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Abstract

Many applications of machine learning and opti-
mization operate on sensitive data streams, pos-
ing significant privacy risks for individuals whose
data appear in the stream. Motivated by an appli-
cation in energy systems, this paper presents OPT-
STREAM, a novel algorithm for releasing differen-
tially private data streams under the w-event model
of privacy. The procedure ensures privacy while
guaranteeing bounded error on the released data
stream. OPTSTREAM is evaluated on a test case
involving the release of a real data stream from
the largest European transmission operator. Ex-
perimental results show that OPTSTREAM may not
only improve the accuracy of state-of-the-art meth-
ods by at least one order of magnitude but also
support accurate load forecasting on the privacy-
preserving data.

1 Introduction

This paper was motivated by a desire to release privacy-
preserving streams of energy demands, also called loads, in
transmission systems. The goal is to protect changes in con-
sumer loads up to some desired amount within critical time
intervals. Although customer identities are typically consid-
ered public information (e.g., each facility is served by some
energy provider), their loads can be highly sensitive as they
may reveal the economic activities of grid customers. For
example, changes in load consumption may indirectly reveal
production levels and strategic investments. Moreover, these
time series are often input to complex analytic tasks, e.g., de-
mand forecasting algorithms [Nogales et al., 2002] and op-
timal power flows [Ochoa and Harrison, 2011]. As a result,
the accuracy of the privacy-preserving datasets is critical and,
as shown later in the paper, existing privacy-preserving algo-
rithms for time series fall short in this respect for this appli-
cation.

The main contribution of this paper is a new privacy mech-
anism that remedies these limitations and is sufficiently pre-
cise for use in forecasting and optimization applications. The

*This paper is an extended abstract of the article OptStream: Re-
leasing Time Series Privately in Journal of Artificial Intelligence Re-
search [Fioretto and Van Hentenryck, 2019].
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new algorithm, called OPTSTREAM, is presented under the
framework of w-event privacy and is a 4-step procedure con-
sisting of sampling, perturbation, reconstruction, and post-
processing modules. The sampling module selects a small set
of points for privacy-preserving measurement in each period
of interest, the perturbation module introduces noise to the
sampled data points to guarantee privacy, the reconstruction
module re-assembles the non-sampled data points from the
perturbed ones, and the post-processing module uses convex
optimization over the privacy-preserving output of the pre-
vious modules, as well as the privacy-preserving answers of
additional queries on the data stream, to improve accuracy by
redistributing the added noise. It is important to emphasize
that, although OPTSTREAM was motivated by an energy ap-
plication, it is potentially useful for many other domains since
its design is independent of the underlying problem.

OPTSTREAM is evaluated on real datasets from Réseau de
Transport d *Electricité, the French transmission operator and
the largest in Europe. Experimental results show that OPT-
STREAM improves the accuracy of state-of-the-art algorithms
by at least one order of magnitude for this application do-
main and show that it supports accurate load forecasting on
the privacy-preserving data.

2 Preliminaries

2.1 Privacy Model and Goals

A data stream is an infinite sequence of tuples (¢, ¢), describ-
ing an event reported by user ¢ that occurred at a discrete
time ¢. This paper uses a simplified notation and denotes the
data stream as a vector ¢ = (1, T2, ...) with each z; € R
describing a positive quantity, such as that associated to the
aggregated consumption of a set of customers at time £. A
stream prefix x[t] describes the sequence x4, . . . , ; of all tu-
ples observed on or before time £.

At every time step ¢, the data curator receives information
about data x; and wishes to privately report such quantity. In
the target application of this paper, the data curator is inter-
ested in publishing every element x; for a recurring period of
w time steps. A w-period is a set of w contiguous time steps
t—w+1,...,t (w=1). Thus, private reports x; are generated
in real time for windows of w time steps.
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2.2 Differential Privacy and w-Privacy

Differential Privacy [Dwork, 2010] focuses on protecting the
participation of an individual user in a computation. In a nut-
shell, an algorithm A, that takes as input a dataset D and
returns a response o from some output set, is e-differentially
private if, for all possible datasets D’ differing from D by
only one individual, and any output responses o,

Pr[A(D) € o] < exp(e) Pr[A(D') € o].

The privacy level is controlled by parameter € > 0, describing
the privacy loss, with small values denoting strong privacy.

The w-event privacy framework [Kellaris ef al., 2014] ex-
tends the definition of differential privacy to protect data
streams. The framework operates on stream prefixes and two
data streams prefixes x[t] and ='[t] are said w-neighbors, de-
noted by x[t] ~., x'[t], if

i. foreach x;, z; with i € [t], z; ~ a}, and

ii. for each x;,x;,x;, 2} such thati < j € [t] and z; #

T, X # x;-,j — 44+ 1 < w holds.

