built upon them.
This paper takes a step in this direction.
Notation: We let R denote the real numbers. Bold-faced
lowercase letters (x) denote vectors in Euclidean space, bold-
faced uppercase letters (X) denote matrices, plain-faced low-
ercase letters (x) denote scalars, plain-faced uppercase letters
(X) denote scalar random variables, ‘i.i.d.’ stands for ‘inde-
pendent and identically distributed’. We use the sign ∼ to
abbreviate the phrase ‘distributed as’, and the sign ∝ to ab-
breviate ‘proportional to’.

Assuming that words have already been converted into in-
dices, let {1, . . . , n} be a finite vocabulary of words. Follow-
ing the setup of the widely used WORD2VEC model [Mikolov
et al., 2013], we will use two vectors per each word i:

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Assylbekov and Takhanov, 2019].

1Our modification of the SGNS is available at https://github.com/
zh3nis/word2vec wt

• wi is an embedding of the word i when i is a center
word,

• ci is an embedding of the word i when i is a context
word.

We make the following key assumptions in our work.

Assumption 1. A priori word vectors w1, . . . ,wn ∈ R
d are

i.i.d. draws from isotropic multivariate Gaussian distribu-
tion:

wi
iid∼ N

(
0, 1

dI
)
, (1)

where I is the d× d identity matrix.

This is motivated by the work of Arora et al. [2016], where
the ensemble of word vectors consists of i.i.d. draws gener-
ated by v = s · v̂, with v̂ being from the spherical Gaussian
distribution N (0, I), and s being a scalar random variable
with bounded expectation and range. In their work, the norm
‖vi‖ of the word vector for a word i is related to its unigram
probability p(i), and to allow a sufficient dynamic range for
these probabilities they needed the multiplier s. In our work,
unigram probabilities are not mapped to vector lengths, and
this is why we do not need such multiplier. Direct relationship
between word probabilities and word vector norms is also im-
plied by the model of Hashimoto et al. [2016].

Assumption 2. Context vectors c1, . . . , cn are related to
word vectors according to

ci = Qwi, i = 1, . . . , n, (2)

for some orthogonal matrix Q ∈ R
d×d.

This is mainly guided by the work of Press and Wolf [2017],
who showed that context vectors in the SGNS model of
Mikolov et al. [2013] are distributed similarly to word vec-
tors in the sense that pairwise cosine distances between word
(input) embeddings strongly correlate with the corresponding
pairwise cosine distances between context (output) embed-
dings (see their Table 4). This is why we choose the transform
from word vectors to context vectors to be orthogonal as it
preserves inner products and consequently Euclidean norms.

Notice, that ci
iid∼ N

(
0, 1

dI
)
.

Assumption 3. Given a word j, the probability of any word
i being in its context2 is given by

p(i | j) ∝ pi · ew
⊤

j ci (3)

2Context is a fixed-size symmetric window around the given
word.
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where pi = p(i) is the unigram probability for the word i,
which is inverse proportional to its smoothed frequency rank
ri, i.e.

pi ∝
1

r1−α
i

, α ∈ (0, 1]. (4)

This is similar to the log-linear model of Arora et al. [2016],
but differs in the following aspects: ci is not assumed to do
a random walk over the unit sphere with bounded displace-
ment; we use the factor pi to directly capture word frequen-
cies and do not model them via vector norms. Equation (3)
can be interpreted as follows: probability that the word i oc-
curs in the context of the word j is the probability that the
word i occurs anywhere in a large corpus, corrected for the
relationship between words i and j. This approach was al-
ready considered by Melamud et al. [2017] but in their work i
is the entire left context of the word j, and ci is a vector repre-
sentation of this entire context. Also, like Arora et al. [2016]
but unlike Melamud et al. [2017], we use the model (3) for a
theoretical analysis rather than for fitting to data. Smoothing
of the unigram probabilities (i.e. raising them to power 1−α)
is motivated by the works of Mikolov et al. [2013], Levy et
al. [2015], Pennington et al. [2014], where α = 0.25 is a typ-
ical choice. We notice here that α = 0+ gives us Zipf’s law
[Zipf, 1935], whereas α = 1 gives us uniform distribution
of word frequencies which is not valid empirically but on the
other hand can be used to explain additivity of word vectors
[Gittens et al., 2017].

