Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

Swarm Intelligence for Self-organized Clustering (Extended Abstract)*

Michael C. Thrun and Alfred Ultsch
Databionics Research Group, Philipps-University of Marburg, Germany
mthrun @informatik.uni-marburg.de, ultsch@informatik.uni-marburg.de

Abstract

The Databionic swarm (DBS) is a flexible and ro-
bust clustering framework that consists of three
independent modules: swarm based projection,
high-dimensional data visualization and repre-
sentation guided clustering. The first module
is the parameter-free projection method Pswarm,
which exploits concepts of self-organization and
emergence, game theory, and swarm intelligence.
The second module is a parameter-free high-
dimensional data visualization technique called to-
pographic map. It uses the generalized U-matrix,
which enables to estimate first, if any cluster ten-
dency exists and second, the estimation of the num-
ber of clusters. The third module offers a cluster-
ing method which can be verified by the visualiza-
tion and vice versa. Benchmarking w.r.t. conven-
tional algorithms demonstrated that DBS can out-
perform them. Several applications showed that
cluster structures provided by DBS are meaning-
ful. Exemplary, a clustering of worldwide country-
related data w.r.t. the COVID-19 pandemic is pre-
sented here. Code and data is made available via
open source.

1 Introduction

The term knowledge discovery refers to the general process
of finding valid, novel, potentially useful, and understand-
able patterns in data [Fayyad er al., 1996]. Our focus lies
on data-driven methods that find patterns in data that iden-
tify homogeneous groups of objects if these objects are het-
erogonous between the groups or so-called clusters [Bonner,
1964]. In this sense, cluster analysis can be seen as one step
in the knowledge discovery process, and the clusters are often
specified as “natural” clusters [Duda et al., 2001; Theodoridis
and Koutroumbas, 2009]. The question that arises is how to
recognize structures that define clusters in high-dimensional
data without access to prior knowledge. Typically, clustering
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algorithms use a global objective function which implicitly
assumes specific cluster structures in data [Duda et al., 2001;
Everitt er al., 2001; Handl et al., 2005; Theodoridis and
Koutroumbas, 2009; Ultsch and Lotsch, 2017]. Moreover,
cluster analysis has two additional challenges. For the cluster-
ing process, a wide variety of indices have been proposed to
find the optimal number of clusters [Charrad er al., 2012] and
one of many statistical approaches has to be selected to test
for the clustering tendency or so-called clusterability [Adolf-
sson et al., 2019; Thrun, 2020]. After an extensive review
of algorithms of behavior-based systems in unsupervised ma-
chine learning, two interesting concepts are addressed here,
called self-organization and swarm intelligence. Moreover,
two missing links are identified: emergence [Goldstein, 1999;
Ultsch, 1999] and game theory [Nash, 1951].

The irreducible structures of high-dimensional data can
emerge through self-organization in a phenomenon called
emergence. Exploiting the Nash equilibrium concept from
game theory [Nash, 1950] through the use of a swarm of in-
telligent agents, the data-driven approach presented in this
work can outperform the optimization of a global objective
function in the tasks of clustering. This is demonstrated us-
ing a collection of datasets offering a variety of real-world
challenges, such as outliers or density vs. distance-defined
clusters [Thrun and Ultsch, 2020].

2 Methods

The algorithms of DBS consists of three modules: projec-
tion with Pswarm, visualization via a topographic map of pro-
jected points and clustering.

2.1 Pswarm

The term planar projection method is often used for one type
of dimensionality reduction methods. The output of a projec-
tion method is a scatter plot of projected points. Many projec-
tion methods are characterized by an objective function that is
optimized using gradient descent or a corresponding learning
algorithm [Thrun, 2018]. The quality of the projection and,
consequently, the visualization will critically depend on the
similarity concept chosen as the basis of the objective func-
tion [Thrun, 2018].