In other words, two stream prefixes are w-neighbors if their
elements are pairwise neighbors and all the differing elements
are within a time window of up to w time steps. As a result,
when ensuring the privacy guarantees, the w-event frame-
work does not consider data streams where the differences
are beyond a time window of size w: It only needs to con-
sider windows of w elements.

Definition 1 (w-privacy) Let A be a randomized algorithm
that takes as input a stream prefix x[t] of arbitrary size and
outputs an element o from a set of possible output sequences
O. Algorithm A satisfies w-event e-differential privacy (w-
privacy for short) if, for all t, all outputs o € O, and all
w-neighboring stream prefixes x[t] and x'[t]:

PrlA(z[t]) € o] < exp(e)Pr[A(z'[t]) eo]. (1)

An algorithm satisfying w-privacy protects the sensitive in-
formation that could be disclosed from a sequence of finite
length w. All the classical properties of differential privacy,
including composability and immunity to post-processing
[Dwork and Roth, 2013] carry over to w-privacy.

The Laplace mechanism which adds Laplace noise to each
element of the stream with parameter wA/e achieves w-
privacy [Kellaris et al., 2014], where A is the maximal con-
tribution of an individual to the data stream.

3 OptStream For Stream Release

The proposed algorithm processes a data stream x =
(z1,22,...), along with the period size w whose privacy is
to be protected, and the total privacy loss €, and outputs a
privacy-preserving version & = (&1, &, . ..) of the stream x.
OPTSTREAM processes the data stream in consecutive and
disjoint w-periods consists of four steps: (1) data sampling,
(2) perturbation, (3) reconstruction of the non-sampled data
points, and (4) optimization-based post-processing, summa-
rized below.! The algorithm seeks to balance two types of

"For an in-depth description of the OPTSTREAM procedures and
their theoretical analysis, please refer to the full paper [Fioretto and
Van Hentenryck, 2019].

Figure 1: Illustration example of the SAMPLE step with S =
{1, 3, 6}. The solid black curve connects the data point , the dashed
red curve denotes the linear interpolation of the selected points, and
the red arrows denote the L1 errors.

errors: a perturbation error, introduced by the application
of additive noise at the sampled points, and a reconstruction
error, introduced by the reconstruction procedure at the non-
sampled points. The higher the number of samples in a w-
period, the more perturbation error is introduced while the
reconstruction error may be reduced, and vice-versa. The er-
ror generated by these two components, in combination with
the number of samples that minimizes the error, are analyzed
in the full paper.

The SAMPLE Procedure

The procedure selects a subsample S of k points for each w-
period. Its goal is to perform a dimensionality reduction over
the data stream whose sample points can be used to generate
privacy-preserving stream data points with low error. It does
so by minimizing the L1 error between the values associated
to the original data points « and those associated to the points
generated by a linear interpolation £ of the & selected points,
denoted as ° = (x;]i € S). Formally, it minimizes the fol-
lowing quantity: Y., |¢7 — @7|. The idea is illustrated in
Figure 1. The procedure uses a DP greedy algorithm to select
a set S that produces a low L1 error. It is an instantiation
of the Sparse Vector Technique [Hardt and Rothblum, 2010],
an iterative algorithm that allows answering a sequence of
queries consuming low privacy loss, and it uses a portion €
of the overall privacy loss budget e.

The PERTURB Procedure

Next, OPTSTREAM uses the canonical Laplace mechanism
to guarantee privacy perturbing the k data points sampled in
the previous step. The perturbed data points g of x satisfy
ep-differential privacy, with €, being a portion of the overall
privacy loss budget e.

The RECONSTRUCT Procedure

The goal of the reconstruction procedure is to re-assemble
the non-sampled data point from the perturbed ones &g using
linear interpolation. The procedure uses exclusively privacy-
preserving data and thus induces no additional privacy loss.
In [Fioretto and Van Hentenryck, 2019] the paper analyzes
the error induced by this step on the data stream.

The POST-PROCESS Procedure

Finally, the algorithm uses a key post-processing component
to enforce consistency of salient features of the data. Its
essence is a convex optimization program that employs the
privacy-preserving output g of the above modules, as well
as privacy-preserving answers to additional queries (called
feature queries) on the data stream.
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Formally, a feature is a partition of the w-period and
we say that a feature F’ is a sub-feature of F, denoted by
F' < F, if F/ is obtained by sub-partitioning F. The fea-
ture query Qr () associated with feature F = {d1,...,d;,}
returns an m-dimensional vector (cy,...,¢,,) where each
c; is the sum of the values x; of x for j € d;. For ex-
ample, a feature F;(x) may be described by the partition
F, = {{1,...,|w/2]|},{[w/2],...,w}} that divides the w-
interval in two equal segments, and its associated query set

Qr, = {Zyﬁ/fj T, 31 42 Tj) represents the aggregated
count on the partition induced by F; on x. For notational
simplicity, we assume that the first feature always partitions
the data stream w-period into singletons, i.e., F; = {{i} :
i € [w]}. Note that its associated privacy-preserving query
Qr, = x is the output of the perturbation procedure.