The relationship between word (input) and context (out-
put) vectors was addressed in several previous works. E.g.,
in recurrent neural network language modeling (RNNLM),
tying input and output embeddings is a useful regulariza-
tion technique introduced earlier [Bengio et al., 2001] and
studied in more details recently [Press and Wolf, 2017;
Inan et al., 2017]. This technique improves language model-
ing quality (measured as perplexity of a held-out text) while
decreasing the total number of trainable parameters almost
two-fold since most of the parameters in RNNLM are due to
embedding matrices. The direct application of this regulariza-
tion technique to SGNS worsens the quality of word vectors
as was shown empirically by Press and Wolf [2017] and by
Gulordava et al. [2018]. This worsening was predicted ear-
lier by Goldberg and Levy [2014] using a simple linguistic
observation that words usually do not appear in the contexts
of themselves. This basically means that Q 6= I in (2). At
the same time, there is empirical evidence that the relation-
ship between input and output embeddings is linear [Mimno
and Thompson, 2017; Gulordava et al., 2018]. In this paper,
we provide a theoretical justification for this and reveal the
exact form of the transform Q. Our main contribution is the
following

Theorem 1. Under Assumptions 1, 2, and 3 above, the con-
text vector ci for a word i is a reflection of the word vector
wi in approximately half of the dimensions.

In general, our word and context vectors live in a d-
dimensional vector space over real numbers (Rd). By The-
orem 1 we can settle them in a d/2-dimensional vector space

over complex numbers (Cd/2) in such way that the context

vector c̃i ∈ C
d/2 for a word i is the complex conjugate of the

word vector w̃i ∈ C
d/2. This is in line with the results of

Allen et al. [2019], however they use a completely different
set of basic assumptions and their primary goal is to encode
statistical properties of words directly into word vectors.

2 Proof Sketch of Theorem 1

The proof is divided into three steps: first we show that the
partition function in (3) concentrates around 1, and thus ∝
can be replaced by ≈; using this fact we show that Q is (ap-
proximately) an involutary matrix, i.e. similar to diag(q),
q ∈ {+1,−1}d; and finally we show that the word-word
pointwise-mutual information matrix (PMI) is approximately
a symmetric Gaussian random matrix with weakly dependent
entries. Based on the theory of random matrices, the latter
fact immediately implies a symmetric around 0 distribution
of the PMI eigenvalues, and thus the statement of the Theo-
rem 1.

The complete proof can be found in the full version [As-
sylbekov and Takhanov, 2019].

3 Empirical Verification

In this section we empirically verify two predictions of our
theory: a symmetric distribution of a PMI spectrum and the
involutarity of a matrix transforming input embeddings into
output ones.

3.1 Symmetry of a PMI Spectrum

To verify that the real-world PMI matrices have indeed a sym-
metric (around 0) distribution of their eigenvalues, we con-
sider a widely-used dataset text83 that consists of 17M
tokens and from which we extract PMI matrices using the
HYPERWORDS tool of Levy et al. [2015]. We use the de-
fault settings for all hyperparameters, except the word fre-
quency threshold and context window size. We were ignor-
ing words that appeared less than 100 times, resulting in a vo-
cabulary of 11,815 words. We additionally experiment with
the context window size 5, which by default is set to 2, and
which we believe could affect the results. By default, HY-
PERWORDS zeroes out an entry PMIi,j if the words i and j
do not co-occur in the corpus.4 The eigenvalues of the PMI
matrices are calculated using the TENSORFLOW library. The
histograms of eigenvalues are provided in Figure 1. As we
can see, the distributions are not perfectly symmetric with
a little right skewness, but in general they seem to be sym-
metric. Notice, that this is in stark contrast with the equa-
tion (2.5) from Arora et al. [2016], which claims that the
PMI matrix should be approximately positive semi-definite,
i.e. that it should have mostly positive eigenvalues. Also,
notice that the shapes of distributions are far from resem-

bling the Wigner semicircle law x 7→ 1

2π

√
4− x2, which

is the limiting distribution for the eigenvalues of many ran-
dom symmetric matrices with i.i.d. entries [Wigner, 1955;
Wigner, 1958]. This means that the entries of a typical PMI