Focusing projection methods first adapt to global struc-
tures, and as time progresses, structure preservation shifts
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from global optimization to the preservation of local neigh-
borhoods. Projections of this type (e.g., NerV, CCA, ESOM,
t-SNE) usually require parameters to be set because this
phase, which is also called the learning phase, requires an
annealing scheme. This task is challenging if no prior knowl-
edge about the data exists.

In contrast to all other conventional projection methods,
Pswarm neither does have any global objective function nor
requires any input parameters other than the data set of in-
terest. In this case, Euclidean distances are used in the input
space. Alternatively, a user may also provide Pswarm with a
matrix defined in terms of a particular dissimilarity measure,
which is typically a distance but may also be a non-metric
measure.

The intelligent agents of Pswarm, called DataBots [Ultsch,
2000] operate on a toroid grid, where positions are coded into
polar coordinates to allow for the precise definition of their
movement, neighborhood function, and annealing scheme.
The size of the grid and, in contrast to other focusing projec-
tion methods, the annealing scheme are data-driven. During
learning, each agent moves across the grid or stays in its cur-
rent position in the search for the most potent scent emitted
by other DataBots. Hence, agents search for other agents car-
rying data with the most similar features to themselves with
a data-driven decreasing search radius. The movement of ev-
ery agent is modeled using a game-theory approach, and the
radius decreases only if a Nash equilibrium is found [Nash,
1950]. After the self-organization of agents is finished, the
output of the Pswarm algorithm is a scatter plot of projected
points.

2.2 Topographic Map

The goal of this scatter plot is a visualization of distance and
density-based structures, which is often used in cluster anal-
ysis [Everitt et al., 2001; Hennig, 2015; Mirkin, 2005; Ritter,
2014]. However, it is stated by the Johnson-Lindenstrauss
lemma [Dasgupta and Gupta, 2003] that the two-dimensional
similarities in the scatter plot cannot coercively represent
high-dimensional structures. For example, similar data points
can be mapped onto far-separated points, or a pair of closely
neighboring positions represents a pair of distant data points.

Therefore, the generalized U-matrix [Thrun, 2018; Ultsch
and Thrun, 2017] is exploited on this projection in the sec-
ond step using emergence through an unsupervised artificial
neural network called a simplified (because parameter-free)
emergent self-organizing map. The generalized U-matrix
generates the visualization of a topographic map with hyp-
sometric tints, which can be vividly described as a virtual
3D landscape with a specific color scale chosen with an al-
gorithm defining the contour lines [Thrun et al., 2016]. The
topographic map addresses the central problem in clustering,
i.e., the correct estimation of the number of clusters. It al-
lows the assessment of the number of clusters [Thrun et al.,
2016] by inspecting the 3D landscape. The color scale and
contour lines imitate valleys, ridges, and basins: blue colors
indicate small distances (sea level), green and brown colors
indicate middle distances (low hills), and shades of gray and
white indicate vast distances (high mountains covered with
snow and ice). Valleys and basins represent clusters, and the
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watersheds of hills and mountains represent the borders be-
tween clusters. In this 3D landscape, the borders of the visu-
alization are cyclically connected with a periodicity defined
by two parameters (L,C).

2.3 Clustering

The semi-automated clustering is performed by calculating
the shortest paths [Dijkstra, 1959] of the Delaunay graph be-
tween all projected points weighted with high-dimensional
distances. This is possible because it was shown that the U-
matrix is an approximation of the abstract U-matrix [Lotsch
and Ultsch, 2014], which is based on Voronoi cells. Voronoi
cells define a Delaunay graph where the edges between ev-
ery projected point are weighted by the high-dimensional dis-
tances of the corresponding data points.

The clustering approach itself involves one of two choices.
For each choice, a dendrogram can be visualized, which
shows the ultrametric portion of the distance used is visual-
ized (c.f. [Murtagh, 2004]). Large changes in fusion levels
of the ultrametric portion of the distance indicate the best cut,
but the resulting clustering should always be evaluated by the
topographic map.