When viewed as queries, the inputs to the mechanism

can be represented as a set of values Qp,(x) = ¢; =
Cily--sCim;) (1 < i < p) or, more concisely, as ¢ =
C11y .- ,Cpmp), and ¢ is used to represent their associated

noisy (i.e., privacy-preserving) version, obtained via an ap-
plication of the Laplace mechanism. We assume that a partial
ordering < of features is given, and notice that the feature
queries Qg () form a lattice on . The essence of this pro-
cedure is the following optimization program that finds a new
vector * that minimizes:

ming & — &3 (O1)

st diy= Y, @y Vi Fy <Fs, je[m] (02
i, Sdyj

Vi, j: dij = 0. (03)

Its decision variables are the post-processed values © =
(%11, ..., Zpm,) and the objective minimizes the squared L,-
Norm of & — €. The optimization is subject to a set of con-
sistency constraints among comparable features (Constraints
(02)) and non-negativity constraints on the variables (Con-
straints (O3)). By definition of sub-features, there exists a set
of elements in F;; whose union is equal to d;.

Fioretto and Van Hentenryck [2019] shows that the
optimization-based post-process achieves ¢,-differential pri-
vacy, it bounds the expected error with respect to the original
stream by a contact factor, and that OPTSTREAM satisfies w-
event e-differential privacy.

4 Evaluation

Dataset and Algorithms

The source data was obtained through a collaboration with
Réseau de Transport d’Electricité, the largest energy trans-
mission system operator in Europe. It consists of a one-year
national-level load energy consumption data, which is aggre-
gated at a regional level. Each data point in the stream rep-
resents the total load consumption of the customers served
within a region during a 30 minute time period. For evalua-
tion purposes, the experiments often consider a representative
region (Auvergne - Rhone-Alpes) to analyze the data stream
release.

The following sections compare OPTSTREAM against the
Laplace mechanism and the Discrete Fourier Transform
(DFT) algorithm [Rastogi and Nath, 2010]. All the algo-
rithms release privacy-preserving data associated with the
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Figure 2: Real load consumption data, in MW, for the Auvergne-
Rhone-Alpes region in January 2016 (first column) and its privacy-
preserving versions obtained using Laplace (second column), DFT
(third column), and OPTSTREAM (fourth column) with privacy loss
€ = 1 (top), € = 0.1 (middle), and € = 0.01 (bottom).

sub-streams «x for each w-period and preserve the same level
of privacy. An in-depth description of the algorithms, their
parameters, and evaluation setting, as well as a more exten-
sive evaluation, that uses additional algorithms and settings,
are provided in the full paper.

Privacy-Preserving Stream Release

Answering queries over contiguous w-periods corresponds
to releasing the privacy-preserving stream over the entire
available duration. Figure 2 illustrates the real and privacy-
preserving versions of the data-stream for the Auvergne-
Rhoéne-Alpes region in January, 2016. It uses w-periods of
size 48 for given privacy losses € = 1.0, 0.1, and 0.01, shown
in the top, middle, and bottom rows, respectively. The choice
for the w-period allows the data curator to ensure the protec-
tion of the observed power consumptions within each period.
Thus, the released stream protects loads in each entire day.

The real loads are illustrated in the first column. The figure
compares our proposed OPTSTREAM algorithm (fourth col-
umn) against the Laplace mechanism (second column), and
the DFT algorithm [Rastogi and Nath, 2010] (third column).
The experiments set the number of Fourier coefficients in the
DFT and sampling steps in OPTSTREAM to 10. The privacy
loss allocated to perform each measurement is split equally.
Additionally, for OPTSTREAM €, = €, = €, = %e. Finally,
OPTSTREAM uses feature queries representing salient mo-
ments in the day associated with different consumption pat-
terns. These are proxy of consumer behaviors and thus energy
consumption. Finally, if an algorithm reports negative noisy
value for a stream point, we truncate it to zero.

Figure 2 clearly illustrates that, for a given privacy
disclosure level, OPTSTREAM produces privacy-preserving
streams that are substantially more accurate than its com-
petitors when visualized.