3http://mattmahoney.net/dc/textdata.html.
4This means that apriori each i and j are assumed to be indepen-

dent, and we follow this convention. Thus, our PMI matrices do not
have any −∞’s, instead, they have lots of 0’s, i.e. they are sparse.
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Figure 1: Empirical distribution of eigenvalues of PMI matrices.

matrix are dependent, otherwise we would observe approx-
imately semicircle distributions for its eigenvalues. Inter-
estingly, there is a striking similarity between the shapes
of distributions in Figure 1 and of spectral densities of the
scale-free random graphs with strong clustering [Farkas et
al., 2001] which arise in physics and network science. No-
tice that the connection between human language structure
and scale-free random graphs with strong clustering was ob-
served previously by Cancho and Solé [2001], and we believe
it is worth investigating this connection deeper.

3.2 Involutarity of Q for SGNS Embeddings

Our theory suggests that the matrix Q in Assumption 2 should
be approximately involutary. To test this claim we train off-
the-shelf skip-gram embeddings {wi} and {ci} on text8

dataset using the reference WORD2VEC implementation from
the TENSORFLOW codebase. Let W ∈ R

n×d be a word em-
bedding matrix in which i-th row is w⊤

i , and C ∈ R
n×d be a

context embedding matrix in which i-th row is c⊤i . According
to (2),

C⊤ = QW⊤ ⇔ C = WQ⊤.

Thus, Q̂ := W†C should give an approximately involutary
matrix, where W† is the pseudo-inverse of W. This means

that Q̂2 should be approximately an identity matrix. The dis-

tribution of diagonal and off-diagonal elements of Q̂2 is given
in Fig. 2. We see that the diagonal elements are concentrated
around their mean 0.68, while the off-diagonal elements are

concentrated around 0, i.e. Q̂2 ≈ 0.68 · I. However, our

theory predicts Q̂2 ≈ I. We attribute this mismatch to the
underlying gap between Assumption 2 and the empirical ob-
servations: in SGNS the transform between word and context
vectors is not exactly orthogonal. We stress here that our as-
sumptions are motivated by but are not exactly consistent with
the skip-gram embeddings. Despite this, our theory is quite
applicable to the SGNS model as is shown in Section 4.

4 Weight Tying in the Skip-gram Model

We would like to apply our results to tie embeddings in the
skip-gram model of Mikolov et al. [2013] in a theoretically

grounded way. One may argue that our key Assumption 3
differs from the softmax-prediction of the skip-gram model.
Although this is true, in fact the softmax normalization is
never used in practice when training skip-gram. Instead it
is common to replace the softmax cross-entropy by the nega-
tive sampling objective (Eq. (4) in Mikolov et al. [2013]), and
its optimization is almost equivalent to finding a low-rank ap-
proximation of the shifted word-word PMI matrix in the form
w⊤

i cj ≈ PMIij − log k [Levy and Goldberg, 2014b]. Since
our Assumptions lead to the same conclusion up to a constant
shift [Assylbekov and Takhanov, 2019, Eq. (26)], we believe
that Theorem 1 can be directly applied to tie word (wi) and
context (ci) embeddings in the SGNS model. For this pur-
pose we form a vector q = [+1, . . . ,+1,−1 . . . ,−1] ∈ R

d

consisting of equal number of +1’s and −1’s, and then put

ci = q⊙wi (5)

for all words i in the vocabulary. This is equivalent to (2)
when the matrix Q has a diagonal form with the first d/2 di-
agonal entries being +1 and the rest d/2 entries being −1.
Such modification of the SGNS is refered to as ‘SGNS +
WT’. We also experiment with random flipping of signs: for
this purpose we form q ∈ R

d as a random vector consisting
of d i.i.d. draws from the Rademacher distribution5 and then
put ci as in (5). Such variant of weight tying is referred to as
‘SGNS + WTR’.