2.4 Open Source Access

There is a general need for open-source implementations
in swarm intelligence algorithms [Martens et al., 2011].
Thus, DBS is available as the R package “Databionic-
Swarm” on CRAN (https://CRAN.R-project.org/package=
DatabionicSwarm). Datasets are available in [Thrun and
Ultsch, 2020]. The top 50 clustering algorithms are sum-
marized in the R package “FCPS” on CRAN (https://CRAN.
R-project.org/package=FCPS). A small subset of algorithms
was selected for benchmarking in this work because for this
subset the implicit assumptions were known in literature.

In the following section, the authors provide an exem-
plary usage of the algorithms based on data of 212 coun-
tries about the COVID-19 pandemia. The measured fea-
tures of the COVID-19 virus and today’s data is accessible
in the Worldometer’s COVID-19 (https://www.worldometers.
info/coronavirus/). It should be noted that the data has a high
amount of uncertainty because not all countries have the same
reporting system or transparency. The source code, data ex-
tracted at 16.April 2020, and all analysis steps are accessible
in https://zenodo.org/badge/latestdoi/257287298.

3 Exemplary Result of DBS

The following result serves as an illustration of the DBS al-
gorithms. One topographic map is shown in Figure 1. Each
point is labeled by a color that defines the cluster in which the
point lies in. In this example, each point represents a country.

Figure 2 presents the evaluation of the clustering using a
heatmap of distances ordered by the clustering. It is visi-
ble that similar countries are in a cluster and more dissimi-
lar countries between clusters. Further, external quality as-
sessment should be performed. Exemplary, it is shown that
the clustering is coherent with regards to the spatial dis-
tribution of countries per clusters in Figure 3 which was
generated using the R package ‘DataVisualizations’ (https://
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Class

¢ LowDeathRate&ManyRecovered
LowCasesLowTests

* LowCasesLowPop

* HighCasesAndDeaths

* HighDeathsMediumCasesORLowCasesLowPop

* Qutliers

Figure 1: Topographic map of DBS projection and clustering us-
ing available data about the Covid-19 pandemic. Class names are
derived by rules extracted from a decision tree.

CRAN.R-project.org/package=DataVisualizations) available
on CRAN [Thrun and Ultsch, 2018]. The same colors color
the world map in Figure 3 as the points in Figure 1. In this
example, the clusters can be explained using decision trees
leading to the class names provided in Figure 1 and Figure 3.

In the paper, many other real-word examples are presented
with data of higher quality.

4 Exemplary Interpretation

The coexistence of high-dimensional structures visualization
and clustering allows performing a valid cluster analysis even
if the user is not an expert in clustering. DBS is able to
find cluster structures for which countries “look like” each
other but do not look much like objects outside the cluster
(c.f. [Bonner, 1964]) even in this data with a high amount
of uncertainty and noise. However, it remains a challenge to
evaluate the cluster structures are meaningful. For example,
the explanation of the magenta cluster (low death rate with
high recovery rate) is questionable as it is more probable that
these countries did not provide accurate data.

S Pitfalls and Advantages in using DBS

Clustering algorithms possess the dilemma that they have to
be simultaneously stable but exhibit plasticity allowing for
the creation of new cluster structures [Duda et al., 2001].
The benchmarking with conventional algorithms of Ward,
single linkage, mixtures of Gaussians, k-means, spectral clus-
tering, and PAM showed this dilemma. Clustering algorithms
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Figure 2: Heatmap of the distances and the clustering using in Fig-
ure 1. Blue colors indicate small distances and red and yellow colors
large distances. Distances are ordered by the clustering.

either have a small variance in results but are unable to repro-
duce many cluster structures or have a large variance and a
smaller bias w.r.t cluster structures. For other machine learn-
ing approaches, this effect is well studied (e.g. [Geman et al.,
1992]). This work showed that clustering algorithms impose
non-existent cluster structures on the data if their bias is large
w.r.t. the data. In contrast, DBS enables the investigation of
the cluster tendency and allows the user to improve the clus-
tering if the topographic map is used interactively as shown
in the attached source code.