A quantification of the errors reported by the algorithms is
reported in Figure 3. It shows the Lj-errors (in logarithmic
scale) between the original & and the privacy preserving &
streams obtained by the algorithms analyzed for the months
of February (left), June (middle), and October (right). These
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Figure 3: L-errors: Load stream data for the months of February
(left), June (middle), and October (right). The y-axis reports log,
of the average L1-error for the stream data.
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Figure 4: Prediction error: Forecast for a one day load consumption
through an ARMA model on the real load consumption data (Real)
and its privacy-preserving versions obtained using Laplace, DFT,
and OPTSTREAM with privacy loss € = 0.1.

months capture the different customers load profile behav-
iors due to different weather patterns and durations of the day
light. In addition to OPTSTREAM (denoted with suffix LS,
in the Figure) an additional version (OPTSTREAMES) is pre-
sented; It differs from OPTSTREAM only for its sampling pro-
cess, which is equally-spaced and thus spends no privacy loss
budget (i.e., ¢, = 0). The figure highlights that OPTSTREAM
consistently outperforms competitor algorithms.

Impact of Privacy on Forecasting Demand

The final results evaluate the capability of the released
privacy-preserving streams to accurately predict future con-
sumptions. To do so, the paper adopts the Autoregressive
Moving Average (ARMA) model [Alwan and Roberts, 1988;
Zhang, 2003], which is a popular stochastic model used for
predicting future points in a time series. The ARMA model
with parameters p and g refers to the model with p autoregres-
sive terms and ¢ moving-average terms: It estimates a future
time step value z; as ¢ + B¢ + Yo_; Giti—i + Doty 0iB—is
where where ¢ is a constant, [3; is a random variable mod-
eling white noise at time ¢, ¢; and 6; are, respectively, the
autoregressive and moving average model parameters.

The experiments use an ARMA model with parameters
p = q = 1 to estimate the future 48 time steps (corresponding
to a day) when trained with the past four weeks of the privacy-
preserving data stream estimated using Laplace, DFT, and
OPTSTREAM with L1-sampling. All models use the same
parameters adopted in the previous sections.

Figure 4 visualizes the forecast for the load consumptions
in the Auvergne-Rhone-Alpes region for February 2, 2016.
The black and gray solid lines illustrate, respectively, the real
load values observed so far and those of the day to be fore-
casted. The dotted red lines illustrate the privacy-preserving
stream data estimated so far (and used as input to the predic-

5138

- Laplace

10°

mz"I || ||I|. I. |.II| I| 1

0.01 0.01 0.01

anaoy Loss (€) anacy Loss (€) Prlvacy Loss (e)
February June October

|:| DFT - OptStream - Real

Average L1 Error

Figure 5: L error analysis: ARMA forecasting model on stream
data for the energy loads of the months of February, June, and Octo-
ber for the Auvergne-Rhone-Alpes region.

tion model) and the solid red lines depict the prediction ob-
tained using the ARMA model. Figure 4 shows the forecast
results using the real data (Real) and the privacy-preserving
stream obtained through Laplace, DFT, and OPTSTREAM, re-
spectively. The figure clearly shows that OPTSTREAM is able
to produce substantially better estimates for the next day fore-
cast.

The experiments also quantitatively evaluate the average
L -error for each prediction produced by the mechanisms.
They adopt the same setting as above for the prediction and
report, in Figure 5, the average L-errors for predicting each
day in the month of February, June, and October for the
Auvergne-Rhone-Alpes region. Each histogram reports the
logy value of the average error of 30 random trials. We ob-
serve that OPTSTREAM reports substantially smaller errors
compared to all other privacy-preserving algorithms, and that
the error made by OPTSTREAM in reporting the next day
forecast is closer to the error made in the forecast prediction
using the real data than when using another method.

5 Conclusions

This paper presented OPTSTREAM, a novel algorithm for pri-
vately releasing stream data in the w-event privacy model.
OPTSTREAM is a 4-step procedure consisting of sampling,
perturbation, reconstruction, and post-processing modules.
OPTSTREAM was evaluated on a real dataset from the largest
transmission operator in Europe. Experimental results on
multiple test cases show that OPTSTREAM improves the ac-
curacy of the state-of-the-art by at least one order of magni-
tude in this application domain. The accuracy improvements
are measured, not only in terms of the error distance to the
original stream but also in the accuracy of a popular load
forecasting algorithm trained on privacy-preserving data sub-
streams. In the full paper, the results additionally show that
OPTSTREAM exhibits similar benefits on hierarchical stream
data which is also highly desirable in practice. An impor-
tant direction of future work is to generalize these results to
the streaming setting where a data element is emitted at each
time step. Future work will also focus on ensuring that salient
properties of an optimization problem of interest hold, when
the problem relies on inputs that include the load consump-
tion data, e.g., as in [Fioretto and Van Hentenryck, 2018;
Fioretto and Van Hentenryck, 2018; Fioretto et al., 2020;
Mak et al., 2020].
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