The word embeddings wi are initialized randomly, and
then trained on text8 and enwik9 using the reference
WORD2VEC implementation from the TENSORFLOW code-
base with all hyperparameters set to their default values6 ex-
cept that we choose the learning rate to decay 20% faster in
the weight-tied model. This additional tuning of the learn-
ing rate decay is not surprising: the model with tied embed-
dings has two times fewer parameters compared to the model

5Rademacher distribution is a discrete probability distribution
where a random variate X has a 50% chance of being +1 and a
50% chance of being −1.

6Embedding size d = 200, 15 epochs to train, initial learning
rate 0.2 on text8 and 0.15 on enwik9, 100 negative samples per
training example, batch size 16, windows size 5.
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Figure 2: Diagonal and off-diagonal elements of (W†
C)2.

Data Model Size
Finkelstein et al. Bruni et al. Radinsky et al. Luong et al. Google MSR

WordSim MEN M. Turk Rare Words

text8

SGNS 28M .681 .241 .631 .072 .307 .286
SGNS+WT 14M .638 .216 .642 .058 .309 .319
SGNS+WTR 14M .637 .215 .624 .057 .314 .319

enwik9

SGNS 87M .671 .268 .662 .213 .558 .410
SGNS+WT 44M .640 .237 .615 .188 .515 .425
SGNS+WTR 44M .633 .236 .639 .175 .516 .429

Table 1: Evaluation of word embeddings on the analogy tasks (Google and MSR) and on the similarity tasks (the rest). For word similarities
evaluation metric is the Spearman’s correlation with the human ratings, while for word analogies it is the percentage of correct answers.
Model sizes are in number of trainable parameters.

with untied weights, and this leads to a significant change
of the optimization landscape, which in turn results in the
need to tune the most sensitive hyperparameter — the learn-
ing rate (or its decay schedule). As is standard nowadays the
trained embeddings are evaluated on several word similarity
and word analogy tasks. We used the HYPERWORDS tool of
Levy et al. [2015] and we refer the reader to their paper for
the methodology of evaluation. We only mention here a few
key points:

• Our goal is not to beat state of the art, but to empirically
validate the statement of Theorem 1. This is why we
were evaluating only word (input) embeddings for both
SGNS and SGNS+WT. I.e., we were not adding context
vectors to word vectors in the similarity tasks, as it is
usually done nowadays.

• Word similarity datasets contain word pairs together
with human-assigned similarity scores. The word vec-
tors are evaluated by ranking the pairs according to their
cosine similarities and measuring the correlation (Spear-
man’s ρ) with the human ratings.

• For answering analogy questions (a is to b as c is to ?)
we use the 3COSMUL of Levy and Goldberg [2014a]
and the evaluation metric for the analogy questions is
the percentage of correct answers.

The results of evaluation are provided in Table 1. First

of all, notice that random flipping of signs (SGNS+WTR)
gives practically the same results as non-random flipping
(SGNS+WT). Next, SGNS+WT produces embeddings com-
parable in quality with those produced by the baseline SGNS
model despite having 50% fewer parameters. This also em-
pirically validates the statement of our Theorem 1. We no-
tice that similar results can be obtained by letting the linear
transform Q be a trainable matrix as shown by Gulordava et
al. [2018]. The main difference of our approach is that we
know exactly the form of Q, and thus we do not need to learn
it.

5 Conclusion

There is a remarkable relationship between human language
and other branches of science, and we can get interesting and
practical results by studying such relationships deeper. For
example, the modern theory of random matrices is replete
with theoretical results that can be immediately applied to
models of natural language once such models are cast into
the appropriate probabilistic setting, as is done in this paper.
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