In general, the bias of DBS is small, meaning that many
different cluster challenges can be resolved, but the variance
of results is sometimes considerable, meaning that in these
cases, the result depends on the trial. As shown in the source
code on the example above, in praxis, the user has the addi-
tional task to cut out an island from the toroidal topographic
map (c.f. [Thrun et al., 2016]).

The main pitfall of DBS is its computational complexity
because for each row of data (high-dimensional data point),
one additional agent (DataBot) has to be initialized, and the
available open-source code lacks programming efficiency.

6 Conclusion

By exploiting the missing links between swarm-based al-
gorithms and emergence as well as game theory, the main
advantage of DBS is its robustness regarding very different
types of distance and density-based structures of clusters. As
a technique that uses swarm intelligence, DBS clustering is
more robust with respect to outliers than conventional algo-
rithms. DBS enables even a non-professional in the field of
data mining to integrate its algorithms for visualization and/or
clustering in their knowledge discovery process because no
prior knowledge about the data is required, and no implicit
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Figure 3: Map of the world with countries or regions colored by the DBS clustering of data about Covid-19 pandemic. Class names are based
on a decision tree using the clustering of DBS. Colors are the same as in Figure 1. Black and green countries or regions are mostly islands.

Blue countries are outliers.

assumptions about the data are made.

References

[Adolfsson ef al., 2019] Andreas Adolfsson, Margareta Ack-
erman, and Naomi C Brownstein. To cluster, or not to clus-
ter: An analysis of clusterability methods. Pattern Recog-
nition, 88:13-26, 2019.

[Bonner, 1964] R. E. Bonner. On some clustering technique.
IBM Journal of Research and Development, 8(1):22-32,
1964.

[Charrad et al., 2012] Malika Charrad, Nadia Ghazzali,
Véronique Boiteau, and Azam Niknafs. Nbclust package:
finding the relevant number of clusters in a dataset. Jour-
nal of Statistical Software, 61(6):1-36, 2012.

[Dasgupta and Gupta, 2003] Sanjoy Dasgupta and Anupam
Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Structures & Algorithms,
22(1):60-65, 2003.

[Dijkstra, 1959] Edsger W Dijkstra. A note on two prob-
lems in connexion with graphs. Numerische Mathematik,
1(1):269-271, 1959.

[Duda et al., 2001] Richard O Duda, Peter E Hart, and
David G Stork.  Pattern Classification. A Wiley-
Interscience Publication. John Wiley & Sons, Ney York,
USA, second edition, 2001.

[Everitt ef al., 2001] Brian S Everitt, Sabine Landau, and
Morven Leese. Cluster Analysis. Arnold, London, fourth
edition, 2001.

[Fayyad et al., 1996] Usama M Fayyad, Gregory Piatetsky-
Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy.

5128

Advances in knowledge discovery and data mining, vol-
ume 21. American Association for Artificial Intelligence
press, Menlo Park, California, USA, 1996.

[Geman et al., 1992] Stuart Geman, Elie Bienenstock, and
René Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1-58, 1992.

[Goldstein, 1999] Jeffrey Goldstein. Emergence as a con-
struct: History and issues. Emergence, 1(1):49-72, 1999.

[Handl et al., 2005] Julia Handl, Joshua Knowles, and Dou-

glas B Kell. Computational cluster validation in post-
genomic data analysis.  Bioinformatics, 21(15):3201—
3212, 2005.

[Hennig, 2015] et al. (eds.) Hennig, Christian. Handbook of
cluster analysis. Handbook of Modern Statistical Meth-
ods. Chapman & Hall/CRC Press, New York, USA, 2015.

[Lotsch and Ultsch, 2014] Jorn Lotsch and Alfred Ultsch.
Exploiting the structures of the u-matrix. In Th. Vill-
mann, F.-M. Schleif, M. Kaden, and M. Lange, editors,
Advances in Self-Organizing Maps and Learning Vector
Quantization, pages 249-257. Springer International Pub-
lishing, June 2014.

[Martens et al., 2011] David Martens, Bart Baesens, and
Tom Fawcett. Editorial survey: swarm intelligence for data
mining. Machine Learning, 82(1):1-42, 2011.

[Mirkin, 2005] Boris G. Mirkin. Clustering: a data recovery
approach. Computer Science and Data Analysis Series.
Chapnman & Hall/CRC, Boca Raton, FL, USA, 2005.

[Murtagh, 2004] Fionn Murtagh. On ultrametricity, data
coding, and computation. Journal of Classification,
21(2):167-184, 2004.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

[Nash, 1950] John Forbes Nash. Equilibrium points in n-
person games. Proc. Nat. Acad. Sci. USA, 36(1):48-49,
1950.

[Nash, 1951] John Forbes Nash. Non-cooperative games.
Annals of Mathematics, pages 286-295, 1951.

[Ritter, 2014] Gunter Ritter. Robust cluster analysis and
variable selection. Monographs on Statistics and Applied
Probability. Chapman & Hall/CRC Press, Passau, Ger-
many, 2014.

[Theodoridis and Koutroumbas, 2009] Sergios Theodoridis
and Konstantinos Koutroumbas. Pattern Recognition. El-
sevier, Canada, fourth edition, 2009.

[Thrun and Ultsch, 2018] Michael C. Thrun and Alfred
Ultsch. Effects of the payout system of income taxes
to municipalities in germany. In Monika Papiez and
Stawomir émiech, editors, [12th Professor Aleksander
Zelias International Conference on Modelling and Fore-

casting of Socio-Economic Phenomena, pages 533-542,
May 2018.

[Thrun and Ultsch, 2020] Michael C. Thrun and Alfred
Ultsch.  Clustering benchmark datasets exploiting the
fundamental clustering problems. Data in Brief,
30(C):105501, 2020.

[Thrun et al., 2016] Michael C. Thrun, F Lerch, Jérn Létsch,
and Alfred Ultsch. Visualization and 3d printing of mul-
tivariate data of biomarkers. In Vaclav Scala, editor, In-
ternational Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG),
volume 24, pages 7-16, May 2016.

[Thrun, 2018] Michael C. Thrun. Projection Based Clus-
tering through Self-Organization and Swarm Intelligence.
Springer, Heidelberg, 2018.

[Thrun, 2020] Michael C. Thrun. Improving the sensitiv-
ity of statistical testing for clusterability with mirrored-
density plot. In Ian Archambault Daniel, Nabney and Pel-
tonen Jaakkor, editors, Machine Learning Methods in Vi-
sualisation for Big Data (MLVis), pages 1-5. The Euro-
graphics Association, May 2020.

[Ultsch and Lotsch, 2017] Alfred  Ultsch  and  Jorn
Lotsch. Machine-learned cluster identification in high-
dimensional data. Journal of Biomedical Informatics,
66(C):95-104, 2017.

[Ultsch and Thrun, 2017] Alfred Ultsch and Michael C.
Thrun. Credible visualizations for planar projections. In
Marie Cottrell, editor, 12th International Workshop on
Self-Organizing Maps and Learning Vector Quantization,
Clustering and Data Visualization (WSOM), pages 1-5,
June 2017.

[Ultsch, 1999] Alfred Ultsch. Data mining and knowledge
discovery with emergent self-organizing feature maps for
multivariate time series, pages 33—46. Elsevier, first edi-
tion, 1999.

[Ultsch, 2000] Alfred Ultsch. Clustering with databots. In
nt. Conf. Advances in Intelligent Systems Theory and Ap-
plications (AISTA), pages 99—-104, Feb 2000.

5129



	Introduction
	Methods
	Pswarm
	Topographic Map
	Clustering
	Open Source Access

	Exemplary Result of DBS
	Exemplary Interpretation
	Pitfalls and Advantages in using DBS
	Conclusion

